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EmPointMovSeg : Sparse Tensor Based Moving
Object Segmentation in 3D LiDAR Point Clouds

for Autonomous Driving Embedded System
Zhijian He, Xueli Fan, Yun Peng, Zhaoyan Shen, Jianhao Jiao and Ming Liu∗

Abstract—Object segmentation is a per-pixel label prediction
task which targets at providing context analysis for autonomous
driving. Moving object segmentation (MOS) serves as a sub-
branch of object segmentation, targeting at separating the
surrounding objects into binary options: dynamic and static.
MOS is vital for safety-critical task in autonomous driving
because dynamic objects are often true potential threat to self-
driving car comparing to static ones. Current methods typically
address the MOS problem as a category feature to label mapping
task, which is not rational in reality. For example, a parking
car should be considered as static instead of moving object
category. There is little systematic theory to differentiate object
moving characteristics from non-moving characteristics in MOS.
Furthermore, restricted by limit resource in embedded system,
MOS is often in an off-line manner due to huge computational
requirement. An on-line and low computational cost MOS is an
urgent demand for practical safety-critical mission which takes
immediate reaction as compulsory.

In this paper, we propose EmPointMovseg, an efficient and
practical 3D LiDAR MOS solution for autonomous driving.
Leveraging the power of well-adapted autoregressive system iden-
tification (AR-SI) theory, EmPointMovseg theoretically explains
moving-object feature in large scale 3D LiDAR semantic segmen-
tation. An end-to-end sparse tensor based CNN which balances
segmentation accuracy and on-line process ability is proposed.
We construct our experiment on both representative dataset
benchmarks and practical embedded systems. The evaluation
result shows the effectiveness and accuracy of our proposed
solution, conquering the bottleneck in the on-line large-scale 3D
LiDAR semantic segmentation.

Index Terms—Embedded system, LiDAR moving-object seg-
mentation, Deep learning.

I. INTRODUCTION

O JECT segmentation serves as an important role in au-
tonomous driving safety. Via predicting per-pixel label

in driving scene, object segmentation algorithm is able to
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provide comprehensive context information to the system,
which benefits the perception result so that path planning can
be more accurate. For example, by detecting lane, traffic sign,
.etc, autonomous driving system is able to get an excellent
description of the environment so that smart the planning
decision is obtained. However, for safety-critical mission
in autonomous driving, the potential threat mainly lies on
pedestrian, cars or trucks which have moving characteristics
in common. Less danger is caused by static objects such
as fence, trees, traffic signs, etc. This phenomenon gener-
ates a sub-research topic in object segmentation so called
moving-object segmentation. Although many solutions exist
in multi-category object segmentation, MOS domain which
requires heavy computational expense and the knowledge of
distinguishing dynamic objects from static ones [1], [2], [3],
[4], is still a bottleneck in autonomous driving safety object
segmentation.

The majority of current segmentation methods [5] [6] [7]
address this task as a supervised-learning per-pixel classi-
fication problem. Typically, an U-Net [8] like CNN takes
in category specific feature and minimize the network loss
between prediction output and annotated label. For example,
cluster of 3D LiDAR data containing trunks and branches
feature is considered as tree. After finishing the capture pro-
cess, these methods adopt an Encode-Decode pattern to train
a context understanding network, resulting in high accuracy
multiple class object segmentation. Unlike the majority of
current existing segmentation methods which inputs raw 3D
LiDAR data and outputs multiple label accordingly, MOS
emphasizes a binary segmentation task that figures out moving
objects from non-moving objects in autonomous driving scene.
MOS considers the moving objects as the root cause of many
traffic accidents so that it can not be constructed as a simple
binary segmentation problem. For example, in Fig. 1, the car
(yellow box) parking at the roadside, opposite to the car (red
box) driving on the road, although belonging to moving-object
category, should not be considered as moving semantically.
Only the red mask in right sub-picture linking to red box in
the left sub-picture is a correct moving-object segmentation.

