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Abstract—Visual homing has been widely studied in the past
decade. It enables a mobile robot to move to a Home position
using only information extracted from visual data. However,
integration of homing algorithms into real applications is not
widely studied and poses a number of significant challenges.
Failures often occur due to moving people within the scene and
variations in illumination. We present a novel integrated indoor
topological navigation framework, which combines odometry
motion with visual homing algorithms. We show robustness
to scene variation and real-time performance through a series
of tests conducted in four real apartments and several typical
indoor scenes, including doorways, offices etc.

I. INTRODUCTION

ISUAL navigation encompasses a range of techniques,

including appearance-based navigation [1], [2] and fea-
ture map based navigation [3], [4]. Broadly speaking, it uses
visual sensor information to map an unknown environment,
localize the robot within a map and automatically drive the
robot from waypoint to waypoint. Several mapping algo-
rithms based on range finders have attracted attention, such
as gmapping! and karto?, but require considerable cost
and weight budget. Reliable visual navigation algorithms are
still necessary.

Concerning visual sensors, perspective cameras [4], stereo
vision systems [5], or omnidirectional cameras [6] have been
use in visual navigation systems. Among these sensors, omni-
directional camera has been widely used in visual navigation
system, because of its 360° panoramic view.

There are several existing approaches in this field. An
important difference among those approaches is perception.
Initially regional template matching [1] [7], and texture based
methods [8] were used. However, these approaches were not
tested with large scale maps in general. The development of
the visual keypoint descriptors, such as SIFT[9] and SURF
[10], along with developments in computer vision techniques
has significantly advanced the evolution of visual navigation.
Plenty of visual navigation algorithms have been thus devel-
oped using these features [S5], [11], [12]. Several practical
descriptors for omnidirectional vision were also developed
for topological mapping or navigation, such as fingerprint
of the environment [13], vertical line based descriptors [14],
FACT (fast adaptive color tags) [15], [16] and so on.
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Fig. 1. An application instance in a 130m? apartment at Vienna Operning

There are two main frameworks of visual navigation algo-
rithms amongst others. The first method requires to first track
and then reconstruct [17], [4], [14], [5] the environment using
a set of features. These methods are usually able to provide
a global metric representation of the environment. However,
there are risks that the constructed map may be lost due to
error accumulation, leading to failure. The second framework
is known as topological visual navigation. They are usually
based on key-frame matching [2] to first localize the robot,
before techniques such as visual homing [18], [19], [20],
[21], [12] are used to reach predefined topological nodes.
Topological visual navigation provides several advantages
over the former framework including:

a) Sparse representation: Topological maps used for
a topological visual navigation are created incrementally,
where only feature changes are considered. A typical repre-
sentation of the environment is a collection of visual features
at certain poses. The computational and memory cost is
usually low.

b) Independence from precise maps: Visual homing is
less sensitive to error accumulation, commonly occurring in
metric mapping. As such, a precise map of the environment
is not required to ensure its success.

c) Lightweight planning: The path planning in metric
maps can be computationally very expensive. In the contrary,
visual topological navigation incurs a relatively low cost as
planning is based on graph structure.

In our work, we adopt visual homing for visual topological
navigation using an omnidirectional camera as the only
sensor for navigation. A stereo vision system is also used
for local obstacle avoidance.

A. Contributions

The goal of this work is to present a generalized
lightweight visual navigation framework, which integrates



visual homing algorithms and odometry for mobile platforms.
In our previous work [12], we introduced a state-of-art visual
homing algorithm using image based visual servoing. We use
this approach as a test case for the visual homing algorithm.

We apply this framework in order to learn and navigate a
real apartment environment in real-time.

The proposed navigation system is built on a topological
graph, with an example shown in the left of figure 1. Each
node on the graph represents a pose (or navigation waypoint)
in the environment. The system is modeled as a state machine
structure, whereby the navigation and mapping processes
can be switched. The transition between two neighbouring
waypoints is performed by a two-phase algorithm using
odometry and visual servoing. These two phases are denoted
by general positioning and pose stabilization.

Regarding real-time applications in real environments,
we found that it is important to assess how well-suited a
particular position is to be considered as a waypoint. A poor
choice of waypoint will easily lead to failure of the visual
homing. Based on our study, the number of matched features
is usually adequate, however the feature distribution of a
certain position is the paramount. An isotropic distribution
of features will generate more precise homing vectors than a
poorly distributed one. In this work, we design and evaluate
a validation criterion to assess the quality of candidate
waypoints.

