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Abstract—Indoor localization of high accuracy has been widely
interested. Among competitive solutions, visible light positioning
(VLP) is promising due to its ability to deliver high-accuracy
3D position and orientation with low-cost sensors by sharing the
LED lighting infrastructure widespread in buildings. Most VLP
systems require a prior LED location map for which manual
surveys are costly in practical deployment at scale. In this paper,
to address this difficulty, we propose a novel system for efficient
and accurate offline mapping of LEDs for VLP. With input from
visual-inertial sensors and existing or surveyed priors, it builds
the map by posing a full-SLAM (simultaneous localization and
mapping) problem within a factor graph formulation. Compared
to manual surveys, it greatly saves human labor and time while
yielding an accurate and workspace-aligned LED map. With real-
world experiments in a room-scale testbed and a 15x larger lab
office, we extensively evaluate the LED mapping system to verify
its efficacy and performance gains.

Index Terms—Factor graph optimization, indoor localization,
LED mapping, visible light communication (VLC), visible light
positioning (VLP), visual-inertial odometry (VIO).

I. INTRODUCTION

INDOOR localization is needed by many moving platforms

indoors, e.g., for robot navigation and a wide variety of

location-based services on mobile devices like people way-

finding in GPS-denied venues. With the growing adoption of

LEDs for energy-efficient lighting in buildings and the advance

of visible light communication (VLC), LED lights hold great

potential to be a kind of GPS-like ubiquitous infrastructure

that allows accurate and efficient indoor localization [1]–[5].

This approach is known as visible light positioning (VLP).

Compared to other infrastructure-based approaches of similar

high accuracy (cm to dm) that use ultra-wideband (UWB)

radio [6] and ultrasound [7], VLP has the advantage of reusing

LED lights as infrastructure. This avoids the extra burden and

cost of installing specialized positioning hardware.
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Fig. 1: Results of LedMapper in a lab office (around 20m× 15m). It
shows the mapped locations of 12 LEDs alongside their IDs decoded
through VLC. Also compared are the optimized IMU trajectory after
closing loops and the raw VIO input. The example images are from
the VIO camera with auto-exposure (bright background) and the VLC
camera with a very short exposure (dark background).

In VLC, information is transmitted from modulated LEDs

that change intensities quickly beyond human perception and

is received by a photodiode (PD) or camera sensor. It carries a

unique identifier for each LED, e.g., an identity code (ID) [8]–

[12] and a frequency [13]–[16]. In VLP, LEDs act as artificial

beacons in the environment, and each allows known data

association using its identifier. The sensor takes measurements

of LEDs in the VLC range, e.g., bearing, ranging, and received

signal strength (RSS). These can be used to infer the senor

pose (or position) standalone, such as by geometry-based

[15] (e.g., trilateration) and fingerprinting [16] methods, or

be combined with other sensors for a fused pose estimate

[8]–[12]. To achieve this, most VLP systems require a prior

map composed of global LED locations in the environment

alongside their identifiers for data association.

If LEDs reside on a precisely assembled frame, the map can

be known from the frame geometry and be otherwise by man-

ual surveys using measuring devices (e.g., laser rangefinder,

total station, and motion capture system). This can be straight-

forward for small-scale experiments and is the de facto way in

many studies. However, for real applications at scale, manual

surveys are difficult and are prone to human errors due to the

increase of LEDs and coverage. It entails intensive human

labor and time, thereby posing non-negligible deployment

costs of VLP systems. To overcome such practical challenges,

we seek novel solutions to efficient, accurate LED mapping

with less human effort. Yet, this is rarely studied in the VLP

field [14]. Our main focus is hence in this direction.

Today, a mobile device has rich sensors onboard, e.g., a

MEMS (micro-electro-mechanical system) inertial measure-

ment unit (IMU) and multiple rolling-shutter (RS) cameras. In
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VLP, the RS camera is a ready-to-use receiver, and the IMU is

widely used for aided VLP, e.g., in loosely or tightly coupled

manners [8]–[11]. Moreover, with camera-IMU sensors, many

visual-inertial odometry (VIO) algorithms are well-developed

[17]–[19] in robotics, capable of low-drift, accurate 6-degrees-

of-freedom (DoF) pose estimates in a local frame. Indeed,

VIO has been integrated into recent mobile devices as mature

software, e.g., ARKit1 and ARCore2. In applications, it acts

as a virtual 6-DoF odometer of low drift (e.g., a few percent

of traveled distance or less). To the best of our knowledge, it

has not yet been well explored in VLP usages.

In this paper, to tackle the difficulty in LED mapping for

VLP, we propose LedMapper, a novel system developed for

efficient and accurate offline mapping of modulated LEDs in

a 3D workspace, leading to much-reduced human effort than

manual surveys. We utilize a rig of low-cost visual-inertial

(VI) sensors already existing on mobile devices, i.e., an IMU

and two RS cameras (one for VLC and the other for VIO),

as the mapping device. The mapping process entails data

acquisition in the workspace, for which a surveyor wanders

around with the handheld device to form looped paths and

points the VLC camera to LEDs when passing by. For VLP,

the LED map should align with the global reference frame of

the workspace. To allow this, the mapper needs a few known

global LED locations (so-called anchors or control points from

surveys beforehand) as prior input. Nevertheless, the required

human effort is much less than a complete manual survey

since the control points account for only a minor portion of

all LEDs. The mapping task is solved by posing a full-SLAM

(simultaneous localization and mapping) problem within a

factor graph formulation [20]. In this work, we assume point-

source LEDs but explore LED geometry priors for mapping

with the benefit of absolute metric scale. We consider that our

contributions are mainly in the VLP field and credit the novelty

to the proposed LED mapping system itself. We highlight the

novel contributions below:

• A novel LED mapping system for efficient and accurate

mapping of LEDs offline. With input from visual-inertial

sensors and existing or surveyed priors, it builds the map

by solving a full-SLAM problem within a factor graph.

Compared to manual surveys, it effectively saves human

labor and time while yielding an accurate and workspace-

aligned LED map for a wide range of VLP systems.

• Extensive evaluations with real-world experiments in a

room-scale testbed and a 15x larger lab office. The results

show the efficacy and performance gains of our system.

The remainder of this paper is structured as follows. Section

II lists the related work. Section III overviews the proposed

system. Section IV briefly reviews the VLC front-end. Section

V details the mapping approach. Section VI and Section VII

shows experimental results and our discussions of limitations,

respectively. Section VIII concludes this paper.

1https://developer.apple.com/augmented-reality/
2https://developers.google.com/ar/

II. RELATED WORK

There is a rich body of literature on VLP, among which

[1]–[5] provide fundamentals and comprehensive surveys. To

our knowledge, however, only a handful of works aim to map

LED locations efficiently for VLP. In this section, we review

these closely related to our proposed LedMapper in detail.