As a result, an extra feature which contains the information
of differentiating moving objects from static ones needs to be
added into deep-learning training. The essential of this feature
can be regarded as changing position in sequential data. As a
result, finding temporal geometric change is a vital solution to
the MOS. However, the varying density in large scale LiDAR
data formulates the difficulty in exploring temporal geometric
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Fig. 1: Drawbacks in traditional classification-like 3D
LiDAR semantic segmentation.

relationship in reality. This feature of point cloud limits on-
line LiDAR segmentation application for the reason that both
the temporal [1] and the spacial information [5] have to be
considered at the same time, which generates two NP-hard
problem: 1) Calculating too much feature in runtime requires
expensive computational resource at the same time, especially
in case that on-line moving segmentation is compulsory for
safety-critical mission; 2) The temporal feature should be
theoretical explained so that the result of differentiating binary
mask in MOS can be guaranteed.

For the first problem, current methods prepare preloading
relative pose information and raw point cloud in advance.
Via powerful GPU cloud computing or excellent graphic
hardware, 3D LiDAR data can be manipulated to achieve
accurate segmentation results [6], [9], [10], which is not
the real environment settings in practical autonomous driving
embedded system. Although polar shape [5] or other rational
spacial structure [10] in expressing point cloud is explored,
current methods emphasize the effect of raising intersection
over union (IoU) instead of considering both the efficiency and
accuracy in segmentation. Due to the large batch size during
the inference phase, accurate IoU can be achieved only in off-
line manner, which is useless given no reaction possibility
is considered in reality. In the safety-critical compulsory
scenario, the true positive dynamic characteristics of an object
is more important than high category accuracy. Hence, efficient
on-line accurate MOS is the goal in guaranteeing autonomous
driving safety. In this paper, in virtue of sparse tensor and
sparse convolution, we overcome the varying density feature
via avoiding the empty space of LiDAR data to operate in
convolution so that segmentation inference time reduces. Fur-
thermore, understanding the shape of moving object is enough
for practical semantic segmentation comparing to describe the
point cloud densely. These two novel operations shrink the
inference time to make on-line MOS possible in embedded
system.

For the second problem, the widely-used Encode-Decode
architecture CNN [8] is used as an efficient and accurate solu-
tion network in semantic segmentation. Well-picked temporal
feature can construct powerful input to the network to improve
moving-object segmentation significantly [1]. However, cur-
rent methods [1], [11], [12], [13], [14] just estimate relative
object states intuitively to distinguish dynamic object from
static ones. In this paper, we utilize the well-adapted AR-SI
theory [15] to propose a systematic approach to discover the
true dynamic characteristics of an object. Via AR-SI oracle
judgement, a dynamic object in autonomous driving scene can

be confirmed. This so-called AR-SI filter constructs a tempo-
ral feature serving as the following CNN input. Combining
spacial feature in raw point cloud and this generated temporal
feature, we map the label for segmentation training to generate
accurate IoU result. Targeting at binary mask of discovering
moving object in real scene, we establish the AR-SI theory into
feature selection not only to describe the moving character of
dynamic objects, but also block the perturbation from static
objects which is totally a blind area in traditional methods
[16], [17], [18] using geometric feature only.

In this paper, we construct the temporal and the spacial
feature to input to an Encode-Decode architecture CNN, and
use sparse network architecture to predict the moving binary
mask (details of overall solution is illustrated in Section
III.B). Specifically, the contributions of this work are listed
as followings:

1) We theoretically explain the essential of the model that
distinguishes static objects from dynamic ones in au-
tonomous driving. Leveraging the power of 3D LiDAR
residual depth in temporal representation, we propose a
novel AR-SI based feature to improve the the Encode-
Decode architecture based CNN prediction significantly.
Combining both the filtered temporal feature and the
geometric feature, the CNN prediction is able to detect
true dynamic object ignoring the perturbation from same
category.

2) We propose sparse tensor and sparse convolution to
handle the unconstructed raw LiDAR point cloud, which
shrinks the gap between segmentation algorithm in the
powerful GPU only and its practical use in autonomous
driving embedded system.

