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Abstract—Omnidirectional cameras are widely used for robotic
applications in structured environments. However, because of
the distorted field of view (FOV), it is hard to describe the
primitive features extracted from them robustly. In this paper,
we tackle the problem by using Histogram of Gradient (HoG)
statistics for the regions of interest (ROI) in the neighborhood
of major vertical lines extracted from the panoramic image. As
a validation, we compare the proposed algorithm with state-of-
the-art based on two widely used data-sets, leading to evidently
better performance. We also introduce a scene reconstruction
scenario using the proposed descriptor based on 1D Trifocal
Tensor framework. The comparative results show the competence
of the descriptor.

I. INTRODUCTION

A. Motivation

Scene representation is a subtle problem, especially when
non-standard imaging sensors such as omnidirectional camera
is used. Although the representations based on calibration is
less a problem nowadays [1], algorithms that independent from
calibration result are still preferred, due to complexity and
generalization potentials.

Omnidirectional camera is considered to be one of the
most efficient sensors for environment modeling [2], [3].
However, a reliable descriptor for the conducted panoramic
images is still required to be developed and properly evaluated.
Considering the characteristics of omnidirectional cameras,
the most reliable feature is the vertical lines perpendicular to
the motion plane, which are preserved regardless rotation and
translation.

In this paper, we propose an adaptive descriptor for major
vertical lines, which is inspired by and extended from [4].
We evaluate the performance in two steps. First we evaluate
matching precision against [4] using two widely used data-
sets. Besides, we present a scene reconstruction scenario using
trifocal tensor [5], as an application of the proposed feature.

B. Related Work

Several techniques are used to describe the surrounding
environment of a robot. One of the major differences lies
in the various descriptors used by structure reconstruction.
We see that many algorithms utilize key-point based features
on perspective cameras, e.g. PTAM [6] uses mainly FAST
corners[7]; FAB-MAP [8] uses mainly SIFT [9] or SURF
[10]. However, not many applications or descriptors have
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been reported on omnidirectional camera, such as the exam-
ple depicted in figure 1. The main reason is the distortion
introduced by the nonlinear transformation from the mirror
shape, by which the nonuniform resolution will greatly affect
the stability of patch based descriptors.

Fig. 1. Omnidirectional camera and panoramic image

There are two ways to represent the environment by images:
First, descriptors are extracted from the whole image, e.g. by
Fourier transformation [11], [12], [13]. Among the existing
algorithms designed for omnidirectional camera, “Fingerprint
of places” [14] and FACT [15], [3] are color based features,
where the vertical line is considered as an important hint
for the formation of descriptors of the whole image. The
second category is object oriented representations [16], [17],
[18] namely feature based algorithms. Several lightweight key-
point descriptors were developed [19], [20] and got widely
applied in scene recognition problems [21], [22].

We notice that beside the wide FOV, an important reason
for choosing omnidirectional vision is that, when the camera
is mounted perpendicularly to the plane of motion, the vertical
lines of the scene are mapped into radial lines on the images.
Regarding the descriptor for the vertical lines, [4] defines a line
descriptor using HoG extracted from static circular patterns.
However, we find it is hard to adapt it to robot translation,
by which the length of critical vertical lines varies, due to
the ROI is fixed even for completely different image frames.
In this paper, we propose that the ROI need to adapt to
different environments. The parameter selection are evaluated
accordingly.

There are two groups of techniques to work on vertical
line matching. The first group deals with the individual line
segments such as [23], [4] and the second one works with
the union of the line segments [24], [25], [26]. Considering
the complexity of the second group, in this paper we use the
separation angle between two descriptor vectors as the primary
metric to represent the similarity.



The panoramic images taken from omnidirectional camera
are used with the raw image or an unwrapped representation.
In the case of full calibration, the raw image is usually
projected to spheres [1]. However, when we only focus on
the vertical lines, the unwrapping along the horizontal line is
more feasible [27], [28], [29]. This unwrapping process only
depends on a calibration of the image center and extraction of
the main circular shape as the right image in figure 1, which
can be easily dealt with by Hough transformation.