In [13] and its follow-up [14], a VLP calibration (i.e., LED

mapping) method is proposed using a mobile robot equipped

with a 2D Lidar and an upward-facing RS camera. The Lidar

data is processed by a SLAM algorithm [21] to give drift-

less robot poses. The camera takes images of overhead LEDs

and decodes identifiers. The robot must approach each LED

until it appears in the image center. One can thereby obtain

the 2D LED position from the robot pose. Assuming a known

height, this yields an LED map with 3D locations and unique

identifiers. Evaluated in a small testbed with four LEDs, [14]

shows a good map accuracy of centimeters. Yet, the map is

expressed in a local SLAM frame, not necessarily aligned with

the global workspace [14]. In addition, data collection may be

problematic in a non-traversable area by a wheeled robot.

A handheld device has better mobility in complex scenes.

Using a PD receiver and a Tango tablet (running VIO), [22]

proposes a light registration method to map 2D light locations

onto a floor plan (say height is known). This entails a surveyor

who holds the device, starts from a known pose (set by a few

anchored lights of known locations), and walks across ceiling

lights. Upon crossing a lamp, its identifier is decoded, and its

2D location is recorded using the tracked VIO pose. To bound

VIO drifts, [22] divides the mapping area into smaller sections

and repeats the process. The VIO paths and light locations are

manually aligned to the floor plan. It attains successful results

in large-scale scenarios. However, the final map accuracy is not

clarified due to the lack of evaluation. Like [14], it may face

data collection problems when lights are located above an area

not traversable by a person. The required human intervention

(e.g., manual alignment) can be prone to errors.

In [22], unmodified lights are in place of modulated LEDs

for VLP. Please refer to [1] for a review of VLP based on

modified and unmodified lights. As in [14], we focus on

mapping modulated LEDs and use an RS camera as the VLC

receiver, but for flexible data collection in complex venues,

we use a handheld device like in [22]. Likewise, we consider

offline mapping since LED positions are fixed and only require

a one-time registration. The methods of [13], [14], [22] are

heuristic and ignore the uncertainties of sensor measurements

and prior knowledge. By contrast, our LedMapper follows a

principled design based on probabilistic state estimation [23].

The mapping task is formulated as a full-SLAM problem

within a factor graph that has been well studied in robotics

[20]. The input information can be utilized in a sounder way.

Moreover, we expect our system to be way self-contained,

not relying on an accurate floor plan or the presence of other

SLAM/localization systems in the environment.

Rather than using an LED location map, some VLP methods

(e.g., fingerprinting [16]) require a detailed map of location-

labeled light fingerprints. A robot or mobile device can assist

in the mapping process, as in [24], [25]. Yet, a detailed review
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of such methods is beyond our scope. Overall, unlike in WiFi-

based positioning systems [26], fingerprinting methods attract

less attention in VLP studies [3], partly due to the high cost

of light fingerprinting [4]. In contrast, due to the line-of-sight

(LOS) light propagation, geometry methods allow for high

accuracy using LED location maps that are easier to obtain.

III. SYSTEM OVERVIEW

In this section, we describe the hardware setup for our

LED mapping task in Section III-A, give an overview of the

system workflow in Section III-B, and clarify the notations

and reference frames used in this paper in Section III-C.

A. Hardware Setup

MCU

MOSFET

LED

Battery

(a)

Cam1
Cam0

IMU

RPi 3B+ boards

Power bank

(b)

Fig. 2: Photos of our self-assembled hardware. (a) Modulated LEDs.
(b) Visual-inertial sensors.

The VLP hardware often consists of modulated LEDs at the

infrastructure side and VLC receivers at the user side. Here,

an RS camera is chosen as the receiver. We build a few LED

prototypes with rechargeable batteries (see Fig. 2a). Each has

a round radiation surface of 15.5 cm in diameter and rating

power of 3W. The portable design allows for a flexible LED

deployment for experiments. The LEDs are modified from off-

the-shelf products by adding a microcontroller unit (MCU)

and reusing most inbuilt components, such as MOSFET, LED

beads, batteries, and housings. The MCU runs VLC logic and

modulates LEDs via the MOSFET to broadcast LED IDs. Due

to the small amount of data required for LED IDs in VLP,

a simple, low-speed, and low-cost VLC method is advocated

[5]. We follow the same VLC protocol as in our previous work

[11], which uses the basic on-off keying (OOK) modulation

and Manchester coding scheme due to ease of implementation

and DC balance. The OOK modulation frequency is 16 kHz.

The system is evaluated on but not limited to a custom-

built VI sensor rig, including two RS cameras (Raspberry Pi

camera v23) and a low-cost MEMS IMU (LPMS-ME14). The

installation relationship of the two cameras (Cam0&Cam1)

and the IMU is illustrated in Fig. 2b. Note the reference frame

attached to each sensor is marked by colored axes. The sensors

lack hardware synchronization due to hardware limitations.

The two cameras are placed in pairs, but not in a stereo setup

since they are triggered independently and exposed differently

on purpose. This setup is to ease assembly efforts. The rig uses

two Raspberry Pi (RPi) 3B+ computers for sensor interfacing.

Each RPi has only one CSI (camera serial interface) port that

3https://www.raspberrypi.org/products/camera-module-v2/
4https://lp-research.com/lpms-me1-dk/

allows connection to the RPi camera. It runs the Ubuntu Mate

16.04 OS with ROS (robot operating system) middleware. The

two RPis interconnect by wired Ethernet and communicate

through the ROS network. Their system clocks are software

synchronized using NTP (network time protocol). The master

RPi acts as a local NTP server and provides the clock reference

for all sensor timestamps. The IMU connects to the USB port

of the master. The sensor streams are recorded as ROS bags

for later processing. All hardware is powered by a power bank.

Cam0 captures images with auto exposure for VIO use

at 20Hz with a resolution of 640× 480. Cam1 works with

a very short exposure (e.g., 20µs) for VLC use, collecting

images at 10Hz with a resolution of 1640× 1232. IMU is

configured to output data at 400Hz. We assume the sensor rig

is pre-calibrated5 (e.g., using Kalibr [27]–[29]) with known

camera intrinsics, IMU intrinsics, IMU-camera spatiotemporal

extrinsics, and the RS frame readout time tr.

A sufficiently large LED image with a complete data packet

is required for VLC decoding. The distance from LED to

the camera (Cam1) must be close enough. As shown in [11],

the maximum decoding distance dm is subject to the LED’s

modulation period and surface size, the camera’s row readout

time and focal length, and the data packet length in the

VLC protocol. Due to our hardware limitations (e.g., small-

sized LEDs), we trade the reduction of data packet length

for an acceptable maximum decoding distance (e.g., a few

meters). This is achieved by sacrificing the payload size and

omitting error checking in the protocol [11]. Finally, our VLC

implementation gives dm ≈ 2.5m while allowing for a data

payload of one byte. We find it sufficient for this study.

