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Abstract—Mobile robots rely on their ability of scene recog-
nition to build a topological map of the environment and
perform location-related tasks. In this paper, we describe a
novel lightweight scene recognition method using an adaptive
descriptor which is based on color features and geometric
information for omnidirectional vision. Our method enables
the robot to add nodes to a topological map automatically
and solve the localization problem of mobile robot in realtime.
The descriptor of a scene is extracted in the YUV color space
and its dimension is adaptive depending on the segmentation
result of the panoramic image. Furthermore, the descriptor is
invariant to rotation and slight changes of illumination. The
robustness of the scene matching and recognition is tested
through real experiments in a dynamic indoor environment.
The experiment is carried out on a mobile robot equipped with
an omnidirectional camera. In our tests, the average processing
time is 30 ms for each frame including feature extraction,
matching, and the adding of new nodes.

I. INTRODUCTION

In this paper we propose a lightweight descriptor for

omnidirectional vision. It enables the mobile robot to recog-

nize scenes based on image appearance and autonomously

add nodes into a topological map while fitting the realtime

requirement.

One classic application of navigation based on topological

map is the robot homing scenario. The aim is to enable

the robot to go to a predefined location only by knowing

the target and the current image through vision [2][11].

Omnidirectional vision has shown to be one of the most

suited sensors for this task because its 360◦ field of view

[3], [12]. Another reason for choosing omnidirectional vision

is that, when the camera is mounted perpendicularly to the

plane of motion, the vertical lines of the scene are mapped

into radial lines on the image. Therefore, a descriptor based

on segmentation by vertical edges can be envisaged.

We employ the unwrapped image to simplify the extraction

of descriptors in this work. Based on the unwrapped image,

Booij et al. [1] built topological maps using SIFT features

[6] from unwrapped panoramas. Menegatti et al. [7], [8] (for

metric based map) had a robot to navigate in a one-room

scene by using the Fourier transforms of the unwrapped

images. A common drawback of these methods is that they
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omit the color information. In fact, color could provide more

direct features without complicated computational cost. By

analyzing the sequence of color blobs in the panoramic

image, Lamon et al. [5] developed a descriptor for panoramic

images called “fingerprint” of the environment. An efficient

method for matching the fingerprints was also developed.

Tapus et al. [13] applied the “fingerprint” approach of

Lamon and built topological maps of multiroom indoor

environments. However, both Lamon and Tapus used the

measurements from a laser range finder to boost the matching

of the descriptors. Conversely, in our work we introduce

a descriptor extracted only by omnidirectional images and

without the use of a range finder: the laser range finder is

not suitable for housekeeping applications due to its high

cost and the potential damage to people eyes.

Most of the state-of-art works use keypoints detection

and matching [15][1][3], which has high computational cost

as the point descriptors have usually high-dimension. This

makes the mobile robot hardly work in real-time (e.g. 20

Hz) on other tasks, like motion planning or obstacle avoid-

ance, besides recognizing places. A lightweight and efficient

descriptor would help to preserve more time slots from

the CPU for other tasks. Scaramuzza et al.[12] proposed a

robust descriptor for tracking vertical lines in omnidirectional

images in real-time ( 20 ms). Murillo et al.[9] also proposed a

descriptor for vertical lines and a pyramidal matching method

for metric localization, and used the number of lines in each

image for topological localization. The recognition time was

around 0.35s with 40 reference views according to their

results.[4] treated a similar problem as a MCL problem in

metric map without explaining the color descriptors in detail.

Considering the characteristics of indoor environments, we

hypothesize a basic fact: the important vertical edges natu-

rally divide the indoor environment into several meaningful

cuts. For example, the edges of windows, doors, cabinets, or

bookshelves determine different areas with distinct character-

istics. The color features in these different cuts are usually

distinguishable because of the different texture of objects.

Based on this fact, a new color based descriptor called FACT

(Fast Adaptive Color Tags) is introduced in this work.

The objectives that we want to achieve with this paper are

as follows:

• a robust appearance based segmentation method for

unwrapped panoramas;

• an adaptive and robust descriptor for indoor environ-

ments;

• automatically recognizing and generating nodes for the

topological map, while fitting the realtime requirement.
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This paper is organized as follows. Section II describes

our vertical edge based segmentation method. Section III

explains how to extract the FACT color tags from the

segmented image, the matching algorithm, and the generation

of the topological map. The evaluation and experiments can

be found in Section IV, where we also make a comparison

between the computational cost of our approach and that of

the keypoint-based approach.