In order to reconstruct scene appearances, the feature posi-
tions are recovered by geometrical constraints. In this paper,
we use 1D Trifocal Tensor [30] to realize this computation
process, which is mostly used in visual homing problem
[30]. Comparing with other homing algorithms [31], [32],
the trifocal tensor results in not only robot positions, but
also feature distributions. This provides a basis for scene
reconstruction. We use the proposed features to provide a
group of geometrical constraints in this work.

C. Organisation

The rest of this paper is organized as follows. We first
introduce the feature extraction and description in section II.
Then, the scene reconstruction algorithm is outlined in section
III. The parametrization and evaluation will be carried out with
widely cited data-sets in section IV, followed by conclusion
of this work in the end.

II. PROPOSED DESCRIPTOR

In this section, we introduce the major processes to detect
salient features, namely vertical lines, and the descriptor
formation.

A. Feature Detection

An unwrapped image facilitates the extraction of major
vertical lines, since all the radial lines are projected into
vertical direction. Hough Circle Detection algorithm is first
performed in order to obtain the radius of effective FOV and
the center coordinate. The detection results is shown as figure
2. The outermost circle is taken as the effective FOV, since its
inner part covers all valid information of the panoramic image.
The estimated image center is taken by the circle center shown
in figure 2(c).

(a) Raw Image (b) Detected circles (c) Outer circle

Fig. 2. All the circles detected in the raw image. The outermost circle is
extracted.

Major vertical lines are then extracted following the similar
algorithm as shown in [15].

B. Descriptor Formulation

In order to match the vertical lines across images, the
formation of the descriptor is essential. Sometimes a tracking
scheme is adopted to help the matching process, where de-
tected features have to be matched between two consecutive
images [4]. In this work, we emphasize the appearance based
matching without considering the tracking results.

We build the descriptor using the Histogram of Oriented
Gradient (HoG). Considering the limitation of fixed circular
shapes used by [4], we reshape the ROI by rectangles. For
each major vertical line, a set of 6 ROI rectangles is extracted
as shown in figure 3, where the width of rectangle is adapted
for different environments.

Fig. 3. The shape of the modified descriptor with varying scaleX . The
width of the descriptor is changed to adapt different environments.

In order to calculate the HoG efficiently, the orientation
space is divided ranged from −π to π into Nb bins. Then two
components of the image gradients for x- and y-directions,
Ix and Iy , are calculated for each pixel in each rectangle.
The frequencies per phase are clustered, according to the
discretized phase of the gradients Φ.

M =
√
I2x + I2y , Φ = arctan(Iy, Ix) (1)

Afterward, the gradient magnitude M of each pixel is accumu-
lated in the corresponding bin over the Φ space. An example
of the calculated HoG is shown in figure 4.
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Fig. 4. An instance of non-normalized HoG with Nb = 32 bins.

The accumulated magnitude values are normalized in each
rectangle as the value with the maximum gradient magnitude
is equal to one. All the bins with magnitude value greater than
0.1 ( 10% of the maximum value ) are threshold as 0.1, then
perform normalization again. This extra operation makes the
descriptor more robust changes since the gradient magnitudes



are more sensitive than orientation, in the case of illumination
changes. At the end, three pairs of histograms H1, H2 and
H3 regarding left and right side of a vertical line are used as
descriptor:

H1 = [H1,L, H1,R]
H2 = [H2,L, H2,R]
H3 = [H3,L, H3,R]

(2)

We see that two major parameters determine the descriptor
for a given image, i.e. number of bins for the HoG Nb and
width of the rectangle, indicated by scaleX . For different
specific environment, the optimal parameter set varies. The
parametrization is evaluated in section IV.