3) We evaluate our approach on widely-used large scale
LiDAR dataset SemanticKITTI to prove the segmenta-
tion performance. Then, we deploy our method on a
real autonomous driving embedded system to check its
practical effect.

The rest of this paper is organized as follows. Section II
gives the background and motivation of conquering traditional
semantic segmentation drawbacks in autonomous driving em-
bedded system. Section III presents the details of using AS-RI
theory to distinguish moving and non-moving objects. Using
this theoretical analysis result, we illustrate our network details
in section IV. In Section V, we present experimental results.
Finally, via comparing the related work in Section VI, Section
VII provides the conclusion.

II. BACKGROUND AND MOTIVATION

In this section, we first give a brief overview of LiDAR
semantic segmentation. The basic strategy on current LiDAR
semantic segmentation is then illustrated. Finally, we present a
motivation example for the on-line 3D LiDAR moving-object
segmentation on resource limited embedded system.

A. Large Scale 3D LiDAR point cloud segmentation Task

The autonomous driving core technologies can be mainly
divided into two classes [19]: vision-based and LiDAR-based.
LiDAR sensor measures the time gap between the reflected
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Fig. 2: 3D LiDAR semantic segmentation. The left picture is a raw LiDAR representation while the right one is indicated in
an annotated manner

light sender and receiver, which can be used to construct
3D object points representation via multiplying LiDAR ware
length. Denoted as (xi, yi, zi, intensityi), raw LiDAR data
contains reflected light position and its intensity, where i
means sequence index. As Fig. 2 shows, the left image is the
raw point cloud which displays spacial objects. However, this
raw data scan can not satisfy perception requirements for the
reason that no semantic or instance information is provided.
For example, the car in the red box is meaningless to system
unless pixel label is added. As the right image of Fig. 2 shows,
object labeling made by annotation tool or handcraft provides
scene understandable message, which can be used for either
training or evaluation in segmentation task.

Current segmentation methods such as PointNet [16] input
scan of dense 3D LiDAR data to a CNN to construct an
end-to-end feature to label supervised training. The network
model parameters are generated once the loss between the
point prediction and the groundtruth is satisfied. The CNN
plays a role of mapping geometric point cloud correlationship
to annotated label. The inference is performed using new
captured dense LiDAR data to produce prediction mask/label.
Typically, this task contains tens of category labels for seman-
tic segmentation, which is very similar to the deep-learning
based classification problem [20].

B. Moving-object Segmentation

Comparing to all classes semantic segmentation, moving-
object segmentation indicates a task of distinguishing static
object from dynamic ones in large scale sequential 3D LiDAR
perception. This process typically merges the original labels
into three classes: moving, non-moving and unlabelled [1]. For
example, car and bicyclist should be reorganized as moving
label while fence and trunk are considered as non-moving.
The blue bounding box in Fig. 2 indicates a tree labelled as

non-moving while the red bounding box means a car labelled
as moving.

The input to the evaluated method is a list of coordinates
of three-dimensional points along with their remission. Each
method should then output a label for each point of a scan. To
assess the network performance, IoU over moving and non-
moving parts of the environment are investigated [21]. Higher
IoU means the performance of the network are better.

C. Corner Case in MOS

The current majority of methods in pure LiDAR data
segmentation use feature to label mapping principal to train a
CNN [5], [16], [22]. However, as Fig. 2 shows, the parking
car in the yellow bounding box is a static object while the
red bounding box car driving in the road stands for a real
moving object. Although both of them are labelled as car in
groundtruth, in moving-object segmentation, we should not
treat it using category feature only. Misleading by wrong
prediction label causes confusion in driving safety reaction
because the parking car is actually harmless. More importantly,
if incorrect static label given by the system, road accident may
be triggered because the system treat potential danger as static
safe condition.

