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Abstract—Visual Homing is the process by which a mobile
robot moves to a Home position using only information extracted
from visual data. The approach we present in this paper uses
image keypoints (e.g. SIFT) extracted from omnidirectional
images and matches the current set of keypoints with the set
recorded at the Home location. In this paper, we first formu-
late three different visual homing problems using uncalibrated
omnidirectional camera within the Image Based Visual Servoing
(IBVS) framework; then we propose a novel simplified homing
approach, which is inspired by IBVS, based only on the scale
information of the SIFT features, with its computational cost
linear to the number of features.

This paper reports on the application of our method on a
commonly cited indoor database where it outperforms other
approaches. We also briefly present results on a real robot and
allude on the integration into a topological navigation framework.

I. INTRODUCTION

OMING is defined as the navigation of a robot from an

arbitrary position towards a previously specified Home
position [1]. In this paper, we consider the case where the
control is achieved by extracting visual features and matching
them with the features extracted at the home position for mo-
bile robots in 2D. Visual Homing is considered to be one of the
important abilities of a mobile robot and also one of the most
important components of visual topological navigation[2], [3].
In visual topological navigation, the homing method is utilized
to perform the transition between topological nodes.

As the key to visual topological navigation, the main
challenge in the Visual Homing problem is the estimation
of the homing vector, defined as the direction in which the
robot has to move to reach the home position. Our method
solves this problem by taking inspiration from the generic
framework of Visual Servoing and using an omnidirectional
camera as the only sensor. “Visual Servoing” [4], [5] has
been widely cited in the area of motion control of robotic
platforms, such as industrial arms or mobile helicopters. The
originality of our approach is that we use and only use the
variation of scale information of the SIFT features to compute
our simplified control law for visual homing under the image
based visual servoing framework. We will show in section IV
that the scale of the features provides sufficient information
to build an image based visual servoing control law. Since a
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camera also provides naturally the bearing to the features, we
will also show how this information can be used in the control,
and compare the control performance using scale and bearing,
only bearing and only scale.

In general, visual servoing approaches require the com-
putation of the pseudo-inverse of a matrix whose size is
proportional to number of features. For systems with limited
resources, this can quickly become intractable. To alleviate
that, our approach implements the homing task with a cost
linear in the number of features. At the same time, our
approach doesn’t depend on calibration parameters. We show
in section V that the resulting control is stable and is able to
converge exponentially.

The major contributions of this paper are

1) We study four visual homing approaches under IBVS

framework for an uncalibrated omnidirectional camera;

2) A fast homing framework based on the scale information

of keypoints is developed;

3) Evaluations on datasets and a mobile robotic platform.

In the following, we first give an overview of related work in
Section II. We then formulate the visual homing problem using
scale information in the visual servoing framework. Sections V
describes the algorithm and control strategy of our approach.
Sections VI and VII include the simulation and experiment
results.

II. RELATED WORK

Visual homing is often implemented using a bearing-only
method. An initial work was presented by Cartwright and Col-
letti [6] as the ’snapshot’ model. Franz et al. [7] continued this
direction by analyzing the error and convergence properties. In
our previous work [8], we gave a proof of the convergence of
a simplified bearing-only method, based on Lyapunov stability
theory. In this paper, we extend the bearing-only problem to
the classical IBVS framework. Some recent work shows that
homing can be efficiently achieved with known landmarks [9].

Our novel approach is stimulated by the work of Corke
et al. [10], where the authors used the ALV[11] (Average
Landmark Vector) principle to implement a visual servoing
task. The ALV method converts the homing problem to a
vector operation process, by summing up the bearing vectors
to a number of keypoints at the reference and current position.
The difference between these two sums is then used to
compute the homing vector. However this approach depends



on knowing the position of the landmarks used as keypoints.
This in turns assumes that it is possible to estimate the distance
to the keypoints. In comparison our approach takes advantage
of the scale information attached to the keypoints to calculate
the homing vector without distance estimation and with a
computational requirement as low as possible.

According to Goedeme et al. [12], knowing the structure
of environment and in particular the landmark position is
not necessary in visual homing. These informations can be
recovered by estimating the ratio of the distances to the
matching keypoints by triangulation using an Extend Kalman
Filter. Using the features scale, we can avoid this estimation
step and use the scale error as a proxy for the distance error.

Among other recent results in the field of homing al-
gorithms, the work of Lim et al[13] divides the 2D plane
into four regions and estimates the current robot position by
measuring the bearings of landmarks. The theory was proved
geometrically but the approach requires more test in a dynamic
environment. Cherubini et al [14] proposed a redundancy
framework for visual homing problem, which allows online
obstacle avoidance.

