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Why-So-Deep: Towards Boosting Previously
Trained Models for Visual Place Recognition

M. Usman Maqbool Bhutta1, Yuxiang Sun2, Darwin Lau3, and Ming Liu4

Abstract—Deep learning-based image retrieval techniques for
the loop closure detection demonstrate satisfactory performance.
However, it is still challenging to achieve high-level performance
based on previously trained models in different geographical re-
gions. This paper addresses the problem of their deployment with
simultaneous localization and mapping (SLAM) systems in the
new environment. The general baseline approach uses additional
information, such as GPS, sequential keyframes tracking, and
re-training the whole environment to enhance the recall rate. We
propose a novel approach for improving image retrieval based
on previously trained models. We present an intelligent method,
MAQBOOL, to amplify the power of pre-trained models for better
image recall and its application to real-time multiagent SLAM
systems. We achieve comparable image retrieval results at a low
descriptor dimension (512-D), compared to the high descriptor
dimension (4096-D) of state-of-the-art methods. We use spatial
information to improve the recall rate in image retrieval on
pre-trained models. Material related to this work is available
at https://usmanmaqbool.github.io/why-so-deep.

Index Terms—Localization, Visual Learning, Recognition

I. INTRODUCTION

V ISUAL place recognition is extensively used in the
robotics industry with application in all kinds of SLAM

systems for the loop closure detection [1], [2]. The top candi-
date in the image retrieval helps a lot in the multiagent SLAM
system for creating large-scale 3D maps [3]–[5]. Convolutional
neural network (CNN)-based approaches such as NetVLAD
[6] and DGC-Net [7] produce promising results in the image
retrieval.

There are several types of common solutions to enhance the
localization performance further. Each of the methods involves
retraining the whole network in addition to the data. The
first and very common approach in visual place recognition
is based on attention-seeking regions in the images. Work-
related to landmarks distribution and partitioning of pictures
based on regions is also present in the literature [8]–[11].
[12] incorporated NetVLAD and made a features pyramid of
the top landmarks in the image to achieve better results. [13]
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(b) Recall test on Pitts250k

Fig. 1: Our system performance at a lower feature dimension
(512-D) is comparable to NetVLAD [6] performance at a
higher feature dimension (4096-D). We use NetVLAD best
trained network (V GG− 16, fV LAD) for evaluation.

introduced a multi-layered region-based method that extends
DGC-Net and incorporates NetVLAD. Even though the better
real-time performance of DGC-Net [7], sometimes, the system
faces difficulty due to the incorporation of objects changing
with time in the images.

The second most used idea is to increase the depth of the
neural network by adding several additional layers with the
default network. For instance, a multi-layered region-based
framework is introduced in [14] which also uses NetVLAD
and performs dense pixel matching to achieve better place
recognition. For large-scale image correspondence matching,
scientists have also introduced several upgrades to the network.
[15] presented HD-CNN, a hierarchical deep CNN scheme,
while [16] and [17] similarly partitioned the spatial informa-
tion in higher layers. But the utilization of these methods in
a real-time SLAM system is still very challenging due to the
computation time and large size of feature dimension.

The third widely used method in the robotics industry is
done by integrating 3D-depth information. The corresponding
2-D images, along with the 3D maps, enhance the system
performance in loop closure detection [18]–[21]. Moreover,
GPS information [22], semantics graph matching [19], and
attention-seeking approaches [9], [13], [23] have shown good
results for image retrieval tasks. In robotics, the place recog-
nition module should not be tightly coupled with GPS or 3D
data. Otherwise, it will become harder for the server of the
multiagent SLAM system to handle. Despite their benefits, all
the above-described approaches require retraining the complex
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networks to enhance system accuracy.
In our proposed study, our system at a lower feature dimen-

sion (i.e., 512-D) is able to achieve accuracy similar to a higher
feature dimension (i.e., 4096-D) while tested with the same
pre-trained model. A detailed comparison is shown in Fig 1.
In our work, instead of following a cascading training pipeline
or to go deeper in terms of feature dimension, we probabilis-
tically enhance the image retrieval performance based on a
pre-trained model for a more reliable place recognition. So,
we introduce this as the Multiple AcQuisitions of perceptiBle
regiOns for priOr Learning (MAQBOOL) approach. These
significant correspondence regions will help in probabilistic
landmarks elevation by splitting the full spatial information
into multiple regions and estimate their descriptor `2 distance
co-relations, which significantly increases the power of the
pre-trained models. In addition, training new models to be
utilized in new places involves intensive computation of deep
learning models each time.