D. Motivation

Static objects are relatively safe comparing to moving ones,
for example, fence is not able to cause damage unless all
the sensors on the car are disabled. In other words, moving
object judgement plays a vital role in autonomous driving
safety. This importance combining unsatisfied performance in
existing moving-object segmentation approaches, motivates us
to design our systematic solution with the following goals:

1) Efficient: A systematic moving-object segmentation
method should handle the LiDAR batch fast enough
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to achieve on-line computation. We achieve this goal
by leveraging the power of sparse tensor and sparse
convolution.

2) Accurate: After considering the solution efficiency, seg-
mentation design should be accurate not only to distin-
guish static and dynamic objects that belong to different
classes, but also should identify true movable objects
belonging to the same moving class. In this work, we
use AR-SI theory to infer temporal feature which is added
into traditional spatial feature for the CNN input.

3) Practical: The whole methodology should be able to
deployed in an embedded system to prove its practical
use. The system should be deployed in a real autonomous
driving embedded system to meet the requirements of
accurate moving-object segmentation while incurring low
computational cost. On-line performance is critical and
useful for guaranteeing autonomous driving safety.

III. RELATED WORK

A. Semantic Segmentation

Semantic segmentation is a task that assigns each pixel
a category label in an image or point cloud. Semantic seg-
mentation appears in both vision and LiDAR domain, and
gains much attention in recent years. Fully Convolutional
Networks (FCN) [23], replaces fully connected layers in image
classification task with convolution layers, which turns per
pixel labelling possible in 2015. U-Net [8] creates the Encoder-
Decoder architecture which constructs the cornerstone for
vision semantic segmentation task. Badrinarayanan et al. [22]
improves this architecture to develop it on both road scenes
and SUN RGB-D indoor scene segmentation tasks [24]. Lever-
aged the power of Encoder-Decoder architecture, semantic
segmentation in large scale dynamic 3D LiDAR point cloud
has been successfully applied. Majority of the 3D LiDAR
semantic segmentation target at mapping multiple categories
label [5], [6] to each pixel on road scene so that the context of
the open road can be understood. From semantic segmentation
to panoptic segmentation [25], [26], polar coordinate [5] and
other project coordinate [27] have been applied to organize
the point cloud coordinate for calculating the according label
in CNN. Dense point cloud approaches such as [6], [1], [28]
have gain great achievement on multiple categories semantic
segmentation. However, in the aspect of safety-critical mission,
autonomous driving emphasizes the potential threat in true
moving object other than typical non-moving object. The most
important breakthrough is [1], which targets at distinguishing
true dynamic object from false positive dynamic object using
multiple categories semantic segmentation methods. For sparse
tensor approach, PointMoSeg [29] combines temporal and
spatial information in 3D LiDAR point cloud segmentation,
which is mostly relative to our approach. However, it is
not evaluated on a embedded platform to check its practical
performance.

B. Moving-object Segmentation Task

Moving-object segmentation, which is sightly different from
traditional multiple label mapping semantic segmentation [30],

[27], aims to discover the real moving objects from non-
moving ones [1]. This task can be divided into two kinds
of approaches: Map-use and Map-free. Map-use approaches
in 3D LiDAR semantic segmentation typically use two steps
to manage moving-object segmentation. First, sensor data is
captured off-line containing ego-motion and LiDAR data. A
pre-built map is generated use time-consuming voxel or grid
base methods in order to separate dynamic objects from static
using real-time captured data in the second step [31], [32].
These kinds of approaches require a clean pre-built map and
therefore can not be used in on-line semantic segmentation.
Map-free approaches indicates on-line methods capture real-
time LiDAR and ego-motion data to perform per pixel la-
belling task. Ruchti and Burgard et al. [33] use probability
to predict movable objects. Dewan et al. [34] propose a
method based on rigid body using LiDAR point cloud. It
formulates the problem as an energy minimization problem
that estimates motion vectors for rigid bodies. [35] proposes
a deep convolutional neural network (DCNN) for semantic
segmentation of a LiDAR scan. It proposes Bayes filter based
method to make the predictions from the DCNN semantic
state temporally consistent. These kinds of methods do not
mention about their on-line segmentation performance, which
is inevitable in practical safety-critical missions. Bogoslavskyi
and Stachniss [36] present an effective method that segments
the 3D data in a range image representation via removing
the ground from the scan. These existing approaches do not
theoretically explain the rational math model of moving-
object segmentation. Instead, they make intuitive approaches
in pose estimation or temporal 3D LiDAR scan sequence to
solve moving-object segmentation. AR-SI theory [15] is well-
established math in control-CPS, which can be serve as the
oracle not only in moving/non-moving binary judgement, but
also can be used in checking the moving track quality. This
inspires us to systematically explain the binary feature in the
input tensor of the CNN, which is novel in moving-object
segmentation.