Note that there are many other works aimed at the visual
homing problem, but using different strategies such as [15]
and later [16], which relied on the 1D trifocal tensor from
the omnidirectional camera. Further, [17] used a sliding-mode
control law to exploit the epipolar geometry; [18] directly
calculates the homographies from raw images and so on.
The comparison with these works is not considered in this
report, since the basic strategies and premises are significantly
different.

Some related early work using SIFT as main features for
visual homing was proposed in [19] [20]. They considered
the epipolar geometries as well as the orientation and scale of
SIFT features for monocular cameras, following the similar
framework proposed in [4]. The work of Vardy et al. [21] is
the closest to our simplified approach using scale information.
Their first work developed a scale invariant local image
descriptor for visual homing, based on the optical flow of
unwrapped panoramic image from an omnidirectional camera.
This work was continued by Churchill et al. in [22], which
presents results of real-time homing experiment using the scale
difference field in panoramic images, computed from SIFT
matches. In comparison to their work, we stress the following
two main differences: firstly, we reason on the effect of the
change of scales in a more dedicated way, by embedding the
scale measures inside visual servoing framework. Secondly,
we give a mathematical proof of the convergence of the
controller. We will refer to their method as “scale space
homing” in the following and show our approach outperforms
theirs in terms of precision.

III. PROBLEM DEFINITION

The visual homing problem can be defined as shown as
figure 1, where py,p,,...,p, are n keypoints, which are
extracted by SIFT, SURF [23] or other method providing the
scale information of these keypoints. It is assumed that all the

listed keypoints can be seen from the current position C and
the home position O. The objective is to guide the robot from
C to O only by knowing the observed scale s; and bearing
angle f; associated with keypoint p;. Negre et al. [24] showed
that the intrinsic scale can be a measurement to the time to
collision. [20] showed a direct relation between the scale
and the distance to the feature point. However, for different
setup and different environment, the absolute distances to
the features cannot be mapped directly. We believe that the
variation of the scale of a keypoint can be seen, in first
approximation, as a proxy for the variation of its distance.
One fundamental reason is that the scale of a keypoint,
in pixels, corresponds to the physical scale of some object
imaged from the camera. Using a standard pin-hole model of
the camera, the scale is actually inversely proportional to the
distance between the camera and the imaged object, assuming
the object scale and focal length are constants. As a result, the
error between the observed scale and the reference scale gives
us an indication of the error between the respective distances
and can be used to control the robot towards the home position.
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Fig. 1. Abstracted problem of homing. Keypoints p, to p, can be observed at
the current position C and at the Home position O. The variant sizes indicate
the differences of keypoints in scale.

IV. IMAGE BASED VISUAL SERVOING

In this paper, we intend to use the visual servoing framework
to build a robot controller taking advantage of the scale
and bearing to the keypoints, instead of their coordinates. In
this section, we introduce how could the interaction matrix
L, be designed using these features for panoramic images.
We assume that the keypoints are extracted from an omni-
directional camera and we can convert image coordinates to
bearing angles. We also assume that we are controlling a
ground robot whose configuration can be summarised by its
position (x,y) and its heading 6.

A. Definitions

The error of the system is made of two components: the
scale errors and the bearing angle error. Therefore the vector
of the error can be written as:

e=(s—sB—B)T (h



where s = (sq,...,s,) is the vector of observed scale of the
keypoints and B = (B,...,B,) is the vector of their bearing
angles. The variables with ‘*’ superscripts are reference val-
ues.

Before computing the derivative of the error, we need to
derive some relations between the scale of a feature s; and the
distance to the corresponding object /;. Let us denote f the
focal length of the camera' and S the physical scale of the
keypoint. Using simple triangulation and the camera pin-hole
model, we have

S; = and

Sl—f st = )

which leads to
si=s;+ 3)

If we assume that the physical keypoint i is at the 2D
coordinates (x;,y;) in the same frame as the robot coordinates,
we can also infer the relation between (If, %) and the robot
coordinates:

i \/ (% — )2 + (i —)? €
Bf atan2(y; —y,x; —x) — 6 (5)
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B. Error derivative

To compute the error derivate e, we derive independently the
scale and bearing derivative, by considering them as function
of the robot pose. Using equation 5 and 6,
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with v, = % and v, = %.

Similarly, the bearing error can be derived by equation 5
as:

d * Vi—y o Xi—X
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l
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Note that B’s are in the global frame instead of robot local
frames. In order to transform them to robot local frame, the
heading difference needs to be considered, such that the real
bearing observations by the robot is:

Bi=Bf+(6-6) (8)

where we consider 6* = 0.
Combining equations 6, 7 and 8, we can write the error
dynamics as follows:

d
Ee = LeV (9)

'In the case of an unwarped catadioptric image, we abuse the notation by
relating the focal length to the vertical field of view o« and the image height
h: § = atan2(h, f).
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As mentioned earlier, the interaction matrix in equation 9
is enough to implement a visual servoing controller. One
remaining problem is neither the distances /; nor [; can be
quantified easily using a single camera. Based on [25] and the
analysis on the errors in [5], these values can be approximated
by constants due to the low sensitivity of the controller to these
parameters.