As multiagent SLAM is the next interest for computer
vision researchers, we strongly believe that our contributions
will help the computer vision community in many multiagent
SLAM scenarios. The contribution of this research is four-fold,
as follows:
• Our main contribution is to enhance recall accuracy of

previously trained models.
• We introduce a probabilistic layer to constrain the local

representation such as prominent regions, along with the
global representation of images. The global description
of the pre-trained model and the local consistency in-
troduced in our work enables the system to yield good
performance at a large-scale.

• Our system shows comparable accuracy at a low descrip-
tor dimension (512-D) compared to the high descriptor
dimension (4096-D) of the current state-of-the-art [6].

• In our results, we show good performance of our system
at low-dimensional features with a previously trained
model while tested in the new environment. It enables the
SLAM system to detect the loop closure at good accuracy
everywhere.

II. RELATED WORKS

This work is related to improving image retrieval, which
plays a big part in visual place recognition for vision-related
applications and any kind of SLAM system. To improve image
retrieval, scientists have worked towards making robust global
descriptors, and some have utilized local features along with
a global representation, as mentioned in previous section. We
discuss closely related work below.

Researchers developed a geometric image correspondence-
based system, which shows good performance after utilizing
dense geometric information [14]. It selects the top candidates
from the database using NetVLAD and performs dense pixel
matching with the query image. Their geometric model was
created by fitting the planer homography to the 3D infor-
mation, SIFT features and CNN descriptor. This was done
with alteration to DGC-Net [7], which does not deal with
the 3D structure. After modifying DGC-Net, [14] utilized a

unified correspondence map decoder (UCMD) for the dense
matching between the top candidates and the query image. It
processes a multi-resolution feature pyramid and CNN layers.
At the end, the authors used a neighbourhood consensus
networks (NCNet), meaning we can summarize their system
as NetVLAD-DGC-NC-UCMD-Net. This long computation
pipeline makes their system complex, and it requires intense
computation for each query image and all database images.

[21] also considered 3D information and performed exten-
sive nearest-neighbour explorations in the descriptive space.
In addition, they used coarse correspondence estimation, while
[14] used a learned convolutional decoder. Another pyramid-
aggregation-based method is found in [16]. It also uses pre-
vious NetVLAD training results along with enhancing the
accuracy compared to NetVLAD, and introduces weighted
triplet loss for updating the weights after each epoch while
training the new model.

[24] introduced APANet, which uses principal component
analysis (PCA) power whitening along with pyramid aggre-
gation of attentive regions. APANet selects the features of
key attention-seeking regions and performs sum pooling, and
its results are on 512-D features trained using the AlexNet
[25] and VGG-16 [26] networks. Their work is similar to
[14] for multi-scale region aggregation to build the pyramid.
In addition, their use of PCA power whitening makes it
more complex for the system to create a full descriptor and
inconvenient to use in real-time applications.

The training-free approach from [10] uses edge boxes [27]
for the top landmarks selection in a given scene. This method
scales down each landmark feature from a 65K vector to a 1K-
dimensional representation using Gaussian random projection.
Based on the landmark features, cosine distances between all
the landmark proposals are calculated to find the similarity. No
training is involved, for better utilization of the landmarks. An
unsupervised approach [28] presents a method to re-ranking
the NetVLAD top-20 candidates. Their method utilized global
as well as local features for improving the recall rate.

III. MULTIPLE ACQUISITIONS OF PERCEPTIBLE REGIONS
FOR PRIOR LEARNING

An overview of our MAQBOOL system is shown in Fig.
2. Given a query image, we retrieve the nearest candidates in
the database descriptor space. We use NetVLAD, which is a
fast and scalable method, for the image retrieval application.

Our proposed method consists of three parts. Part I explains
the selection of the top regions for the local representation
from the images; Part II describes the corresponding spatial
information processing using NetVLAD; and Part III shows
the probabilistic manipulation, in a pairwise manner, of the
query image with initially retrieved database images for more
reliable place recognition. These three parts are explained in
the following subsections.