II. SEGMENTATION OF THE PANORAMA

Since this work proposes a descriptor based on color

features and segmentation on the panoramic image, the

robustness of the method for detecting vertical edges is one

of the key problems to solve. The segmentation is made by

extending the dominant vertical lines in the panoramic image

as depicted in Figures 1, 2, and 3.

After unwrapping the raw panoramic image (Fig. 1), we

apply in sequence Sobel filtering (only along the x direc-

tion), Otsu thresholding [10], and morphological operators

to extract the most dominant vertical lines. Fig. 2 shows

the result of vertical extraction process. Note, only half of

the unwrapped image is shown here because of the space

limitation.

Fig. 1. A unwrapped result

Fig. 2. An output of vertical edges detection

Fig. 3. The segmentation result

The dominant vertical lines are chosen based on their

length. All the lines whose length is above average are

retained. The morphological operators are used just to fuse

those lines, which are too close to each other, into a single

line.The detailed processing phases are shown in Fig. 4.

As observed in Fig. 3, the vertical lines partition the

panoramic image into multiple regions. In the next section,

we will explain how to extract our descriptor from these

regions.

III. FACT DESCRIPTOR AND TOPOLOGICAL MAPPING

In this section, we describe the method for building the

FACT “tags” and its application to topological mapping.

In this work, we chose the YUV color space, where Y

signal represents the overall brightness of the pixel and U-V

Fig. 4. The segmentation process

are the two chromatic components. The benefit of this color

space is that we only need two elements (i.e. U and V) to

represent a color regardless of its brightness.

For each region between two vertical lines, the average

color value in the U-V space is extracted. Comparing to

other keypoint-based or edge-based descriptor, an obvious

advantage in our approach is that the similarity between

features in the U-V space will be simply measured in terms

of a 2D Euclidean Distance.

A. Building the Descriptor

We extract the descriptor based on the segmented un-

wrapped image explained in the previous section. The de-

scriptor is formed by the U-V color information and the

width W (in pixels) of the region, which is delimited between

two vertical edges. Instead of taking each pixel in every

region into account, we directly use the average of U-V value

that was calculated for each region. Ui and Vi indicate the

color information of region i.

One primitive idea is that even if the width of each

region may change during the translation of the camera,

the projected area in the real-world can be well-determined

in a local neighborhood, as long as the segmentation stays

constant. In this case, the average value for a certain region

in color space will keep constant. On the other hand, we

must avoid the false positive caused by color similarity of

regions. For example, the difference between a green cup

and a green cabinet may be very small in color space,

but the geometric features of these two are distinguishable.

Therefore, we employ the width of correspond region Wi as

the third dimension of our descriptor. By testing the ratio of

the width of corresponding regions, the descriptor can get

more reliable results. If we let N be the number of regions

segmented from the unwrapped image1, the dimension of the

1According to our experiment, N is usually smaller than 100 and greater
than 20.
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FACT descriptor of a scene is 3×N . A sample descriptor D

is shown in Eq. (1). Each column in the descriptor is named

one Tag.

D =





U1

V1

W1

U2

V2

W2

. . .

UN

VN

WN



 (1)

B. Descriptor Matching

The matching stage is the fundamental part of our method.

In this subsection, we will introduce how to evaluate the

similarity between two descriptors. Let us assume that we

have two descriptors D1 and D2, with dimension of 3 × j

and 3 × k respectively. D1 is a descriptor already stored in

the database (e.g. from a previously visited location), and D2

is a descriptor extracted from the current image. The purpose

is to identify if the current location, where D2 was taken, is

the same (or identical) to the place where D1 was extracted.

Notice that j is usually different from k because in general

the descriptors are extracted from different places.

Base image

Current image

Dis1,2Dis1,2Dis1,1Dis1,1 Dis1,jDis1,j

j

k

1

1

2

2

⇒ Dis1 = Min ( Dis1,1, Dis1,2, ..., Dis1,j)

3

3

(D1)

(D2)

Fig. 5. A schematic diagram of Test 1 during the matching process.