C. Feature matching

In order to measure the similarity between two descriptors,
we consider a descriptor as a vector with 6×Nb dimensions.
Intuitively, we take the separate angle of two normalized
descriptors x,y as the measure of the distance, as:

α(x, y) =
〈x,y〉
|x||y|

(3)

where 〈x,y〉 denotes the inner product of the two descriptors.
When comparing the features from two images A and B,
letting [A1, A2, .., Am] be the descriptors of image A and
[B1, B2, .., Bn] be the descriptors of B, a positive matching
is validated by the second best match is smaller than rth ratio
of the best match. Specifically, a scoring method has been
implemented, following the definitions as follows. maxIP is
the maximum of inner product result, triggered by a pair of
best matches, which is the closest to 1, SmaxIP is the second
maximum, and avgIP is the average of all possible descriptor
pairs of Ai and Bj , with j = 1, 2, ..n. The final score is
achieved by comparing the maxIP with SmaxIP and avgIP
of all the descriptors in the second image, as follows.

Condition:score1× score2×maxIP > rth

score1 =
maxIP

SmaxIP

score2 =
maxIP

avgIP

(4)

where we use an empirical rth = 80%.
Considering the operation on a sequence of images, es-

pecially for tracking problems, we use a naive strategy as
follows. After matching the lines in the first two images,
the same procedure is applied for the second and the third
images for the vertical lines that have already been matched
previously. As a sample result, a group of matched triple in
three consecutive images is illustrated as in figure 5.

III. SCENE RECONSTRUCTION

Using trifocal tensor for scene reconstruction, the system
needs bearing angles of matched features from three different
robot positions. By using these three view bearing information,
the 1D trifocal tensor is calculated [30]. The trifocal tensor
gives a constraint on relative position and orientation of

Fig. 5. An example of matched vertical line triples. The bearing information
calculated for each image is used for trifocal tensor calculation.

three different robot positions. Given the estimated relative
positions, by triangulating the landmarks, the geometrical
structural information can be recovered.

A. Tensor Calculation

For the tensor calculation, we use the 1D trifocal tensor
introduced in [33], [34] as basis. We concisely outline the
process as follows.

The inputs of the tensor calculation process is at least seven
bearing information triple that comes from three different robot
positions. The bearing information from each major vertical
line is kept in a state vector u = (sinα, cosα)T , where α is
the bearing angle of a line feature.

Following the notation of [33], θ’s are used to present the
robot heading and tx, ty are used to denote the translation in
x- and y-direction for each local frame. The trifocal tensor is
represented as:

T = [T111 T112 T121 T122 T211 T212 T221 T222]T

where
T111 = t

′

ysin(θ
′′
)− t

′′

ysin(θ
′
);

T112 = t
′

ycos(θ
′′
) + t

′′

xsin(θ
′
);

T121 = −t
′

xsin(θ
′′
)− t

′′

y cos(θ
′
);

T122 = −t
′

xcos(θ
′′
) + t

′′

xcos(θ
′
);

T211 = −t
′

ycos(θ
′′
) + t

′′

y cos(θ
′
);

T212 = t
′

ysin(θ
′′
)− t

′′

xcos(θ
′
);

T221 = t
′

xcos(θ
′′
)− t

′′

ysin(θ
′
);

T222 = −t
′

xsin(θ
′′
) + t

′′

xsin(θ
′
).

(5)

The trifocal constraints is composed by the coefficient
matrix A and tensor T as (5).

AT =[u1u
′

1u
′′

1 u1u
′

1u
′′

2 u1u
′

2u
′′

1 u1u
′

2u
′′

2

u2u
′

1u
′′

1 u2u
′

1u
′′

2 u2u
′

2u
′′

1 u2u
′

2u
′′

2 ]T = 0
(6)

In order to solve approximated trifocal tensor T , the eigen-
vector associated with the smallest eigenvalue of the matrix
ATA is used, which theoretically obtained by singular value
decomposition (SVD) of matrix A.



IV. EVALUATION & VALIDATION

A. Overview and Data-set

Two open source online data-sets are adopted to validate the
proposed descriptors. Both data-sets are built with a mirrored
omni-directional camera mounted on mobile wheeled robots
for indoor environments [35], [36].

For each sample of a database, the feature matching is
evaluated and compared with the state-of-art descriptor [4],
in terms of true positive ratio. Please notice that the algorithm
complexity for [4] and the proposed method is similar, since
they both use HoG description. Therefore, the execution time
is not taken for comparison.