A. Top Regions Selection

In Section II, we explained that APANeT [24] uses the top
regions and applies single and cascaded blocks to achieve
better performance. After taking inspiration from the top
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Fig. 2: Overview of the MAQBOOL system. For each image, the spatial Pre− l2 layer is partitioned according to the boxes
detected by edge boxes. All the regions are cropped and then normalized for the feature vectors. k is the number of clusters,
and d is the feature dimension. The probabilistic decision layer (PDL) is trained using the correlation distance matrix Cn×n
and the ground truth of the ToykoTM dataset.

(a) Top-ranked image
correspondence proposals
are marked on the query image.

(b) Proposals are mapped to
the spatial information of pre-
`2 layer of NetVLAD

Fig. 3: Query image from the Tokyo 24/7 dataset. Top region
proposals are selected using edge boxes [27]. The intensity
bar shows the top-scoring region selections on the image.

regions selection in [10], we also choose edge boxes [27]
instead of using the simple regions selection techniques from
[29] and [30]. Edge boxes is a fast and unsupervised method
that detects the likelihood of an object based on the points on
the edges.

B. Spatial Landmarks Estimation

We process the landmarks information at the pre-`2 layer
of NetVLAD. All the top regions’ enclosed boxes are mapped
to this pre-`2 layer, and we crop the corresponding spatial
information to create the NetVLAD 512-D and 4096-D feature
vectors of all the boxes. These feature vectors are used for the
probabilistic landmarks elevation in the next section. Essential
regions are calculated in the query image and candidate images
from the database. Fig. 3 shows the top proposals based on
the objectness scores and their mapping at the pre-`2 layer of
the NetVLAD pipeline.

For a query image Iq , NetVLAD predicts top-100 matches
from the database, based on their `2 distances in the descriptor
space. Let’s assume, for this query image Iq , Ic are the top
candidates from the database and djc is the corresponding `2
feature distance of jth candidate image from the query image.
We further denote the feature distance qdjcrn between query

Fig. 4: The query image is compared with all the top candi-
dates. R′ is the distance span within adjacent image proposals.
The correlation distance matrix Cn×n is calculated between
the query image and the candidate images by taking the feature
distance between all top landmarks. Each value of this matrix
represents the feature distance between specific landmarks
shown by a yellow box, and their distance is represented as
djxy .

and different regions of jth candidate image pictures by a
double-sided solid arrow, as shown in Fig. 4. We calculate
relative distances R′ of two adjacent candidate proposals by
taking the derivative of the original distance set dc.

Instead incorporating multi-scale pyramid aggregation or
estimating sets of cyclically consistent dense pixel matches,
we simply performed probabilistic spatial landmarks elevation
followed by the correlation distance for the re-ranking of the
top retrieved candidates. For the d-dimensional feature vector
and n (number of spatial regions plus one considering the full
image), we define the whole image representation by F, which
has a size of n×d. We estimate the correlation distance matrix
Cn×n of the query image Iq with the jth ∈ Ic database images
Ijc as

Cj
n×n = Fq(n×d) × Fj

c(n×d)
T
, (1)

We filter the irrelevant distances score from Cn×n after
subtracting the maximum distances dmax

c ∈ dc and using sign
function:

Cj
f = Cj

n×n − dmax
c . (2)

Dj =

{
sgn(Cj

f ), for cf < 0

0, for cf ≥ 0,
(3)
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where cf ∈ Cj
f . By using Dj , we drop large distances

landmarks from Cj
n×n as follows:

Cj
n×n = |Dj

qj | � Cj
n×n. (4)

C. Probabilistic Spatial Landmarks Elevation
Firstly, we determine the information Sj based on the size

of the boxes of both the query and database image:

sjxy = β ∗ P q
b ∗ P

c
b ∗ e−(d

min
c +dj

xy) ∗ e−R
′
j , (5)

where sjxy ∈ Sj , x, y ∈ {1, ...n}, β = 10, djxy ∈ Cj
n×n, and

R′j = d
dx (d

j
c) is the candidates’ relative distances’ difference.