In order to find the candidate match for a given descriptor,

we devised the three tests listed below. Please notice that

the angular order of the tags is also important in the

matching stage. Here we just list the methods to compare

the fundamental elements of FACT, such as color features

and geometry.

Test 1: Tag Matching in the U-V Color Space

As shown in Fig. 5, the distance in the U-V color space is

first calculated on each region in the current image using

the 2D Euclidean Distance. The minimum of the distance

array Disi is selected as represent of the region. If Disi is

smaller than a very limited pre-defined threshold, THlocal
2,

this region i is considered matching with the corresponding

region in D1 and passes the Test 1.

Test 2: Tag matching in geometric space

If the Tag passes the first test, the width of the region is

then examined. Here the comparison is made in terms of the

ratio between the widths of the two regions. For instance,

if region 1 in the current image matches with region 4 of

2We choose THlocal = 3e-4 in this work, and we used a 10×10 U-V
color space. According to our test, this threshold applies very strict filtering
of false positive.

another image according to test 1, then the ratio between

the width of region 1 in D2 (namely W2,1) and the width

of region 4 in D1 (namely W1,4) must satisfy the inequality
1
3

<
W2,1

W1,4

< 3. The range of this ratio has been found

empirically. If this test is passed, the corresponding region

in the database will be eliminated when matching with other

regions in the current image.

Test 3: Descriptor matching

Tests 1 and 2 are executed recursively until all the Tags in

D2 have been tested. The final score of current image is

given by the ratio between the number of matching regions

in the database and length of D1, namely j.

It should be noticed that the FACT descriptor is a jointed

feature of combined regions, and the influence of one single

region is limited due to the big number of regions. Only the

appearance of the entirety will determine the matching result.

Therefore a trust-factor should be employed to compromise

the importance of a single Tag and the entirety. When the

dimension of the base descriptor is lower than the current

descriptor, the multiplier m = #tags in current descriptor
#tags in base descriptor

is

used as compensation, because the smaller number of regions

may be caused by the occlusion of strong vertical edges. On

the contrary, if the dimension of the base descriptor is higher

(which means that the Tags in the current image are easier

to match), 1
m

is multiplied as a punishment. Assuming M

represent the multiplier in the two cases, we get the resulting

score of D2 matching with D1 as,

Score(D2|D1) =
#matched Tags of D2

#total Tags of D1

(%) · M(%)

(2)

C. Change detection and Nodelist

In this subsection, we will introduce how to use the FACT

descriptor in the framework of topological map building

and scene recognition. In practice, two reasons will affect

the matching result. First, the segmentation result can be

affected by noise or vibrations of the platform. For example,

vibrations can make vertical lines non-radial anymore in the

omnidirectional picture and so some weak edges may be

missing. Secondly, dynamic objects will cause occlusions

during the real-time experiment. For example, some of the

moving objects or humans may occlude the existing strong

edges. Hereby we set up two basic hypotheses according to

these two reasons, respectively:

Hypothesis 1: each topological node will last at least

for two frames. It will exclude the internal error caused by

occlusions. As the camera will usually grab more than one

frame per second, this is reasonable for this study.

Hypothesis 2: the dynamic objects will only cover no

more than 30% of the area in the unwrapped image. As the

omnidirectional camera covers 360◦, we set a threshold that

if more than 70% of the target image matches an existing
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Nodelist = {1, 2, 3...n}

FACTlist =

〈
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· · ·
U1,j

V1,j
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



1


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· · ·
U2,k

V2,k

W2,k
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

2

· · ·
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Un,1
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· · ·
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



n

〉

Fig. 6. The pattern of Nodelist and FACTlist

node, then the current position will be considered matching

the database.

An incremental algorithm will automatically create nodes

into a FACT-based list called Nodelist, and the descriptors

of the nodes in the Nodelist will be filled into FACTlist.

The patterns of these two lists are shown in Fig. 6. By thresh-

olding the scores of subsequent frames, i.e. if the matching

resultsof two consecutive frames are lower than the pre-

defined threshold THglobal (78% in this work), the current

location is added as a new node into the topological map.

Every time, the algorithm will compare the current descriptor

with all the nodes in the Nodelist. Only the highest Score

of current image Im(n) based on the Nodelist is taken into

account.

D. Refinement of Result

The incremental algorithm runs automatically. According

to our test, a few redundant nodes may be created. The

reason is that these nodes are mostly generated because

some important vertical edges are occluded by obstacles or

moving people when there are not many regions detected.