The paper is organized as follows. We start from a system-
atic level, introducing the structure of the navigation system
in section II. In Section III, we will discuss the criteria to
define the quality of a waypoint in a given scene. Experi-
mental test results are presented in Section IV, followed by
discussion and conclusions in section V.

II. MAPPING AND NAVIGATION
A. System overview

At the system level, the navigation task is structured as
shown in figure 2. Configuration layers such as sensors,
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Fig. 2. The system structure

data and low level processes are shown in different colors.
The omnidirectional camera is used as the main sensor for

navigation, while a 3D stereo vision system is used for local
obstacle avoidance.

Due to the multi-layered system structure, an efficient man-
agement mechanism needs to be defined. A state-machine
was built up as shown in figure 3, an can be divided into
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Fig. 3. A sketch of the state machine of the navigation system.

two major parts: mapping and navigation.

B. Mapping

The first issue regarding the mapping problem is how
to represent the map and descriptors for topological nodes.
Using a typical topological map, the high-level structure is a
simple graph, which uses the vertices to represent the nodes
and edges to represent the translation relationships between
nodes. This is shown in figure 1. For each node, a structure
containing keypoint features and odometry differences to
neighbors is created. Specifically, the MAPPING state in
figure 3 represents the mapping process, which requires basic
states such as moving and freezing of the robot. When the
robot arrives at the reference position, a node will be created
upon the request from the user. The node structure will be
registered locally and also saved in a remote database. The
MAPPING state can always be triggered whenever the robot
is in the READY state. It is a useful feature because it allows
extending the topological map from any node, regardless
whether or not the node was newly created, e.g. the mapping
process can also start from any intermediate node occurring
on the route. As shown in figure 1, a global map can be easily
extended to several branches and dynamically managed.

C. Localization in the map

The localization in a topological map means that the robot
can name its current location as the nearest node. The perfor-
mance of the localization will greatly affect the navigation in
the map. Therefore, we implemented a localization method
that relies on visual feature matching.

We compare the current set of feature points F, with each
feature set F;,i € [1,n] in the database. We look for the best
Fpesr and second best Fy.qong matching nodes, according to
the matching ratio 7.5, Fsecond- 10 €nsure positive matching,
we require
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When this constraint is met, the current node is exclu-
sively located. Otherwise, the localization will return several
possibilities which have to be verified at a later time. At
extreme cases, the robot might be incorrectly localized,
causing navigation process based on the localization to fail.
The localization process can be triggered again at the failure
poses.

D. Navigation

A global planner based on Dijkstra algorithm will perform
path planning over all topological nodes in the graph. It
results in a sequence of nodes which the robot needs to follow
in order to navigate from the current position to the target
position. As such, the topological navigation is decomposed
into several node-to-node phases. Each node-to-node action
is performed through the NAVIGATION state shown in figure
3.

The ALIGNMENT state means the robot attempts to
align its orientation (heading direction) with the pose
saved in the database. The translation between two nodes
is handled by a two-phase method: general positioning
(state=GENERAL POSITIONING) and pose stabilization
(state=POSE STABILIZATION). The former is a combina-
tion of obstacle avoidance and odometry based position con-
trol. The latter is used to correct the accumulated odometry
error for pose stabilization.
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Fig. 4. The flow chart of the general positioning process

The procedure of general positioning is shown in figure
4. Two exceptions during the positioning process are “Tar-
get arrived” and “Obstacle detected”. When obstacle(s) are
detected, the system will switch to an exclusive obstacle
avoidance control process. The mechanism ensures that when
the robot’s path is not blocked. In particular, the obstacle
avoidance mode will take over the motion control using a
naive obstacle contour following law. We set the time span
for obstacle avoidance mode to 6 seconds for experiments in
a typical apartment environment. After the obstacle avoidance
process, the robot will try to reach the target again using the
“Heading to the Target” process. The “heading to the Target”
process is based on the odometry difference between current
position and the target position.