Furthermore, bw and bh are the width and height, respectively,
of the landmarks’ bounding box. We estimate the probabilities
of the landsmarks in the query and candidate images as
follows:

P q
b = e

−
b
q
w∗b

q
h

qw∗qh and P c
b = e

− bcw∗b
c
h

cw∗ch . (6)

The reason for taking the negative exponential of the weight of
the landmarks’ over the full image is that a smaller bounding
box results in a lower probability of a good match. For
instance, in night images, most regions are black, so there
exists a higher chance of accumulating dark region effects.

We use information matrix Sj and filtered correlation dis-
tance matrix Cj

f to produce the probabilistic correlation matrix
Pj
SC as follows:

Pj
SC = Sj � Cj

f . (7)

Each column of Pj
SC corresponds to a probabilistic match of a

particular landmark in the query image with all landmarks in
the jth candidate image. We further shrink Pj

SC to 10×10 by
sorting each column of Cn×n and index matching with Pj

SC .
P j
SM processes the original `2 distances of all retrieved can-

didates from the query image. We use softmax for estimating
the probability controlled by the cmin:

P j
SM = e−c

j
min .

(
e−d

j
c∑

i e
−di

c

)
︸ ︷︷ ︸

softmax

= e−c
j
min .softmax(e−d

j
c), (8)

where cjmin is the minimum value of Cj
n×n. We pass this

estimated probability information to the regression process to
create the predictive model.

We estimate the probability Mj by utilizing the P j
SM and

Pj
SC :

Mj = P j
SM ∗ Pj

SC . (9)

We also consider incorporation of the feature distance djc
between the query image and the candidate image, as well as
the distances qdjcrn between the top regions of the candidate
image, with the whole query image, as follows

Cj
qc = [R′j ,

q djcr1,
q djcr2,

q djcr3, ...,
q djcrn], (10)

In this work, we choose the top 10 feature distances qdjcrn
of the candidate image’s top regions from the whole query
image.

D. Prediction Model and Probabilistic Distance Update

We design the probabilistic decision layer (PDL) using the
ground truth based on the TokyoTM validation dataset. The
information estimated in the previous subsection is used in
creating the model as follows:

P j
M = f(djc,C

j
qc,M

j , Y j). (11)

We train P j
M with the ground truth Y j of about 250 images

and create the model. We choose bootstrap aggregation in
the decision tree (DT), which allows the tree to grow on
an independently drawn bootstrap, duplicate of the input.
This reduces the variance and increases accuracy. We trained
bootstrap-aggregated decision trees of sizes 50 (DT-50) and
100 (DT-100) for the testing. After creating the model, we
apply it to work like the prior distribution to predict the
response. In this manner, we update all the distances of the
top candidates for re-ranking the retrieval images as follows:

djnew = |djc − α log(P
j
M ) |, P j

M ∈ [1, 2]. (12)

We keep the model response binary. The predicted value
’1’ corresponds to an irrelevant match, while ’2’ indicates
the nearest match. The regularizing variable α controls the
weight of the probabilistic response. We choose α = 1.15
while working at the 512-D feature vectors, while at the
higher dimension, i.e., 4096-D, we use α = 0.31. The main
motivation for using α = 0.31 is to minimize the effect of the
regularizing variable. We observed that the feature distance
between two adjacent images is small at a higher dimensional
feature space. So the impact of the regularizing variable should
also be low for the high-dimensional features.

IV. RESULTS AND DISCUSSION

Our proposed method requires small training of decision
tree model, and it works excellently when tested in new
surroundings. All the testing results in this section are based
on the same decision tree model. We used the TokyoTM
validation dataset to train this decision model for the PDL
layer. MAQBOOL probabilistically elevates the perceptible
regions’ distributions for improving the loop closure module
of the multiagent SLAM system. Our system performs better
image retrieval than schemes that change the network with a
complex structure and include additional sensor information
or perform repetitive training to get impressive results on
challenging datasets.