B. Parameter Selection

In order to optimize the parameters, for specific environ-
ments the two major parameters are to be selected based on
sample statistics. The ranges of parameters are: Nb values are
varied from 16 to 72, with increments by 4; the width of the
descriptor(scaleX) varies from 0.1 to 0.8, with increments
by 0.1. We construct comparison matrices based on the true
positive rates of the two descriptors on random samples. The
results for the two data-sets are shown in table I, II and table
III, IV, respectively.

We have the following observations for this part of evaluation:
• The proposed algorithm performs better in both data-sets.
• The increment of number of bins for HoG helps the

matching. However this correction will have less effect
when it reached to a certain large number. Considering
the complexity of the histogram construction and feature
matching is related to Nb, a sufficient selection is the
knee value in the plot by table I to IV.

• For both descriptors, the performance is worse for the
COLD data-set. We observe the major reason is that
the frame-edges of glass doors and windows in the
COLD data-set triggers frequently wrong description by
considering the scene behind. For the case of Vardy data-
set, the appearances of the major vertical lines are usually
not affected by perspective changes. This is the limitation
for both descriptors.

As a result, the parameter set {Nb, scaleX} for COLD data-
set is {52, 0.6}, and {36, 0.4} for Varday data-set. We see that
the introduced adaptive parameter scaleX greatly optimize the
performance of the descriptor.

C. Reconstruction

We evaluate the performance for scene reconstruction by
trifocal tensor. A typical failure case is shown in figure 7(b)
and (c). The reconstructed robot positions are good enough
for robot homing problems, however, the reconstruction of
landmark distribution is poorly obtained. We found it is related
to two characteristics of the coefficient matrix A, the smallest
eigenvalue (minλi) and the condition number of the matrix
A (cond(A)). minλi defines the precision of trifocal tensor
estimation by SVD, and cond(A) reflect the stability of the

solution to equation 5. These two criteria are taken as further
assessment of the reconstruction quality.

1) Effect on the smallest eigenvalue: By increasing the
standard deviation of the observation noise from 0.1 to 10,
we show the uncertainty of the simulated features in figure 6,
whereas minλi rises as depicted in figure 7. It implies that in
order to have a reliable reconstruction, minλi needs to be as
small as possible. Over a given threshold, the reconstruction
results need to be discarded.

Fig. 6. Landmark locations with uncertainty.
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Fig. 7. Pixel noise vs The smallest eigenvalue.

2) Effect on the conditional number: For the second char-
acteristic cond(A), the relation to the variety in the bearing
information is investigated. A larger conditional number gen-
erally leads to unreliable solutions for linear systems. In order
to test how the perspective differences affect the robustness of
reconstruction, we use different distances among the observing
poses, depicted in figure 8. Intuitively, we can imagine that the
closer the robot positions are, the more confused for the scene
recognition. Figure 9 validates this assumption by plotting
the relation between cond(A) and the mean distance between
two observation poses. We observe that a larger distance will
optimize the quality of the reconstruction, but it usually leads
to less positive matches for real data. Therefore compromise



scaleX/Nb 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

0.1 54.5 54.5 51.5 54.5 57.5 57.5 60.6 60.6 60.6 60.6 60.6 60.6 60.6 60.6 60.6
0.2 54.5 54.5 54.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 60.6 60.6 60.6 57.5 57.5
0.3 57.5 60.6 60.6 60.6 60.6 60.6 60.6 69.6 69.6 60.6 60.6 60.6 60.6 60.6 60.6
0.4 54.5 57.5 57.5 60.6 57.5 63.6 63.6 66.6 60.6 60.6 57.5 60.6 60.6 57.5 57.5
0.5 54.5 54.5 63.6 63.6 63.6 63.6 63.6 66.6 66.6 66.6 66.6 66.6 63.6 63.6 63.6
0.6 57.5 54.5 54.5 60.6 66.6 66.6 69.6 69.6 69.6 72.7 72.7 72.7 72.7 72.7 72.7
0.7 63.6 57.5 69.6 69.6 69.6 69.6 69.6 69.6 66.6 66.6 63.6 63.6 63.6 63.6 63.6
0.8 57.5 57.5 63.6 60.6 60.6 60.6 60.6 60.6 60.6 60.6 57.5 63.6 63.6 63.6 63.6

TABLE I
THE TRUE POSITIVE RATIO WITH THE PROPOSED DESCRIPTOR, BY VARYING Nb AND scaleX (THE COLD DATA-SET).