We perform an off-line method for refining the Nodelist in

the reverse sequence as a supplement. Using this method,

it costs less than 2 ms to process 30 nodes in real-time, so

it can also be run online according to the size of Nodelist

and transition of tasks. The experimental results are give in

Section IV.

IV. EXPERIMENTS AND PERFORMANCE EVALUATION

In this section, an experiment using the FACT descriptor

applied in the framework of topological mapping is intro-

duced. We will report our test on functionality, time cost, and

robustness separately. The real-time experiment is carried out

on a differential drive robot with an omnidirectional camera

on the top and with the assistance of built-in odometry.

The experiment is carried out in a typical indoor office

environment containing working office, printing room, coffee

room, stairways , corridor, etc. The software is coded in C

with the support of the OpenCV library. The white balance

of the camera is automatically adjusted by referring to color

from a certain area where a piece of white paper is stuck

in the field of view. This trick will partially eliminate the

disturbance of color from the changing of light. There is a

similar strategy can be found in [4].

A. The test on functionality

Our method will add new nodes into a topological map and

recognize existing nodes automatically based on the FACT

descriptors, while the mobile robot moves in a typical office

environment. We set the frame rate to 1 fps, and acquire

1591 frames in total to take this test. It will also help

us to try different algorithms based on the same sequence

and clearly find the advantages and disadvantages. The test

video covers the whole corridor shown in Fig.7 and six

other different scenes such as printing room (trajectory in

red), coffee room (brown and cyan), and stairways (in pink).

The experimental result of the detected new nodes is shown

along with the odometry information as reference. If the

current scene is different from the last frame but exists in

the Nodelist, it will not be shown in the figure. As we

mentioned previously, we will remove all the nodes which

look alike by performing an off-line refining method. The

nodes which match each other for more than 70% were

excluded. According to the experimental result, we can get

a sketch map on the floor plan which is shown in Fig.7.

The evaluation of the mapping result is in Table I. This

TABLE I

EVALUATION OF THE MAPPING RESULT

True Positive False Positive False Negative # Valid nodes

9 (81.8%) 2 (18.2%) 2( 2

11+2
=15.3%) 11

table shows that the FACT works well in the detection of

new scenes, especially in detecting the the change of the

type of scene. For example, the change from corridor to

rooms are well identified, because these transitions usually

contain significant color changes. But some of the scenes

were not detected as new nodes, because of the similarity

in feature, i.e. some places could be considered as the same

appearance seen before. For instance, the upper one of the

two missing scenes in an office which has no strong texture.

This was filtered out during the refining stage. One feasible

optimization would be to introduce corners or other simple

features as supplements. It means besides the three features

i.e. U, V and Width of regions, other features may be added

to enhance the distinctive of tags in FACT. Moreover, the

refinement of segmentation method will also help to get a

more specified feature. These possible optimization will be

carried out in our future work.

B. Test on time cost

The FACT descriptor should have low complexity in

computation and above all fit the realtime requirement as we

defined in the introduction. In order to certify the efficiency,

the processing time for each frame must be measured. The

chart of time cost by frame is shown in Fig. 8, which includes
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Fig. 7. A refined sketch. By performing an off-line refining, 9 nodes out of total 20 were excluded due to the similarity and isolated noise; 9 nodes out of
the rest 11 were true positive result (the false positive are marked in black hollow circles); another 2 scenes were not identified (marked in red circles). All
the labels are marked manually.The paths with the same color are considered as one node, the solid circles mark the transition point of detection results.

the time of unwrapping, segmentation, FACT extraction,

node recognition and new nodes detection. 15 frames out

of 1565f were rejected because the feature changed too fast

against the Hypothesis 1. The average processing time is 30.3

ms using an Intel CoreDual 3.0GHz CPU. The proportion of

each phase is shown in Fig. 9.
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Fig. 8. The processing time using FACT and SURF. FACT: The time cost
is slightly rising during the test, because the method is incremental and
more new nodes will be detected and added to the Nodelist. The corridor
in this experiment scenario is about 100-meter-long and finally 20 nodes
are added. The unwrapping and segmentation will possess about 28.5ms
in average, therefore the extraction and matching phases are as efficient as
taking less than 7% processing time. The black line indicates the average
of processing time. SURF: The processing time using SURF descriptor. We
use the SURF method to ONLY detect the scene change without recognition
function, which has already saved much time in matching stage. The green
line indicates the average of the processing time of this method, and the
black one is the average processing time using FACT descriptors. The arrow
marks the difference of time cost between our method and keypoint-based
method.
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Fig. 9. A typical proportion of time cost in phases