A direct way to reduce the complexity is to notice that
either the upper part or the lower part of equation 9 are
enough to implement a visual servoing task. As it is trivial
to rotate the robot on the spot once the translational error has
been corrected, a two-stage controller can be considered 2. We
consider only the first stage here - the translation to the home
position, because it is the key issue for homing. In practice,
this means that we can either implement a scale-only visual
servoing or a bearing-only visual servoing.

The interaction matrix for sc*ale—only visual servoing is
shown as follows, where o; = —%.

i
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A similar method which uses the lower part of equation 9 is
the bearing-only approach. The error dynamics can be derived
as follows, where % = —%:

J B —B; 1isinfB; 7y cosfB

dt : - : : :x> (1D
Bn_ﬁ; Yusinf,  Y.cosf, ’

Looking back to equation 8, we could see that the estimation
of the heading 0 is crucial for the calculation of the interaction
matrices. It implies that a robot may need to have absolute
references such as a magnetic compass or a reliable visual
compass for better accuracy. Regarding the dataset that we use
in section VI, where the robot is well aligned, this problem is
trivial. However, this matter needs to be considered in other
applications.

V. FAST VISUAL HOMING

In this section, we will describe a scale-based visual homing
approach based on the local observations from robot frame.
We will then prove that the resulting control law converges

2In general cases, the calibration of the camera to the rotation center need
also to be considered. Here we only consider the case in which the camera
is aligned.



to the Home position. [20] provided an indication that how
the scale of visual features relate to the distance to the
certain physical feature point. It stimulated us the possibility
to perform homing via only scale information.

A. Scale-based Control for a 1-D Robot
Recall equation 6:

d o Sl

E (Si =S ) = llzl

i

[vecos B + vy sin 3]

For the sake of the argument, let us consider a 1-D robot,
only able to move towards keypoint i. Because the right side
of the above equation can be seen as the projection of the robot
velocity on direction towards the keypoint, naming e; = s; — 57
and v; = v cos f; + v, sin ;, we have:

d sTIr

Eei = ZZZZ Vi (12)

Following the basic strategy of visual servoing, we would like
to ensure an exponential decoupled decrease of the error [26].
The following trivial control would achieve this goal (A is a
positive constant).

Vi = l,'e,' (13)

B. Generic Scale-based Control

If we now, come back to the 2-D case, we can decide to
intuitively combine the velocities that would be given by the
individual 1-D controllers:

( :j )_lg)ti(sisf)< Zi)r?gzl )

However, even if the convergence was obvious in the 1-D
case, there is no guarantee that this sum of control contribu-
tions would lead to a stable controller. To prove this, we will
resort to the Lyapunov theory. Let us define the following
non-negative energy function (Lyapunov candidate function):

(14)

15)

In this autonomous system with n-dimensional states s, the
only still point is where s = s* in the feature space; and
physically it’s the home position. According to Lyaponov
theory, we need to show that,

d

—E(t) = 0,0nly when all s; =}

a (16)
EE(I) < 0,otherwise

Based on the calculation in Eq. 6, the derivative of the energy
function is:

dE Losi— st ds;
il Ve s

_ _Zs, s il

[vecosBi+vysinf;]  (17)

(18)

We plug in the control law of robot for 2-D plane in equation
14 at this step, the derivative is formulated as:

dE __ STLY si— v, ST si—st .
dar Vx Z[ 1 12 S Cos Bl + Vy Zl 1 12 S; sin Bl
By letting
¥
A= liz, 19)

the equation above simplifies to

ddf — V2 +v} ] :fZ/'Liz(s,-fsl’-‘ng O
where the equality is only valid when all s; = 5.

Assuming the distance /; and [ are known, the above
reasoning shows that the control law given in equation 14
with A; given in equation 19 is stable and converges to s; = s,
which is the Home position. However, /; and ] are not known
in practice. According to the error analysis in [5], here we
approximate A;’s by constants, since it does not affect the
convergence. Comparing to [22], we not only manage to
calculate a more precise homing direction, the amplitude of
the velocity is also indicated.

The intuition behind this concept is that each feature point
provides a direction and amplitude which the robot should
follow, then the output of the controller will be a joined
decision of all the observed features. As the number of features
is big, even if some of the features can not be matched with the
reference, the performance and convergence of the controller
is not jeopardized.

(20)

VI. RESULTS ON AN INDOOR DATASET

In order to compare our approach with other methods
under similar conditions, we tested our approach on a widely
cited dataset [27]. The dataset is a collection of omni-images
and unwrapped images in an indoor environment, plus the
calibration information and pose information. All the images
are 561x81 resolution, the actual intervals between two nearest
nodes are 30cm. An instance is shown as figure 2.a.