B. System Workflow

Fig. 3 shows the workflow of the proposed LED mapping

system. It entails three blocks: VLC front-end, VIO estimator,

and LED mapper. The VLC front-end takes the RS images

from Cam1 as input and produces feature tracks of LED

blobs with IDs by LED detection, tracking, and decoding.

The gyroscope measurements are utilized to assist LED track-

ing. The VIO estimator fuses IMU measurements and the

natural visual features from Cam0 and provides 6-DoF VIO

poses of the IMU frame. We treat it as a black box and

assume a favorable lighting condition for VIO operation. It

can be implemented by well-established VIO algorithms such

as VINS-Mono [18] and OpenVINS [30]. In our case, we

choose VINS-Mono due to its support for RS cameras. Using

all historical LED tracks and VIO poses as input, the LED

mapper aims to build a globally consistent and accurate LED

map by offline batch optimization. Besides sensor inputs, we

consider prior map information essential for global workspace

alignment or relatively easy to obtain, such as control points,

ceiling height, and LED geometry. These priors, if available,

can be seamlessly incorporated into the mapper as additional

constraints for improved quality. After mapping, the built LED

map is assumed accurate (with uncertainties) and can later be

used by VLP systems for online localization.

5Currently, we treat these calibrated parameters as known constants without
considering the uncertainties due to possible calibration errors. This gross
treatment gives acceptable results in our implementation.
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Fig. 3: Block diagram showing the workflow of the proposed system.
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Fig. 4: Illustration of the involved reference frames and their relations.
The global LED priors (e.g., control points) are expressed in FG.

C. Notations and Reference Frames

A transformation matrix TA
B ∈ SE(3) takes a vector pB ∈

R
3 in the frame FB to the frame FA. It can be divided into

a rotation matrix RA
B ∈ SO(3) and a translation vector pA

B ∈
R

3, i.e., TA
B = [RA

B ,p
A
B ]. The transformed vector pA ∈ R

3

in FA is given by pA = RA
Bp

B + pA
B . With slight abuse of

notation for brevity, we also write pA = TA
Bp

B . Often, we

use the unit quaternion under Hamilton convention [31], qA
B , to

represent the rotation. R(·) converts qA
B to the rotation matrix

RA
B . ⊗ denotes the quaternion multiplication. For a variable

(·), we write its measurement as (̂·). As depicted by Fig. 4, we

work with four coordinate frames. The global base frame FG

is gravity-aligned and fixed in the workspace. It sets the origin

for all global measurements. The map to be built is aligned

to this frame. The local base frame FL is gravity-aligned and

sets the origin for VIO pose estimation. FI is attached to the

IMU body frame, and FC is attached to the optical frame of

the VLC camera. The IMU-camera extrinsic transformation

TI
C is a known constant from prior calibration.

IV. VLC FRONT-END

The blobs from modulated LEDs are detected on incoming

images, tracked over consecutive frames, and decoded to have

correct LED IDs for long-term data association. The front-

end has three modules: blob detection, blob tracking, and VLC

decoding. It is mostly inherited from our previous works [10]–

[12]. We briefly review it for completeness.

Due to the fast exposure of the VLC camera, bright LEDs

have high contrast against the background. After binarization

and dilation on grayscale image input, LED blobs are detected

with standard techniques. For each blob, we take its centroid

with pixel coordinate, [û, v̂]T . With the known camera intrin-

sics, the normalized pixel location, ẑ ∈ R
2, is also computed.

To achieve tracking, we detect new blobs on every frame

and find their best matches [32] in the previous frame. Each

blob has a unique tracking ID for short-term data association.

We assume the mutual blob distances in an image is greater

than the inter-frame pixel displacements. This works in our

case due to the sparsity of lights and the non-rapid camera

motion. Since camera rotation is more likely to yield large

pixel displacements, we compensate for it using the short-term

integration of gyroscope measurements before matching.

VLC decoding applies to blobs with barcode-like patterns.

The row-parallel strips of varying widths and pixel intensities

carry VLC information, e.g., LED ID. Given a blob, we pick

up the grayscale pixel values on the centering column of its

image region. As the camera’s sampling rate is known, these

ordered pixel values form a time-varying 1D signal. After

binarization, OOK demodulation, and Manchester decoding,

the LED ID can be obtained. The blobs that are part of a track

have the same LED ID, and we can identify them all if any

single is decodable. The blob tracking allows more instances

of LED detections for later mapping and VLP.

V. LED MAPPING FROM BATCH OPTIMIZATION

We present the proposed LED mapper based on factor graph

optimization in detail, including problem statement in Section

V-A, graph construction in Section V-B, factor description in

Section V-C, and batch optimization in Section V-D.

A. Problem Statement

The mapping task entails solving a full-SLAM problem that

seeks to estimate the entire IMU poses, {x1, · · · ,xN}, and the

locations of LED landmarks, {l1, · · · , lM}, given all historical

sensor measurements and prior knowledge about LEDs. N and

M are the total number of poses and landmarks, respectively.

It is formulated as a factor graph optimization problem [20].

The structure of the built factor graph is shown in Fig. 5.

Control point

Weak prior

Relative prior 

Vision factor

Odometry factor

Gravity 
constraint

VIO factors:

Prior factors:

Fig. 5: The factor graph representation of our LED mapping task.

The IMU poses and LED locations are expressed in the

local frame FL and have the parametrization of xi = TL
Ii

=
[pL

Ii
,qL

Ii
] , i ∈ {1, · · · , N} and lj = pL

j , j ∈ {1, · · · ,M},

respectively. To align the LED map globally to the workspace,

we also estimate the transformation TG
L . Since FG and FL are

both gravity-aligned, it has 4-DoF with roll and pitch as zeros.

VIO offers 6-DoF odometry measurements, T̂L
Ii

, at discrete

time instances ti after initialization. The roll and pitch are ac-

curate, while the yaw and position drift over time. Monocular

VIO can suffer from inaccurate metric scale estimates under

degenerated motions [33]. Also, low-cost IMUs often have

non-negligible systematic errors such as non-unit scale factors

and axis misalignment [34]. Without proper compensation by

the estimator, these can further affect the VIO scale accuracy.

Note that VIO acts as a black box in this work. Dealing with

the scale issue from the VIO perspective is beyond our scope.

Instead, we estimate in the factor graph the VIO scale factor,

s, using additional metric scale sources from priors.