As a comparison, a SURF descriptor based method was

also tested. We take SURF as a representative of keypoint-

based method, as it is faster in keypoint detection and

matching than other candidates such as SIFT. By only

detecting the scene change, without recognition function, the

experiment was performed on the same video sequence. We

abstracted SURF based keypoints and descriptors from each

panoramic image. The ratio of #matched points
total#of keypoints in database

was employed to represent the matching score of every new

frame. The overall processing time record is shown in Fig. 8.

Because this experiment only detects the scene change, it did

not need compare each node from the database. As the high

dimension of the descriptor, the time cost for the matching

phase varies from 9.1 to 268.6 ms (median value 52.2ms)

depending on the number of keypoints of each node, on the

same computer used in the previous test. We could imagine

that if we join all the nodes together, the matching stage will

take proportionally more time.

C. Test of robustness in dynamic environment

The method described in this work is supposed to omit

the disturbance when less than 30% of the panoramic image

in horizontal direction is affected. This characteristic is

especially valuable when people may be walking around

during the rove of the robot, after the topological map

training. Ideally speaking, if more than 30% is covered by

dynamic objects or people, the robot will take the current

scene as an unknown area. The experiment for the robustness

test is designed as below:

1) Move the robot to a typical indoor environment, and

generate only one node for the test environment;

2) Invite number of people randomly walk within the field

of view and take the log separately;

3) Change to another scene and repeat from step 1.

The experiment was taken in real-time and the test results

are given in Fig. 10. The sub-figure (a)-(d) show the test

results in the office room, in the corridor, in the stairway,

and in the coffee room respectively. Because of the different

color textures of these indoor environment, the robustness

of FACT acted different. For the office environment, we had

three people walking around consequently and they crowd

together time after time.

The Fig.10(e) shows a result of an experiment on sensi-

tivity, in which we suddenly cover the whole FOV and the

algorithm shows its sensitivity to the sudden change, while

the frame rate is around 20fps.
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Fig. 10. The test result of the robustness of FACT. The red line indicates the threshold THglobal which defines the matching status of current image.

According to the test result, the FACT descriptor and the

matching method have shown their ability in topological map

and the robustness to dynamic objects in the environment.

Above all, the time cost of FACT method is almost 7 times

shorter than a typical keypoint based method, which will

guarantee the mobile robot having more time slots in a real-

time task.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this paper, we presented an adaptive and lightweight

descriptor for omnidirectional vision named FACT (Fast

Adaptive Color Tags). With the FACT descriptor, both scene-

change detection and scene recognition can be fundamentally

achieved. Above all, a node list for topological mapping can

be produced in real-time.

The performance of this method was evaluated through

a real-time experiment on a mobile robot with an omnidi-

rectional camera. There are two important differences with

previous work. The first one is that the nodes are generated

only by the image appearance, without using other sensors

such as ranger finders. The second one is that the extracted

feature is based on color and geometric information, instead

of other keypoints (like Harris, SIFT, or SURF). According

to our test, the processing time is as fast as 30ms in average

and the FACT descriptor is robust to local changes in the

environment.

It should be noted that the functionality of FACT descrip-

tor has been examined only in one certain indoor environ-

ment. The generalization may be solved by adjusting the two

thresholds in the matching phase, supplementing features to

the tags and refining the segmentation. Not withstanding its

limitation, this study suggests that the descriptor based on

segmentation and color could be used in scene recognition

and topological mapping by costing comparatively short time

and with robustness to occlusions and slight illumination

changes.

B. Future Works

To optimize the FACT descriptor, one possible further

work is to fuse other features such as corners or segments

to enhance the uniqueness of the descriptor. In this case,

the time cost of the method will certainly rises. Further

results and bargain will be shown in our next work. Based

on the FACT descriptor, it is feasible to build a navigation

tree which can guide the robot transiting from one node to

another adjacent node. The navigation could be achieved by

comparing the difference of two image and minimize the

error using a visual servoing approach [14].
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