As for the finishing conditions, there are two possible
states during general positioning. They both can trigger

the finish of this procedure. During the process of general
positioning, once enough positively matched keypoints are
observed, the working state will switch to pose stabilization
automatically. This means the current position is near enough
for a robust pose stabilization process. Second, when the
odometry of the current position matches the target odometry
within a bounded error region, the state-machine will also
switch to the POSE STABILIZATION state.
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Fig. 5. The flow chart of the pose stabilization process

The pose stabilization is organized under the image based
visual servoing (IBVS) framework as shown in figure 5. It
uses an omnidirectional camera as the only sensor, and tries
to correct the error in the image space by controlling the
robot motion. It is able to perform a visual homing algorithm
in real-time, by which the accumulated odometry error will
be corrected. The algorithm retrieves the target image and
features from the database and matches the current image
with the target image. These images features are fed into the
core visual servoing algorithm to generate homing vectors
which directs to the target waypoint. For example, we could
use the homing algorithm introduced in [12], where the
homing vectors are calculated from the scale differences and
the bearing angles. The algorithm shown in Eq. 1 and 2.
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where v, and v, are the velocity components in the 2D
navigation plane; s; is the observed scale of a keypoint and
s7 is the target scale of the corresponding reference keypoint;
Bi is the bearing angle of the corresponding keypoint. The
proof of stability based on Lyapunov theory and evaluation
of the algorithm was given in [12].



III. NODE VALIDATION

In order to enhance the robustness of the navigation
system, we analysis the bottlenecks of the algorithm. One
important fact is that sometimes the visual features are not
stable enough for the navigation; in other words, the quality
of references is poor. This problem is common to any visual
navigation method, however an efficient metric to assess it is
unavailable. To this end, we use entropy analysis to evaluate
this quality.

To illustrate the problem, let us consider the two simulated
situations shown in figure 6. In both cases, 160 features can

(a) Good Feature Distribution

(b) Bad Feature Distribution

Fig. 6. Effect of different feature distribution

be observed, marked with blue ‘*’s. We show the green ‘*’s
as the starting position and the red filled circles as the home
position. The robot uses the same visual homing method in
equation 1 to move from the starting position to the home
position automatically. The paths marked by black ‘*’s are
the simulated trajectories.

Figure 6(b) shows an extreme case of the feature dis-
tribution, i.e. most of the features are from one certain
direction. Figure 6(a) depicts the case that 160 features are
isotropically distributed on the simulated walls. Although in
both cases the robot can observe the same amount of features
and manages to move to the home position, the simulated
trajectories are dramatically different. We could infer that
a more isotropic distribution leads to a smoother trajectory.
Moreover, it results in smoother control variables for the
actuators.

We now consider the distributions of the features in a real
situation. We took an image using an omnidirectional camera,
and changed the feature distribution manually, using a plain
paper to intentionally cover the field of view. A screen-shot
of the angular feature distributions is shown in figure 7. The
bottom histograms show how many features lie in a given
vertical sector of the unwrapped omnidirectional image.

The number followed by the percent sign is the positive
matching ratio, the integer in squared brackets is the maxi-
mum number of matching points within a single bin in the
histogram. After that is the number of matching keypoints
and at the end is the score “S”, which should reflect the
isotropicness of the distribution. The score “S” is calculated
from the entropy of the distribution of the positive matches
using

§=-Y pilnpi 3)

where p; is the ratio of the matches in each bin over the
whole histogram. The maximum score can be calculated
from a uniformly distributed histogram. Empirically, if S is
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Fig. 7. Histograms of the feature distribution. There are two kinds of circles
that mark the matching keypoints : green (brighter) and red (darker). The
green (brighter) circles mark the matching results after RANSAC; the red
(darker) circles mark the rejected matches.

greater than 80% of this maximum score, the reference home
position is acceptable. 3 It’s worth noticing that the number of
matched features (82) is still high in figure 7(b). Typically, in
a less textured indoor environment, the homing method can
work with a minimum number of positive matches around
40. This indicates that the number of positive matches can
not fully indicate the quality of the description.
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Fig. 8. Relation between AAE and characteristics in features

In order to further valid this metric for node evaluation,
we carried out a test on a widely cited indoor dataset [22].
Taking position (2,3) as reference, the average angular error
(AAE) and the score are shown in figure 8. According to

[23], AAE is obtained as follows:

— Z ZAE $S,CVyy)
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AAE

where AE is the absolute angular error between the calculated
homing vector and ground truth. ss means saved scene, and

3In figure 7, there are 256 bins in the histogram. The maximum score is
calculated by S =1n256 = 5.55, therefore the score threshold is 4.4



cv means current view. It shows that the shape of the error
distribution is correlated to the shape of the score distribution,
which means that our criterion can represent the quality of
the description to a certain extent.