We write the entire state for LED mapping as follows:

Xm = [TL
I1
, · · · ,TL

IN
|pL

1 , · · · ,p
L
M |TG

L , s] , (1)
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where {TL
I1
, · · · ,TL

IN
} are the N IMU poses; {pL

1 , · · · ,p
L
M}

are the M LED positions; TG
L is the base frame transformation

between FG and FL; and s is the VIO scale factor.

B. Graph Construction

We explain how to construct this graph. A new pose node,

xi, is added as the latest VIO pose measurement, T̂L
Ii

, arrives

(at 10 Hz in our case). This VIO pose gives the initial estimate

of xi. Also, we can apply a simple keyframe selection strategy

based on translation and rotation changes to further sparsify

the graph. The LED detections are available at maximally 10

Hz from the VLC front-end. Yet, in general, we do not assume

the same update rate for the VIO poses and LED detections.

When a new LED blob first arrives (as per the unique tracking

ID), we create a temporary landmark node for it. As each LED

has been tracked over frames, its subsequent detections are

associated with this landmark node. After the LED track is

complete, we check all the detections to find whether one or

more blobs have a valid LED ID (say successfully decoded).

If not, the landmark node is immediately dropped due to

decoding failure. Note this ID is critical for long-term data

association when loop-closure occurs later on. Otherwise, we

proceed to check if a landmark of the same LED ID exists

in the graph. If so, we re-associate all related LED detections

to the existing node and drop the temporal one. Otherwise,

we will triangulate the LED position using the involved LED

detections and IMU poses alongside the known TI
C . After this,

the landmark node is marked matured and added to the graph

as lj , where j counts the number of unique LED IDs obtained

so far. The associated LED ID is denoted as IDj .

In general, the timestamps of LED detections are not aligned

with those of VIO poses, due to the lack of hardware synchro-

nization between the VLC and VIO sensors. We assume the

VIO time is based on the IMU clock as in VINS-Mono. Like

in [35], we match the LED detections to a past VIO pose with

the closest timestamp and point them virtually to the related

pose node in the graph. The true pose from which the LED

is detected is in between the two bounding IMU poses, which

can be obtained by linear interpolation. To facilitate this, we

expect the sensors to move smoothly, as in normal walking.

C. Factor Description

As illustrated in Fig. 5, the graph incorporates three sources

of factors posed by sensor measurements and prior knowledge.

We will describe them in detail below.

1) VIO factors: Given input VIO poses, {T̂L
Ii
}, the relative

transformation measurement between consecutive poses, xi

and xi+1, is given by T̂
Ii
Ii+1

= T̂L−1

Ii
T̂L

Ii+1
. It is written as

[p̂i
i+1, q̂

i
i+1]. The predicted motion is T

Ii
Ii+1

= TL−1

Ii
TL

Ii+1
=

[pi
i+1,q

i
i+1]. This yields the odometry residue:

rOi (xi,xi+1, s) =

[

spi
i+1 − p̂i

i+1

2 · vec3(qi
i+1 ⊗ q̂i−1

i+1)

]

, (2)

where s is the VIO scale factor, and vec3(·) returns the vector

part (qx, qy, qz)
T of a quaternion q. We write the covariance

of this relative measurement as ΣO
i = diag(σ2

posI3, σ
2
rotI3),

where σ2
pos and σ2

rot describe the uncertainties in translation

and rotation, respectively, and are set empirically in this work.

The roll and pitch in VIO are accurate without drift in FL.

To ensure this property, we exploit them as absolute measure-

ments. For each pose xi, we apply a rotational constraint due

to gravity with the residue:

rGi (xi) = 2 · vec2(qL
Ii
⊗ q̂L−1

Ii
) , (3)

where vec2(·) returns the vector part (qx, qy)
T of q. The

covariance is written as ΣG
i = σ2

gI2, where σ2
g describes the

small uncertainty in the absolute roll and pitch measurements.

2) Vision factor: We assume an undistorted, pinhole RS

camera model for the VLC camera. An RS camera captures

image rows sequentially at varying times. In the case of

general motions, this leads to different camera poses for each

row. Following the convention in [34], we assume the image

timestamp corresponds to the middle image row. For an image

of K rows in total with timestamp t, the sampling time of the

kth row away from the middle is tk = t+ k
K
tr, k ∈ (−K

2 ,
K
2 ].

tr is the RS frame readout time which is assumed known from

pre-calibration or the sensor’s datasheet if available.

Consider the landmark lj associated with the pose xi in

the graph, for which the VLC front-end gives the normalized

image measurement ẑij with timestamp tij . The corresponding

pixel coordinate [û, v̂]T lies in row k = v̂ − K
2 , v̂ ∈ [1,K].

Due to the time misalignment between VIO poses and LED

detections, ẑij is indeed taken from an intermediate pose, xij ,

between xi and xi+1 with timestamps ti and ti+1, respectively.

With RS imaging, the exact timestamp is given by tkij = tij +
k
K
tr. This is depicted by the diagram in Fig. 6.

VIO time

LED time

Trajectory

0

Fig. 6: Illustration of the time misalignment alongside the RS imaging
time used for pose interpolation. Note the time interval of VIO poses
and that of LED detections are not necessarily the same.

We can obtain xij by interpolating xi and xi+1, i.e., using

spherical linear interpolation (Slerp) for the rotation and linear

interpolation for the translation [36]. Having xi = [pL
Ii
,qL

Ii
]

and xi+1 = [pL
Ii+1

,qL
Ii+1

], we write xij = [pL
Iij

,qL
Iij

] with

qL
Iij

= Slerp(qL
Ii
,qL

Ii+1
, τ) (4)

pL
Iij

= (1− τ)pL
Ii
+ τpL

Ii+1
(5)

τ =
tkij − ti

ti+1 − ti
=

tij + ( v̂
K

− 1
2 )tr − ti

ti+1 − ti
(6)

where Slerp(q0,q1, τ) is the Slerp function [31] that linearly

interpolates from q0 to q1 as τ evolves from 0 to 1 (τ ∈ [0, 1]).
The re-projection residue relating to the landmark lj = pL

j

and the interpolated pose xij = TL
Iij

is given by

rVij(xi,xi+1, lj) = ẑij − π
(

TI−1

C TL−1

Iij
pL
j

)

(7)

where π(·) projects a 3D point pC onto the normalized image

plane as a 2D point z according to z = [pCx /p
C
z , p

C
y /p

C
z ]

T .
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The covariance matrix is given by ΣV
ij = σ2

nI2, where σ2
n

describes the normalized pixel noise for LED observations.

3) Prior factors: We consider prior map information that

is deemed essential or readily available to our mapping task.

It can be absolute or relative depending on if it is given in

FG. The absolute prior on li is specified with a known LED

position p̂G
i . It provides absolute geometric constraints for the

system states. The introduced metric scale information can

help correct VIO scale errors. With the transformation TG
L ,

this leads to the absolute prior residue below:

r
Pa

i (li,T
G
L ) = p̂G

i −TG
Lp

L
i (8)

with covariance matrix Σ
Pa

i = diag(σ2
x, σ

2
y, σ

2
z) that describes

the measurement uncertainty on each axis.