Context analysis task is often equal to high workload com-
putational task. Projected image approaches consumes huge
amount of computational time, although of high accuracy, is
not practical in autonomous driving. Thanks to the power of
sparse tensor/convolution, we can perform on-line approach in
embedded system. Similar to [1], we train the network using
binary masks to achieve an end-to-end fashion. However, we
implement the CNN network using sparse tensor based manner
while Chen et al. manage it in a dense tensor way.

IV. SOLUTION THEORY

Moving-object segmentation indicates an environment se-
mantic context analysis in autonomous driving. Aiming to
assist safety-critical reaction, this task addresses the problem
of distinguishing dynamic object from static ones around
the vehicle. In this section, we details the math theory in
discovering moving object, which figures out the essential
math model not similar to the majority of label-based deep-
learning methods. Existing methods use sequential LiDAR
scan as moving-object segmentation temporal feature but none
provides a theoretical explanation.
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A. Math Model in Distinguishing Moving from Non-moving
Objects using AR-SI theory

Fig. 3: A typical control-CPS architecture

We treat each object in the autonomous driving scene as a
control-CPS system. For each control-CPS system, we regard
static object as no control input while dynamic ones as the
opposite [37]. For example, trees at the roadside can be
considered as a typical control-CPS without user impulse, and
cars can be treated as control-CPS with regular user pedal
input. A classical control-CPS consists of user input module,
cyber subsystem and physical subsystem as Fig.3 shows.

Generally, the user control input U(t) ∈ Rq at time
t ∈ [0,+∞) is generated in a regular period to pass onto the
cyber subsystem [15] (For example, the car driver operates
the pedal to the wheel at a preset period. If no user signal
is captured, 0 is taken as the input of the cyber subsystem).
The cyber subsystem inquires the positioning result from nav-
igation subsystem and then calculate the error U

′
(t) between

reference point and current position. U
′
(t) formulates the

final impulse to the physical subsystem (also called ”physical
plant”). The physical subsystem combines current state X(t)
and the impulse to produce the trajectory Y (t) of the whole
system. The user adjusts its input according to the physical
plant trajectory during a sampling period T .

Specifically, if we regard the the gray area of Fig.3 as a
black-box, whose input is Ui ∈ Rq and output is Yi ∈ Rm,
then AR-SI typically models the relationship between Ui and
Yi (∀i = p, p+ 1, ...) as [15]:

Yi = (

p∑
j=1

AjYi−j) +BUi + ξi, (1)

, where Yi stands for the physical subsystem position at time
step i. p means the time steps tracking back Yi, and the
Aj is the corresponding weight. Ui is the user input at at
time step i, and B is the weight parameter of user input.
ξi indicates the SI error item. At time step i, last time step
i− 1 consecutive plant states (Yi−p−1, ..., Yi−2, Yi−1) become
available. The according parameters A1, A2, ..., Ap and B of
time step i − 1 in Exp. 1 are optimized using AR-SI theory
until the runtime accumulated SI error energy is minimized.
AR-SI model uses these amount of optimized parameters and
available plant states (Yi−p, ..., Yi−1) to predict Yi with Ŷi

[15]:

Ŷi = (

p∑
j=1

A
(∗,i)
j Yi−j) +B(∗,i)Ui (2)