A. Datasets and Implementation

NetVLAD is mainly evaluated on Pittsburgh [31] and Tokyo
24/7 [32] datasets. We used the same NetVLAD VGG-16-
based models for the performance evaluation. We tested our
MAQBOOL method on the Pittsburgh and Tokyo 24/7 datasets
compared with NetVLAD and APANet [24]. The Pittsburgh
250K dataset consists of 254K perspective images taken from
10.6K Google Street View and 8.2K query images, while the
Tokyo 24/7 dataset has 76K database images and 315 query
images.
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Fig. 5: Recall @ 1-25 on Toyko 24/7 and Pittsburgh 250k datasets. (a) and (b) show the performance of MAQBOOL compared
to NetVLAD based on the model pre-trained on VGG Pittsburgh 250k. (c) and (d) show the performance based on the model
pre-trained on VGG-16.

B. Testing on Pittsburgh and Tokyo 24/7 Datasets

Fig. 5 shows the comparison of our proposed MAQBOOL
strategy while testing on the Pittsburgh and Tokyo 24/7
datasets. In comparison to the feature dimension of 4096, we
achieve significant improvement at a feature dimension of 512,
as shown in Fig. 5a and 5c.

The top five recall results tested on the Pittsburgh and Tokyo
24/7 datasets are shown in Fig. 7. It is shown in Fig. 8a and
8b that NetVLAD fails to retrieve the nearest match with the
query in the first five places of the Tokyo 24/7 dataset, while
MAQBOOL successfully adjusts the distances of the retrieved
images and re-ranks the closest match to the first position.
Similarly, Fig. 7c and 7d show the robustness of our proposed
system compared to NetVLAD when tested on the Pittsburgh
dataset at feature dimensions of 512 and 4096, respectively.

C. MAQBOOL Representation

In visual place recognition, the standard baseline is to
increase the feature dimension. Our work proved that we could
make it better by adding probabilistic information. SLAM
systems do not recognize the place at 30/60 frames per second
(FPS), instead they detect loop closure at nearly 1 second
intervals. We perform landmarks-based verification that takes
longer than one second. There is always a trade-off between
speed and accuracy. Edge Boxes takes nearly 0.37 second in
MATLAB. We used n = 50 regions in this work, which takes
an additional 0.87 sec. Depending on the application, we can
reduce the n regions. For instance, the system takes only 0.13
second instead of 0.87 sec for processing five boxes.

Let’s assume we are utilizing the SLAM system on Mars,
and we choose the model trained in some datasets. In that
case, vanilla NetVLAD cannot perform with high accuracy.
Fig. 6 shows the MAQBOOL performance on the Tokyo 24/7
datasets with 512-D and 4096-D features compared with the
state-of-the-art NetVLAD. Both use the same model trained on
the Pittsburgh 30k dataset and tested on the Tokyo 24/7 dataset.
We achieved notable improvement at low-dimensional (512-D)
feature-based recall, comparable with the 4096-D NetVLAD.
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Fig. 6: MAQBOOL performance comparison with NetVLAD
on Tokyo 24/7 dataset. Their retrieval performances are eval-
uated using the same VGG model, which is trained on the
Pitts30k dataset.

D. Comparison with Power Whitening PCA

While maintaining the same baseline of PCA whitening
followed by NetVLAD, MAQBOOL outperforms NetVLAD
as well as APANet, as shown in Table I. APANet introduces
an additional PCA power whitening concept on different block
types and produces better performance than NetVLAD, but
by keeping the default PCA whitening, our simplest model
delivers better results than APANet. We observe that by
increasing the tree size, there is a significant improvement
in the accuracy at a high dimension of 4096. Moreover, for
a decision tree dimension of 50, MAQBOOL achieves good
results compared to APANet on the Tokyo 24/7 and Pittsburgh
datasets, as shown in Table I.

E. Ablation Study

As mentioned in the previous section, we use a decision tree
model at the PDL. We choose the decision tree and Gaussian
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TABLE I: MAQBOOL performance comparison with APANet and NetVLAD at 512-D.