For absolute priors, we distinguish between control points

and weak priors. The former is precisely known 3D positions

in FG for a few selected LEDs. These absolute locations can

be obtained by manual surveys using measuring equipment

(e.g., laser rangefinder, total station) and are necessary if we

need to align the built map with the workspace. The latter

is partial knowledge about the LED position (only certain on

one axis), e.g., the common height of ceiling LEDs. This can

be known from one control point on the ceiling or the 3D

architectural plan when available. For control points, we set

σ2
x, σ2

y , and σ2
z to small values. For weak priors with known

height, we set small values for σ2
z and large values for others.

An initial guess of TG
L is needed for its optimization. Given

a known pose T̂G
I in FG and the related VIO pose T̂L

I , it is

given by T̂G
L = T̂G

I T̂
L−1

I . To achieve this, we currently need

at least two control points that are closely located. Using such

two LEDs co-visible in a single frame, we can compute T̂G
I

by the 2-point pose initialization [11] based on a closed-form

P2P solution [37]. With initialization success, we estimate TG
L

while zeroing the roll and pitch. Otherwise6, we fix it to an

identity matrix and ignore absolute priors in mapping.

The relative priors come from the known shape and size of

LED geometry without effort. Note in this work, we evaluate

the system using small-sized circular LEDs and assume point

landmarks. In reality, squared panels or linear tubes are often

used, and each can be, e.g., represented by a set of corner (end)

points. Like in square fiducial markers [38], the side length of

LED panels (tubes) provides extra distance measurements of

metric scale. Consider a relative prior between two corners on

an LED landmark, li and lj , with the known distance d̂ij . The

residue is simply written as

r
Pr

ij (li, lj) = d̂ij − ‖pL
i − pL

j ‖ (9)

with covariance ΣPr

ij = [σ2
d], where σ2

d is the noise uncertainty.

D. Batch Optimization

To obtain the maximum-a-posteriori estimate for the entire

state Xm, we minimize a cost function f(Xm) that sums over

6E.g., there are less than two control points; control points are far separated,
not allowing for 2-point pose initialization; and fail due to other reasons.

the Mahalanobis norm of all measurement residues as follows:

f(Xm) =
∑

i∈O

‖rOi (Xm)‖2
Σ

O
i

+
∑

i∈G

‖rGi (Xm)‖2
Σ

G

i

(10)

+
∑

(i,j)∈V

ρ
(

‖rVij(Xm)‖2
Σ

V
ij

)

+
∑

i∈Pa

‖rPa

i (Xm)‖2
Σ

Pa
i

+
∑

(i,j)∈Pr

‖rPr

ij (Xm)‖2
Σ

Pr
ij

,

where ρ(·) is a robust loss function [23] to reduce the effect

of LED outliers. O and G are sets of the relative odometry

measurements and the absolute rotation measurements around

the gravity, respectively, derived from VIO input. V is the set

of visual measurements of LEDs that are successfully decoded.

Pa is the set of absolute map priors, including control points

and weak priors, while Pr is the set of relative map priors.

The residuals and their covariances are defined in Section V-C.

This nonlinear problem is solved using Ceres solver [39].

After optimization, we obtain the global position of each LED,

lj , as per pG
j = TG

Lp
L
j . The set of {(IDj ,p

G
j )}, j ∈ [1,M ]

constitutes the final LED map anchored to the workspace. For

later VLP use, we empirically set a fixed uncertainty, based

on the experimental evaluation, for the mapped locations.

Remark: Without map priors, the VIO scale factor cannot

be determined and is hence fixed in optimization (i.e., s = 1).

As such, the optimized LED positions and the IMU poses can

be subject to an inaccurate metric scale estimate from the VIO

input. If control points are not available or when TG
L fails in

initialization, as explained previously, the built LED map can

not align to FG in the workspace. Yet, it is acceptable to use

if we allow localization solutions within a local frame FL.

VI. EVALUATION

In this section, we evaluate the proposed LED mapping

system by real-world experiments. We first introduce the

experiment setup in Section VI-A. We assess the LED map-

ping accuracy in a controlled testbed with ground truth LED

locations in Section VI-B. We show the influence of VIO

scale errors on results and describe how they are compensated

for by using various priors if available. In Section VI-C, we

study the possible impact of LED sparsity on map accuracy. In

Section VI-D, we show the influence of the inhomogeneity of

LED layout. Finally, in Section VI-E, we evaluate the mapping

system at a 15x larger office area of more realistic settings.

A. Experiment Setup

To verify the efficacy of our LedMapper, we compare its

four variants: M1–M4. The difference lies in the constraints

needed for optimizing the cost function f(Xm), including sen-

sor measurements {O,G,V} and prior knowledge {Pa,Pr},

as explained in Section V-D.

• M1: The baseline method use sensor measurements

{O,G,V} only without prior. The mapping results can

suffer from a non-unit metric scale due to VIO.

• M2: Besides {O,G,V} as in M1, it uses absolute priors

Pa from control points. We aim to study their effects
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on scale estimates and mapping accuracy, alongside their

usage for global map alignment.

• M3: Like M2, it also exploits {O,G,V,Pa}. However,

Pa now includes both control points and weak priors

(e.g., ceiling height). Comparing M3 to M2 allows us

to see the impact of weak priors.

• M4: Besides {O,G,V} as in M1, it uses relative priors

Pr from LED geometry. We aim to test their efficacy in

improving VIO scale estimates and mapping accuracy.

For comparison, we align the results to the ground truth by

SE(3) or Sim3 transformation using [40]. To assess the map

accuracy, we compute the root-mean-square error (RMSE) of

estimated LED positions. The metric scale error in LED posi-

tions is based on the scale computed during Sim3 alignment.

The trajectory accuracy is evaluated by the absolute trajectory

error (ATE) [41].

All experimental data are collected using the self-assembled

sensor rig (cf. Section III-A) and are processed on a desktop

computer (Intel i7-7700K CPU@4.2GHz, 16GB RAM).
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Fig. 7: The photo (left) and illustration (right) of the Mocap testbed
for experiments, showing the locations and IDs of mounted LEDs.
The black dots show the ground truth locations. The red pentagons
are for control points. The blue squares are for LED geometry prior.

B. Mapping Accuracy

To study the mapping accuracy, we conduct experiments in a

room-sized testbed (5m× 4m× 2.35m) instrumented with a

precise OptiTrack7 motion capture system (Mocap). There are

25 modulated LEDs evenly distributed on the ceiling, as shown

in Fig. 7. We set FG the same as the world frame of Mocap.