IV. EXPERIMENTS AND RESULTS

The navigation system has been tested at several indoor
environments with different setups. Figure 9 shows a collec-
tion of robot images and a typical sketch of robot structure.

(c) Typical setup
Robots collections.

() BIBA Robot
Fig. 9.

(b) James Robot

As shown in figure 9(c), a pan-tilt unit is mounted to hold
the stereo camera system. The motion of the pan-tilt unit will
follow the control speed of the robot, in order to predict and
observe potential obstacles. The detected local obstacles will
be registered onto a local navigation cost-map *. The cost-
map is then used to constrain the trajectory of the robot.

The experiment has been carried out separately both in
day-night-time conditions, in order to test the robustness to
light changes.

A. Functional test

An experiment of around 20min depicted by a plot of the
visual servoing error is shown in figure 10. In order to get
a more compact result, the logging for this plot will only be
triggered when the system is switched to pose stabilization
mode. It means that every time the error drops below the
green bar (which marks the threshold of the accuracy), the
system switches to general positioning state. It is important
to note that there are time spans after each mode switching,
which are not visible to the readers from the plot. The
figure depicts that the fatal error can converge for every
control cycle. An issue should be mentioned, regarding the
areas marked with brown rectangles. In these areas, unstable
convergences can be observed. After the analysis of the
log and experiment process, the reason for this kind of
behavior can be identified as follows. Our testing robot was a
differential driven robot with non-omnidirectional dynamics.
Therefore, the constraints in the motion model implies that
the robot motion can reach singularities. This occurs in the
cases when the extension of the straight line between the two
active wheels passes through the target position. To solve this
problem, we propose the following control law. The homing
vector is translated into a linear speed vy and a rotation
speed , using (4). Ky and k, are two parameters defining

4The implementation of the cost-map uses the ROS package on: http:
/Iwww.ros.org/wiki/costmap_2d

respectively the rotation speed gain and the trade-off between
movement speed and heading alignment.

o= arctan2(vy,vy)
2 || v
vp= e || ¥ 4)
Yy
o= Ky

Due limited space and its irrelevance to the proposed
framework, we will not go into details of the analysis in
this report.

B. Longer time roaming test

In order to test our visual navigation approach over a
longer timeframe, we used a simple script to generate a
sequence of random target nodes covering the whole tran-
sitional space. From a full battery status to empty, the robot
drove around for 1 hour, successfully reaching more than 40
different targets. The total graph, shown in figure 1, contains
18 topological nodes in a 3 bed-room apartment including
kitchen and living room (130m? in all). During the test, four
people were randomly walking around the apartment. This
confirms the reliability of our approach. For more intuitive
result, please refer to the attached video [24] 3,

The existing test results in real apartment environment
showed the robustness of our method against some illumina-
tion changes and occurrence of dynamic objects in the scene.

The results show that our method worked well at the nodes
with richly textured scenes and unstable in low textured
ones. It means that a memory mechanism combining working
memory and long-term knowledge is necessary for a long-
term navigation application. This part of work will be carried
out in our further researches.

V. CONCLUSION

In this paper, we presented a visual topological navigation
framework, representing a step towards a low-cost and robust
solution to indoor navigation problem. Besides the mapping
and localization parts, the navigation module consists of
two phases: general positioning and pose stabilization. The
system is organized as a state machine, which grants freedom
to switch among these tasks easily. It uses omnidirectional
camera as the only sensor for generating homing vectors and
a stereo vision system to detect obstacles. It has been tested
in several indoor environments, including apartments, office.
The results show its reliability and robustness to dynamic
scene changes, whilst managing collision free motion.

SUPPLEMENTARY VIDEO

This video shows two experiments illustrating the perfor-
mance of our visual homing approach in different setups. The
first part of the video shows how the visual navigation can be
implemented to move along a sequence of homing waypoints.
Obstacles inserted on the path of the robot while homing
show how alternating phases of dead-reckoning navigation
and visual servoing help to integrate a reactive obstacle

3This link is a non-public link and never shown to public, which does not
violate the copyright principles.



Fig. 10.
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avoidance mechanism. The second example hows a more
complete navigation setup, with higher navigation speed, and
more challenging lighting conditions.
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