Method Whitening
Tokyo 24/7 Pitts250k-test

Recall@1 Recall@5 Recall@10 Recall@1 Recall@5 Recall@10

Sum pooling
PCA whitening 44.76 60.95 70.16 74.13 86.44 90.18

PCA-pw 52.70 67.30 73.02 75.63 88.01 91.75

NetVLAD [6]
PCA whitening 56.83 73.02 78.41 80.66 90.88 93.06

PCA-pw 58.73 74.6 80.32 81.95 91.65 93.76

APANet [24]
PCA whitening 61.90 77.78 80.95 82.32 90.92 93.79

PCA-pw 66.98 80.95 83.81 83.65 92.56 94.70

MAQBOOL (Ours)
PCA whitening + DT-50 68.25 79.37 83.49 85.45 92.62 94.58
PCA whitening + DT-100 69.21 80.32 84.44 85.46 92.77 94.72

probability models for use in the PDT layer, and we discuss
them as follows.

1) Decision tree model: We trained the default model based
on ’100’ tree size. For the ablation study, we trained a decision
tree model of size ’50’. We found that by reducing the tree
size, the system performance is almost similar. MAQBOOL
with a decision tree size of ’100’ works slightly better at a
higher dimension (4096-D) than MAQBOOL with a decision
tree size of ’50’, as shown in Fig. 5. Furthermore, We find
that the tree size of ’50’ has a better recall than NetVLAD
and power-whiteing-based APANet. We choose ground truth
data of the Tokyo Time Machine validation set to create the
model. However, we observed that the model works better than
NetVLAD if created using small datasets, such as the Oxford
5k [33] and Paris [34] datasets. These datasets have 55 query
images. However, prediction models based on these datasets
show similar performance.

2) Gaussian probability model: The Gaussian probability
model is also a popular choice in regression studies. We
observe that it has a similar performance with the decision
tree of size ’50’.

V. CONCLUSION

In this paper, we introduce MAQBOOL to improve the
accuracy of image retrieval results without retraining a new
deep learning model, for better visual place recognition. We
elevate essential regions at spatial layers and probabilistically
verify the image correspondence efficiently. Our MAQBOOL
approach intelligently processes the high-level layer to produce
more-reliable top matches than the current state-of-the-art.
Without any further training or introducing additional sensors
or pieces of ground truth information to the system, our
framework outperforms PCA power whitening on APANet,
and on NetVLAD. Our method achieves good accuracy on
low-dimensional features (i.e., 512-D) with more reliable can-
didates, which makes it useful in general SLAM applications
for loop closure detection.

VI. APPENDIX

The primary motivation behind this work is to make the
multiagent SLAM systems efficacious towards new deploy-
ment. Image retrieval is a key part of not only the SLAM
system but also of data analytics. This paper suggests an
intelligent way to use the top landmarks for better place
recognition. If we observe the recall rate of NetVLAD while

tested on challenging datasets such as the Tokyo 24/7 dataset
[32], Tokyo Time Machine, and Pittsburgh dataset [31]. We
found that model should be trained using the same dataset
to achieve a good recall rate. Moreover, the top 10-25%
candidates from the database have recall rates with accuracy
90% and above. Generally, SLAM systems take the top first
candidate from the retrieval for loop closure detection. It
means we cannot emphasize the direct usage of NetVLAD
for single-loop-closure-based multiagent system [4].

A. Evaluation on Oxford Building and Paris Building datasets

In Fig. 8, NetVLAD failed to put the right matches at the
first position for each query image from Oxford 5k building
and Paris 6k building datasets. Our work at the lower feature
dimension, i.e., 512-D, successfully places the right matches to
the first position. That makes it more robust towards using any
mapping system. For the localization system, the first recall is
very important for a complete global mapping optimization.

B. Recall Improvement at a Lower Features Dimension

Fig. 1 show the quantitative results of MAQBOOL at 512-
D compared to NetVLAD at 512-D and 4096-D. In Fig. 9
and 10, we show qualitative results of our approach compared
with the recall of NetVLAD. We found that MAQBOOL at
512-D outperformed the NetVLAD at 4096-D for the low light
images. For the query image shown in Fig. 9, our MAQBOOL
at 512-D with DT-50, not only correct the first match as
NetVLAD at 4096-D did, but also it brings the correct match
at the third position.
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[17] L. G. Camara and L. Přeučil, “Spatio-semantic ConvNet-based visual
place recognition,” in 2019 European Conference on Mobile Robots
(ECMR). IEEE, 2019, pp. 1–8.

[18] P.-E. Sarlin, C. Cadena, R. Siegwart, and M. Dymczyk, “From coarse
to fine: Robust hierarchical localization at large scale,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 12 716–12 725.