High-accuracy 3D LED positions are available as ground truth

by a tedious manual calibration procedure using Mocap and

a laser rangefinder for height compensation8. The ground

truth IMU poses (trajectory) are computed from offline batch

optimization, using all available sensor inputs (VIO poses and

LED detections) and taking all ground truth LED positions as

control points9. To collect data in the testbed, we carry the

7https://optitrack.com/
8The ceiling LED locations are beyond the operation scope of our Mocap

system. We do calibration in two steps using Mocap and a leveler-mounted
laser rangefinder. We first measure the 3D orthogonal projection position of
the LED on the floor using Mocap and then obtain the truth LED location by
compensating for the height difference using the laser distance measurement.

9The ground truth trajectory data provided by Mocap were not recorded at
the time of data collection due to some reason. Yet, this does not hamper the
goal of assessing the LED mapping accuracy in this work.

handheld sensor, point the VLC camera to ceiling LEDs and

walk around normally to close loops. While walking, we do

not require the camera to face upright to the ceiling (say it

can tilt forward). The sensor height is kept relatively constant

(1m above the floor) in the experiment. Five datasets with

different motion profiles are collected, and each lasts about

one minute10. At the start of each run, the sensor is put on the

ground still for a few seconds and then moved with sufficient

motion excitation to aid VIO initialization. The start point sits

beneath LED-110 and LED-114, as shown in Fig.7.

We now detail the test settings for the four mapper variants

(i.e., M1–M4). As indicated in Fig.7, three LEDs of known

positions in FG (red pentagons) are chosen as control points

for M2/M3. With LED-110 and LED-114, an initial estimate

for TG
L can be obtained by 2-point pose initialization [11].

We use the rough ceiling height of 2.35m as weak priors for

M3. The affected standard deviation is set as σz = 0.2m. For

M4, we select three pairs of LEDs (blue squares) with known

pairwise distances (dashed blue lines) and treat this knowledge

as a simulated source of relative priors from LED geometry.
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Fig. 8: Mapping results on dataset #1 using four methods (M1–M4).
(a) visualizes the mapped LED positions and the optimized trajectory.
Cyan shows results after SE(3) alignment, blue shows results after
Sim3 alignment, and red shows the ground truth. (b) plots the scale
ratio of optimized trajectories and VIO input over time.

Fig.8 shows the results on dataset #1 of M1–M4 after SE(3)

alignment. 22 LEDs are mapped successfully. The Sim3 results

of M1 are also included (denoted as M1-sim3). We align the

VIO trajectory using its first 50 poses. Fig.8a compares M1’s

results with the ground truth and VIO input. The results of

10Running on these datasets, batch optimization for mapping 25 LEDs can
finish within a fraction of seconds.
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TABLE I: Mapping results by M1, M2, M3, and M4 on five datasets. Each column reports the
metric scale error (in %) and the LED position RMSE (in cm) after Sim3 and SE(3) alignment.
The bold figures highlight the best results (i.e., smallest errors) in each row.

# M1 [%, cm, cm] M2 [%, cm, cm] M3 [%, cm, cm] M4 [%, cm, cm]

1 1.61 1.5 3.4 0.26 1.6 1.6 0.07 1.5 1.5 0.59 1.5 1.9
2 2.10 2.4 5.0 0.21 2.3 2.3 0.14 2.0 2.0 0.49 2.3 2.6
3 3.49 2.2 7.6 0.20 2.1 2.1 0.12 1.9 1.9 0.08 2.2 2.2
4 2.91 2.6 6.7 0.15 2.1 2.2 0.14 2.0 2.0 0.84 2.6 3.2
5 2.72 1.5 5.7 0.28 1.5 1.6 0.17 1.4 1.5 0.18 1.5 1.5

TABLE II: Map alignment errors
by M2 and M3 on five datasets. The
best results are shown in bold.

# M2 [cm, deg] M3 [cm, deg]

1 2.5 0.44 2.2 0.53
2 0.7 0.36 1.0 0.27

3 3.4 0.85 1.0 0.23

4 3.6 0.72 1.4 0.25

5 1.4 0.31 1.0 0.21

M2–M4 are very close to M1-sim3 and are omitted here for

clarity. The Sim3 results (blue) well fit the ground truth, while

the SE(3) results (cyan) show larger mismatches (see outer

rings). This suggests an inaccurate scale estimate in M1. To

examine the scale errors in optimized trajectories, we compare

the scale ratio [33] among different methods, as shown in

Fig.8b. The scale ratio is computed as the traveled distance

of the trajectory estimate divided by the ground truth and

subtracted by one. A ratio closer to zero means a better metric

scale. For M1 and VIO, the scale ratio drifts away evidently

from zero. This confirms the non-unit metric scale in the VIO

input, which, without correction, will later translate into scale

errors in M1. For M2, M3, and M1-sim3, the scale ratio is

close to zero (the absolute value is less than 0.3%). Also, M4

has an improved scale estimate than M1, despite remaining

drifts. As a result, the priors used by M2–M4 can help correct

VIO scale errors due to their absolute scale information.

The quantitative results by M1–M4 running on five datasets

are reported in Table I. In the column of each method, from

left to right, we present the scale errors in LED positions,

the RMSE of LED positions after Sim3 alignment, and that

after SE(3) alignment. The total number of mapped LEDs on

five datasets is among {22, 23, 24, 22, 25}. Overall, M1 yields

more significant errors in scale estimates and the SE(3)-aligned

LED positions, while M3 achieves the least errors. With Sim3

alignment, however, the map accuracy of M1 is very close to

that of M3 (about 2 cm), and no big difference appears among

M1–M4. That is, M1 can yield decent mapping results, despite

a non-unit metric scale (e.g., a few percent of errors). We can

thereby say that the majority of M1’s mapping errors are due

to its inaccurate metric scale and, in our case, is from the VIO

input. If not fixed, it can undermine the mapping accuracy.

Compared to M1, the metric scale errors of M2 and M3

are of a few thousandths, reduced by one order of magnitude;

and despite being less remarkable, that of M4 is three times

smaller. For M2–M4, we observe a reduction in LED position

errors by a factor of 2 to 3. The LED position RMSE is almost

within 3 cm across five datasets. This shows the advantage of

using priors over the baseline method. Due to added geometric

constraints, the priors from a few control points (e.g., M2/M3)

or the LED geometry (e.g., M4) can help correct the scale

estimate and maintain a good map accuracy. To see how weak

priors contribute, we compare M3 to M2 and find that M3 has

smaller errors in both the estimated scale and LED positions.

Note M3 takes the ceiling height as extra priors while M2 does

not. This shows the gain for better mapping accuracy of using

some weak priors, which are easy to obtain, by our mapper.