When Yi is available, the AR-SI prediction error becomes:

ei = Ŷi − Yi (3)

A static object in autonomous driving scene can be consid-
ered as no user input, and its consecutive plant states are the
same. This model can be calculated as:

Yi = (

p∑
j=1

AjYi−j) + ξi, (4)

, where Aj equals to 1/p. However, there exists certain sensor
noise which forces the sum of the averaged Yi−j can not
perfectly be equal to Yi. As a result, Exp. 3 is optimized as:

ei =
∥∥∥Ŷi − Yi

∥∥∥ < ϵ. (5)

The threshold value ϵ can be inferred through Monte-Carlo
[38] sampling. If the object trajectory approximation error
using AS-RI model is lower than ϵ, we are able to predict
it as non-moving and vice versa.

B. Proposed Solution

Using the math model in last section, we combine the
advantages from two sides: 1) spatial feature as majority of
feature-to-label mapping segmentation proposed; 2) temporal
feature as AR-SI math describes. The overall solution is as the
Fig.4 shown.

Each loop in the system takes in raw LiDAR point cloud
containing spatial reflected information and remission mea-
surement. A sequence of LiDAR frame, from current time
step TN−1 to the frame back N steps T0, generates a temporal
vector using spherical coordinate projection. The temporal
vector contains P residual depth (details explained in section
iv). This set of residual depth, combing spatial raw vector from
current time step TN−1, will be pass into AR-SI filter. The AR-
SI filter use Exp. 1 to 5 to check whether it is a static object
or not. Temporal vector is turn into all zero in case of AR-
SI filter error is lower than ϵ, which means AR-SI consider
it as non-moving. This operation benefits the CNN training
because non-zero trajectory value is actual noise if the object is
confirmed as static, especially in case that the training problem
is binary. In order to distinguish different static objects, spatial
vector maintain the same for CNN training. In the aspect of
dynamic ones, temporal vector maintains the residual depth
value to concatenate with spatial vector to formulate the dense
input of the sparse tensor module.

Then, dense input tensors are voxelized to construct sparse
tensor for the CNN considering fast inference requirements
in embedded system. Sparse tensor indexes each voxel with
coordinate (cNx , cNy , cNz ) with bN , and attaches the according
feature (fN

x , fN
y , fN

z ). Feature details will be illustrated in
the Section. IV. The feature tensor is pass into the Encode-
Decode sparse CNN to construct the sparse convolution. By
dividing label into three categories only: unlabel, dynamic and
static, we train the CNN model prediction to map the label
accordingly. The prediction result is shown via discovering
dynamic objects in red mask, which is the vital potential threat
to autonomous driving safety.
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Fig. 4: Overview of our proposed method

V. SPARSE TENSOR BASED MOVING OBJECT
SEGMENTATION

A. Sparse Tensor and Sparse Convolution

Moving-object segmentation leverages the power of cap-
tured point cloud geometric information to extract low-level
features. The features are used to fill into learning network
in the following step to predict segmentation mask. However,
typical methods such as PointNet [16] operate the original
unconstructed data directly to fetch ready-for-train geometric
features, which consumes huge computation resources. In
this work, we adapt sparse tensor to improve computational
efficiency to make the moving-object segmentation practical
in embedded system.

The sparse tensor uses a voxel coordinate matrix C to index
an associated feature matrix F . The first step is to voxelize
the point cloud and make one voxel contain only one point
cloud, which generates the according voxel coordinate C. This
step takes the advantage of removing redundant points in a
same voxel, which avoids empty 3D voxel computation so
that massive memory footprint generation can be avoided. The
second step is to calculate the associated feature matrix F
according to the generated index coordinate C:

C =

 b1 c1x c1y c1z
...

...
...

...
bN cNx cNy cNz

 , F =

 f1
x f1

y f1
z

...
...