Nb 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

60.6 60.6 60.6 57.5 57.5 60.6 57.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5
TABLE II

THE TRUE POSITIVE RATIO WITH [4], BY VARYING Nb (THE COLD DATA-SET).

scaleX/Nb 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

0.1 75.7 75.7 75.7 75.7 81.8 81.8 81.8 81.8 81.8 81.8 81.8 81.8 78.7 78.7 81.8
0.2 90.9 87.8 90.9 87.8 87.8 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 90.9 90.9
0.3 87.8 87.8 87.8 87.8 87.8 90.9 84.8 84.8 84.8 84.8 84.8 84.8 84.8 90.9 84.8
0.4 84.8 81.8 81.8 87.8 87.8 90.9 90.9 90.9 90.9 90.9 90.9 90.9 90.9 90.9 90.9
0.5 81.8 81.8 81.8 81.8 84.8 84.8 84.8 84.8 84.8 84.8 84.8 84.8 84.8 84.8 84.8
0.6 78.7 75.7 81.8 78.7 87.8 87.8 87.8 90.9 84.8 84.8 84.8 84.8 84.8 81.8 81.8
0.7 81.8 84.8 84.8 84.8 81.8 81.8 81.8 81.8 81.8 81.8 78.7 78.7 78.7 72.7 72.7
0.8 84.8 84.8 87.8 87.8 87.8 87.8 84.8 84.8 84.8 84.8 81.8 81.8 81.8 78.7 78.7

TABLE III
THE TRUE POSITIVE RATIO WITH THE PROPOSED DESCRIPTOR, BY VARYING Nb AND scaleX (THE VARDY A1ORIGINALH DATA-SET)

Nb 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

60.6 60.6 60.6 66.6 66.6 69.6 69.6 69.6 69.6 69.6 69.6 69.6 69.6 69.6 69.6
TABLE IV

THE TRUE POSITIVE RATIO WITH [4], BY VARYING Nb (THE VARDY A1ORIGINALH DATA-SET).

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
0.5

1

1.5

2

2.5

3

3.5

4

1

23

4 5

6 7

89

10

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
0.5

1

1.5

2

2.5

3

3.5

4

1

23

4 5

6 7

89

10

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
0.5

1

1.5

2

2.5

3

3.5

4

1

23

4 5

6 7

89

10

Fig. 8. Examples of various distances among robot positions. The effect of the
distance variance is investigated while keeping the same feature distribution.

is required for threshold selection. 1

3) Reconstruction result: Given the analysis on
parametrization and quality justification, the scene
reconstruction is carried out by firstly thresholding the
aforementioned criteria. Unreliable matched feature sets are
discarded. Then, geometrical information is calculated from
equation (4) and (5) using Stimulated Annealing, using a
single-shot odometry measure to correct the transformation
scale between image space and real world. A qualitative
result is shown in figure 10 using the images in figure 5.

1In this work, threshold for minλi is 0.02, and threshold for cond(A) is
100.
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Fig. 9. Distance vs Condition number.

V. CONCLUSION

In this paper, we first introduced an adaptive descriptor de-
signed for omnidirectional camera. It works on the panoramic
images, independent of intrinsic calibration. It outperforms
the state-of-the-art, in terms of recall precision as well. The
proposed descriptor is validated by a scene reconstruction
scenario. Beside, two criteria for scene recognition problem



Fig. 10. Reconstructed environment in 3D by trifocal tensor

are proposed and validated through simulation. As future work,
we will focus on applications using the proposed descriptor
and quantitative assessment of the reconstruction quality.
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