As per the design, control points enable the built LED map

to be aligned with the global workspace. To evaluate this, we

report in Table II the map alignment errors of M2 and M3 on

five datasets computed during SE(3) alignment. M2 yields a

translation error of within 4 cm and a rotation error of within

one degree. M3 performs even better, with smaller errors in

translation (≤2.2 cm) and rotation (≤0.53 deg). This accuracy

gain is due to the weak priors about LED height.

C. Impact of LED Sparsity on Mapping Accuracy

In what follows, we study the impact of the sparsity of LED

observations on mapping accuracy. The previous setup of 25

LEDs in a 5m× 4m area means a dense LED placement and

provides rich LED observations. In reality, due to the variances

of LED deployment density and ceiling height in complex

indoor settings, LED observations valid for mapping can be

much sparser. It will be helpful to assess the mapping perfor-

mance under sparse LED setups. Explicitly, we consider four

LED setups of different sparsity levels with 3/6/12/25 LEDs,

as shown in Fig. 9. Rather than altering the physical setup,

for evaluation convenience, we selectively use measurements

from the chosen LEDs (see blue squares in Fig. 9a-c). These

are evenly scattered over the test area.

We test M1 on the five testbed datasets as used previously.

To minimize the influence of VIO scale errors, we pre-calibrate

the scale factor s by batch optimization using all sensor

measurements and the ground truth LED map and keep it fixed

in the experiments. That is, we here assume a scale-correct

VIO input. As the VIO scale can change with motion profiles

across datasets, we calibrate the scale factor individually for

each but apply it to all four LED setups. For comparison, the

mapping results are SE(3)-aligned to the ground truth.

(a) (b) (c) (d)

Fig. 9: Mapping results (blue) on dataset #1 by M1 under LED setups
of varying sparsities, compared to the ground truth (red). From (a) to
(d) are with 3, 6, 12, and 25 LEDs. 3 LEDs are not mapped in (d).

In Fig. 9, we show the qualitative results (blue) obtained

on dataset #1 for four LED setups, compared to the ground

truth (red). We report the quantitative results on five datasets

in the boxplots of Fig. 10, including LED position errors and

trajectory RMSE. With the four LED setups, the mapper can

recover LED positions and the IMU trajectory on all datasets.

As shown in Fig. 9, these LED positions match the ground
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Fig. 10: Mapping results by M1 on five datasets and with 3, 6, 12, and 25 LEDs. From left to right: LED position errors, RMSE of optimized
trajectories, LED outage rate, max LED outage, and the average number of LED observations per frame.

truth well, even when LEDs are sparse. The map accuracy

is consistent among the four LED setups, as seen from the

boxplot of LED position errors (5 cm@max) in Fig. 10. As a

result, the LED mapper can run under very sparse LED distri-

bution and build an accurate LED map. The trajectory errors,

as shown by the boxplot in Fig. 10, grow evidently as LEDs

become sparser. This degradation is due to insufficient loop-

closure constraints from LED observations on IMU motions.

To examine the availability of LED observations, we report in

Fig. 10 the LED outage rate, the maximum outage, and the

average number of observations per frame. The outage rate is

computed as the accumulated time of LED outages divided

by the total time (the higher this rate, the severer the outage).

The maximum outage measures the longest period without

LED observations. The results clearly show the lack of LED

constraints when LEDs are sparsely placed.

D. Impact of the Inhomogeneity of LED Layout

So far, we consider only those LED setups of homogeneous

layout (LEDs are evenly scattered over the area for mapping).

Sometimes, LEDs may not be evenly deployed but are clus-

tered on one side of the mapping area. It is helpful to study the

impact of inhomogeneous LED layouts on mapping accuracy.

TL1

BL1

BR1

TR1 TL2

TR2

BR2

BL2

Fig. 11: Eight testbed setups of inhomogeneous LED layouts with 6
LEDs. TL: top left, TR: top right, BL: bottom left, BR: bottom right.

In the experiment, we consider eight setups of inhomoge-

neous LED layouts with 6 LEDs in the testbed, as shown

in Fig. 11. In each setup, all the 6 LEDs for mapping are

clustered on one corner of the testbed. For comparison, we

take the homogeneous LED setup with 6 LEDs (see Fig. 9b)

as a baseline. These LED layouts have different homogeneity

but the same sparsity (i.e., the same number of LEDs in a

given area). Like in Section VI-C, we test the M1 variant of

the LedMapper on the five testbed datasets. Also, we follow

the same experimental settings, e.g., fixing the VIO scale by

pre-calibration and aligning the results by SE(3).

In Fig. 12, for each dataset, we report the mapping results

by M1 under inhomogeneous LED setup (see boxplots) along-

side the baseline result under homogeneous LED setup (see

triangles). Fig. 13 shows the time-evolving number of LED

observations per frame on dataset #1, corresponding to one

inhomogeneous and one homogeneous LED setup.

1 2 3 4 5

Dataset#

0.5

1

1.5

2

2.5

3

3.5

L
E

D
 p

o
si

ti
o

n
 R

M
S

E
 [

cm
]

(a)

1 2 3 4 5

Dataset#

4

6

8

10

T
ra

je
ct

o
ry

 R
M

S
E

 [
cm

]

(b)

Fig. 12: Mapping results by M1 with 6 LEDs on five datasets:
(a) RMSE of LED position estimates and (b) RMSE of trajectory
estimates. The boxplots summarize the results under eight inhomo-
geneous LED layouts. The triangles show the baseline results under
the homogeneous LED layout.
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Fig. 13: Results of the time-evolving number of LED observations
per frame on dataset #1, corresponding to (a) one inhomogeneous
(TL1) and (b) one homogeneous LED setup with 6 LEDs.

As seen from Fig. 12a, the LED position RMSE on the five

datasets is smaller than the baseline result. In the experiment,

the system achieves improved LED mapping accuracy in the

inhomogeneous case. This is likely due to more LED obser-

vations in the small clustered area. Under our inhomogeneous

LED setups, the LEDs are all within a local region, in which

the camera can observe multiple LEDs per frame (see Fig.

13a). This can help yield more consistent and accurate LED

position estimates. By contrast, in the homogeneous case, the

camera can often observe one LED per frame (see Fig. 13b)

due to the scattered distribution.

Meanwhile, the accuracy of trajectory estimates tends to

degrade under inhomogeneous LED setups, as shown in Fig.

12b. We suspect this is because of the less frequent correction

to the drifting VIO poses based on intermittent LED detections

(see Fig. 13a). The batch optimized trajectory can serve as the
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best achievable positioning result by a real-time VLP system,

which takes as input the VIO estimates and LED detections as

used by LED mapping. In this sense, to allow for better VLP

accuracy, we prefer homogeneous LED layouts in a given area.