According to the comparison in [22], the TAAE (total
average angular error) and AAE (average angular error) are
two important factors to evaluate the homing ability. We
compare our results with the same metric.

Figure 2.b shows the homing vector computed by each con-
troller over the whole dataset, assuming the homing position is
at the center position (5,8). The color of the filled circles shows
the different number of matching features. It is interesting
to see that our simplified controller exhibits a very clean
behaviour pointing towards the home position, even when the
matching result is not high. The AAE for each position of the
database in given in figure 2.c.

The generic statistic result of the test is shown as figure
2.d. The blue curve indicates the processing time over 28900
matches (cross matching of 17*10 image array). It shows
that the processing time is in average around 2Hz to 7Hz,
depending on the resolution level. This is defined as the
starting octave level for the image pre-processing. Generally
speaking, a resolution level of 0 means the original size of
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Fig. 2. Performance analysis on the standard dataset from [27].

the image, -1 means an up-sample of the original image to
its double size etc. The effect of this parameter is trivial for
different implementations of feature extractions. Nevertheless,
we would like to utilize this mean to easily see the influence of
the number of features. Intuitively, a bigger image can provide
more features. Note that more than 99% of the computation
time is for the SIFT extraction and feature matching. Taking
the simplified approach as an instance, we plot the TAAE
(total average angular error) under different resolution level
with error bars, using the purple curve in figure 2.d.

A detailed analysis on the effect of different resolution levels
on AAE, and the computation time are shown in table I.
It shows that at a higher resolution (lower resolution level),
all methods can work better in general. A primary reason is
that the higher resolution leads to more feature points, which
provides more constraints for the error correction. Note that
the simplified method can provide faster and more consistent
results than others. The bearing-only visual servoing approach
provides best results at node (5,8), in the sense of low AAE, at
the cost of 4 to 10 times computation time than the simplified
method. However, this result doesn’t suggest the bearing-only
method is the best for all the nodes: according to our further
test, the TAAE of the bearing-only method is 11.53 degrees,
with a bigger variance than the simplified approach. In this
report, we chose to focus on the simplified approach for its
lower computation requirements. Further comparisons are not
included due to limited space.

In real cases, we used resolution level -1, with nearly 4.0
Hz processing speed. It is sufficient for real-time applications.
The TAAE of our simplified approach (11.01°), over the entire

TABLE I
EFFECT OF IMAGE RESOLUTION REFERING TO (5,8).

Reso. level ~ Bearing-only  Scale-only  Compound  Simplified
-2 6.37¢ 10.48 13.87 7.75
Time(s) 25531 21579 27584 6528
-1 6.36 11.86 13.42 8.13
Time(us) 18421 14594 20459 4804
0 6.26 12.74 14.69 9.90
Time(s) 18017 9591 12303 2464
1 8.39 16.37 17.86 12.24
Time(us) 11044 5875 6231 1037

“All the AAE values are in degrees.

database, outperforms scale space homing method (12.4°) [22]
and warping method (snapshot model)(46.6°) [7] 3.

VII. HOMING EXPERIMENT

The simplified controller was tested on a differential robot
with an omni-cam mounted on the top, above the rotation
center. The experiment was carried out in an office environ-
ment, using an external laser tracker as position ground truth.
The Home position was set at the center of the room, and
the robot was manually driven to random starting positions.
Using the homing process, the robot managed to drive back
to the Home position. Due to the limited physical space,
this specified experiment covered only a small area of the
environment. Recorded trajectories are plotted in figure 3.

3Extended information: TAAE of other methods are bearing-only(11.53°),
scale-only(13.51°), compound method(15.57°).
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Fig. 3. Homing trajectories

VIII. CONCLUSION

In this paper, we presented a visual homing framework
by visual servoing, based on the scale and/or bearing mea-
surement of popular visual features such as SIFT and SURF.
After showing how these measurements could be used in the
standard visual servoing framework, we proposed a simpli-
fied controller with complexity linear with the number of
observed features. We’ve demonstrated the usability of scale-
based visual servoing and we have shown that our simplified
approach is stable and offer similar performances as the fully-
fledged scale-based visual servoing. When tested against a
standard dataset, our controller outperformed state-of-the-art
approaches in terms of average angular error.

Although space is missing to provide details in this paper,
our controller was integrated into a visual navigation system,
combining a topological map of the environment and our
homing controller to align the robot with each topological
node. the controller could successfully move between ran-
domly selected node in the graph for close to one hour*. For
further information, please refer to the report [28]. Based on
our test results in real apartments and office environments, it
also can be considered as a successful algorithm in practical
use-cases.
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