[19] A. Gawel, C. Del Don, R. Siegwart, J. Nieto, and C. Cadena, “X-
View: Graph-based semantic multiview localization,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 1687–1694, 2018.

[20] L. Bernreiter, A. Gawel, H. Sommer, J. Nieto, R. Siegwart, and C. C.
Lerma, “Multiple hypothesis semantic mapping for robust data associ-
ation,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3255–
3262, 2019.

[21] H. Taira, M. Okutomi, T. Sattler, M. Cimpoi, M. Pollefeys, J. Sivic,
T. Pajdla, and A. Torii, “Inloc: Indoor visual localization with dense
matching and view synthesis,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 7199–7209.

[22] S. Pillai and J. Leonard, “Self-supervised visual place recognition
learning in mobile robots,” arXiv preprint arXiv:1905.04453, 2019.

[23] A. Pal, C. Nieto-Granda, and H. I. Christensen, “DEDUCE:
Diverse scene detection methods in unseen challenging environments,”
arXiv preprint arXiv:1908.00191, 2019. [Online]. Available: http:
//arxiv.org/abs/1908.00191

[24] Y. Zhu, J. Wang, L. Xie, and L. Zheng, “Attention-based pyramid
aggregation network for visual place recognition,” in Proceedings of the
26th ACM international conference on Multimedia, 2018, pp. 99–107.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, 2012, pp. 1097–1105.

[26] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2015. [Online]. Available: http://arxiv.org/abs/1409.1556

[27] C. L. Zitnick and P. Dollár, “Edge boxes: Locating object proposals
from edges,” in European Conference on Computer Vision- ECCV 2014,
Springer. Springer International Publishing, 2014, pp. 391–405.

[28] N. V. Keetha, M. Milford, and S. Garg, “A hierarchical dual model
of environment- and place-specific utility for visual place recognition,”
IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 6969–6976,
2021.

[29] T. Xiao, Y. Xu, K. Yang, J. Zhang, Y. Peng, and Z. Zhang, “The
application of two-level attention models in deep convolutional neural
network for fine-grained image classification,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2015,
pp. 842–850.

[30] Y. Yan, B. Ni, and X. Yang, “Fine-grained recognition via attribute-
guided attentive feature aggregation,” in Proceedings of the 25th ACM
International Conference on Multimedia, 2017, pp. 1032–1040.

[31] A. Torii, J. Sivic, M. Okutomi, and T. Pajdla, “Visual place recognition
with repetitive structures,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 37, no. 11, pp. 2346–2359, 2015.

[32] A. Torii, R. Arandjelovic, J. Sivic, M. Okutomi, and T. Pajdla, “24/7
place recognition by view synthesis,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 40, no. 2, pp. 257–271, 2018.

[33] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object
retrieval with large vocabularies and fast spatial matching,” in 2007 IEEE
conference on computer vision and pattern recognition. IEEE, 2007,
pp. 1–8.

[34] ——, “Lost in quantization: Improving particular object retrieval in large
scale image databases,” in 2008 IEEE conference on computer vision and
pattern recognition. IEEE, 2008, pp. 1–8.

http://arxiv.org/abs/1907.11350
http://arxiv.org/abs/1907.11350
http://arxiv.org/abs/1908.00191
http://arxiv.org/abs/1908.00191
http://arxiv.org/abs/1409.1556

	I Introduction
	II Related works
	III Multiple acquisitions of perceptible regions for prior learning
	III-A Top Regions Selection
	III-B Spatial Landmarks Estimation 
	III-C Probabilistic Spatial Landmarks Elevation
	III-D Prediction Model and Probabilistic Distance Update

	IV Results and Discussion
	IV-A Datasets and Implementation
	IV-B Testing on Pittsburgh and Tokyo 24/7 Datasets
	IV-C MAQBOOL Representation
	IV-D Comparison with Power Whitening PCA
	IV-E Ablation Study
	IV-E1 Decision tree model
	IV-E2 Gaussian probability model


	V Conclusion
	VI Appendix
	VI-A Evaluation on Oxford Building and Paris Building datasets
	VI-B Recall Improvement at a Lower Features Dimension

	References