E. Mapping Tests at a Lab Office

Now, we aim to test LedMapper in more realistic settings

and at a larger scale. We carry out experiments in our lab at

HKUST, a typical office scene that covers about 20m× 15m.

We place 12 LEDs randomly on the ground along pathways

and leave them facing the ceiling. In principle, our system can

work from LEDs placed at will since they are no more than

3D landmarks. The choice of putting them on the ground is

for evaluation convenience.
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Fig. 14: Results in the lab-scale test on five datasets using 12 LEDs.
(a) shows the positions and IDs of mapped LEDs. For each LED, the
blue dots are estimates, and the red plus is the mean. (b) shows the
statistics of the LED position RMSE among five datasets.

In this experiment, we do not have ground truth for the

IMU trajectory and LED positions. To evaluate the mapping

performance, we examine the consistency of mapped locations

among multiple runs. Five datasets are collected in the lab

using the mobile mapping device. During collection, we point

the cameras forward and face them to ground LEDs when

walking by. We revisit these LEDs to form closed loops before

returning to the start point. We test the mapper by the baseline

method M1 due to the lack of ground truth measurements of

control points or pairwise distances (needed by M2–M4).

In Fig. 1 of Section I, we show the results on a typical lab

dataset with the locations and IDs of mapped LEDs and the

optimized trajectory, as well as the VIO input. All 12 LEDs are

mapped successfully. As expected, the optimized trajectory has

less drift (see z-axis) and better consistency. We take this map

as a reference and align the results from the other datasets to it

by Sim3. This is because M1 is subject to a non-unit VIO scale

that can vary among datasets. For each LED, we compute the

errors of estimated positions to their mean and take the RMSE

as a measure of consistency. The results on five datasets are

summarized in Fig. 14. As can be seen from Fig. 14a, the

mapped LED locations are consistent among five runs (see the

clusters of blue dots); yet, discrepancies are evident in zoomed

views. The position RMSE is within 10 cm for all 12 LEDs, as

shown in Fig. 14b. Mapping errors at such a level of degree are

acceptable, considering that the lab area is 15x larger than our

previous testbed. According to the study in Section VI-B, the

mapping performance can be further improved using M2–M4,

given any existing or surveyed prior knowledge.

VII. DISCUSSION OF LIMITATIONS

Currently, we use homemade circular LEDs for evaluation.

The blob detector and tracker of the VLC front-end are

designed for circular LEDs. Still, the system can run with other

shaped LEDs (e.g., linear tubes, square panels) by adapting the

front-end. Moreover, pose estimation using a single such LED

is achievable, while the appearance (often symmetrical) may

need extra modification (e.g., a colored marker on corners) for

distinctiveness [42]. For a modified square LED of known size,

the camera observation model for square fiducials [38] can be

readily applied to our system. Also, due to limited LEDs for

the study, we have assessed the system in a room-sized testbed

and a 300m2 office area. There is a practical difficulty in

preparing enough homemade LEDs for experiments at a larger

scale. With more LEDs available in future work, evaluation in

wider environments will be desired.

The data payload and maximum decoding distance dm by

our VLC implementation could be insufficient in reality. A

larger-sized data payload is essential to large-scale deployment

with thousands of LEDs. Also, to enable operation in scenarios

with high ceilings (e.g., shopping malls rather than our office

buildings), a greater dm is desired. Otherwise, the LED-camera

distance can easily exceed dm, causing decoding failure. As

mentioned previously, these limitations are mainly due to the

small LED surface (i.e., 15.5 cm) in use. In real applications,

one can effectively increase the data payload and (or) the

maximum decoding distance by simply using LEDs of a larger

surface. As for standard LEDs for daily lighting, a square panel

can be 50 cm wide, while a linear tube can be 120 cm long. In

future work, advanced VLC modulation/coding schemes can

be explored for improved performance.

To ease hardware setup, we resort to a low-quality VI sensor

without hardware triggering. Under the same environments

and motion profiles, it yields inferior VIO performance with

more drifts and scale errors. This can affect the best achievable

accuracy of the LedMapper. Also, VI measurements are now

loosely fused by our system since these are preprocessed by

a third-party VIO estimator before use, leading to suboptimal

results. For higher mapping accuracy, a high-quality VI sensor

alongside a tightly coupled implementation is more advocated.

LedMapper is not fully automated as it still requires manual

input, e.g., surveying a few LEDs as control points. Yet, these

are often necessary to align the LED map with the workspace

for VLP. Even so, the human effort has been much reduced

than manual surveys, as control points take only a minor

portion of LEDs (e.g., 3/25 in our case). To align the map, the

mapper now needs at least two close control points. We safely

expect improved map accuracy if using more. However, this

will cause increased human effort and hence less efficiency. In

practice, a trade-off should be sought between accuracy and

efficiency. When the architectural floor plan has updated LED

locations, it can assist as informative priors. Yet, one cannot
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directly turn it into a usable map for VLP due to the lack of

LED identifiers on a standard floor plan.

Compared to photodiode-based VLP systems, camera-based

systems are less affected by multipath effects [2], [3] from

diffuse reflections off rough surfaces (e.g., walls, floors). In

daily scenarios, specular reflective materials (e.g., glass, mir-

rors) are relatively few [43] but challenging to camera-based

systems, alongside our LedMapper. When LEDs are close to a

mirror surface, the LED and its mirroring can be observed and

decoded by the camera at the same time. While it is not easy to

disambiguate between them, we can circumvent this issue by

discarding the affected LED detections. In a worse situation,

only the LED mirroring is detected. Currently, our LedMapper

can not handle this corner case. In practice, specular reflections

can be in part reduced by adding a polarizer on the camera

lens. To solve this issue, however, much research effort is

required in future work.

VIII. CONCLUSION

This paper introduced a novel system designed for efficient

and accurate offline mapping of modulated LEDs for VLP,

named LedMapper. Compared to manual surveys, it required

much less human effort in building a usable LED map, thereby

reducing the deployment costs of VLP systems in reality. A

handheld mapping device with low-cost visual-inertial sensors

was utilized. The mapping process entailed a surveyor wander-

ing around the workspace with the device for data collection.

Given collected sensor data and some existing or surveyed

priors, it can build an accurate and workspace-aligned LED

map by formulating a full-SLAM problem within a factor

graph. Compared to its heuristic counterparts, LedMapper

exploited input information in a sounder way, credited to

the principled design following probabilistic state estimation.

Finally, the system was extensively evaluated with real-world

experiments in a room-scale controlled testbed and a 15x larger

lab office, showing its efficacy and performance gains.

In future work, we will adapt the system to different-shaped

LEDs and evaluate it in larger-scale settings. It is rewarding

to do tightly coupled integration for higher mapping accuracy

or to explore advanced VLC modulation/coding methods for

better performance. Lastly, improving the system robustness

to specular reflections is challenging and yet to be solved.
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