...
fN
x fN

y fN
z

 , (6)

where for point i, {cix, ciy, ciz} ∈ Z3 is the voxelized integer
coordinate. The bi is the batch index attached to the coordinate
{cix, ciy, ciz}. {f i

x, f
i
y, f

i
z} ∈ R3 is the float-type coordinate

captured by a 3D LiDAR, i ∈ [1, N ], N is the number of
points after quantization, which is determined by the voxel
size, N ≤ No, where No is the original number of points
before quantization.

The sparse convolution [28] inputs a sparse tensor and also
outputs a sparse tensor with varying batch length. Specifically,
it first generates the coordinate matrix C out for the output
sparse tensor from the given input coordinate matrix (details
are described in [28]). Then, it calculates the feature vector
f out
c for an output coordinate c with the formula [29]:

f out
c =

∑
s∈N (c,K)

Wsf
in

c+s, f out
c ∈ F out, c ∈ C out, (7)

where s is the offset to find the corresponding input coordi-
nates, they are centered in c position and covered by the kernel
size K, which is denoted as N (c,K). f in

c+s means the input
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feature vector at the input coordinate c+ s. Ws represents
the coefficient parameter, which is to be learned through the
training process. The output sparse tensor, coordinate matrix
C out and feature matrix F out, can be generated via training.

B. Spacial Residual Depth

Inspired by the observation and conclusion in [1] and [11],
residual depth projected in spherical coordinates is the vital
factor in distinguishing moving and non-moving objects. We
take residual depth di(u,v) [1] as the trajectory symbol in Exp.
5, so our AR-SI filter expression can be calculated as:

ei =
∥∥∥ ˆdi(u,v) − di(u,v)

∥∥∥ . (8)

If the residual depth error is less than the calculated filter
value (ei < ϵ), we consider it as static and turn all the value in
temporal vector to zero. In Exp. 8, di(u,v) is the residual depth
in position (u, v) of the projected spherical coordinates. The
ˆdi(u,v) means using residual depth data in time slice i− 1 and

the data back P steps in Exp.4. If an object is static, the sum of
its depth variance within this slicing temporal window should
be less than ϵ. Considering that noise exists in the sensor, the
ϵ can use Monte-Carlo sampling to calculate.

Guided by the goal from Exp. 8, we require the value of
the residual depth di(u,v) in time sequence i + 1 − P to i.
We use a range projection of LiDAR data to generate this
residual depth d. The strategy is to convert each LiDAR point
at time i, P = (xi, yi, zi) to time slice i+ 1− P coordinate.
Two range information ri(u,v) and r

′ i

(u,v) exists in the same
projected point (u, v) which can be mapped to LiDAR point
(x, y, z) in 3D space. The depth variance at the same point
can be measured as [1]:

di(u,v) =

∥∥∥ri(u,v) − r
′ i

(u,v)

∥∥∥
ri(u,v)

. (9)

The range information r
′ i

(u,v) is calculated as the following:

p(u,v)
i = T i+1−P→i · pi+1−P

(u,v) , (10)

r
′ i

(u,v) =

√
p
i,(u,v)
x

2
+ p

i,(u,v)
y

2
+ p

i,(u,v)
z

2
, (11)

where T i+1−P→i means the pose transformed from time
step i+1−P to i. We describe a consecutive sequence from
time 0 to N of pose information as T 1

0 , ..., TN
N−1, where T 1

0 is
the pose transforming from time step 0 to 1. To benefit from
the continued product character of homogeneous coordinates,
we represent the LiDAR data as pi = (xi, yi, zi, 1).

The last step is to associate the 3D LiDAR point to 2D
projected point, saying: R3→R2 to spherical coordinates, and
finally to image coordinates:

(
u
v

)
=

(
1
2

[
1− arctan(y, x)π−1

]
ω[

1− (arcsin(zr−1) + fdown)f
−1

]
h

)
, (12)

where (u, v) are image coordinates representation mapping
the 3D LiDAR point (x, y, z), f defines the sensor vertical

field of view as f = |fdown| + |fup|. Following the work of
[39], we considered a 3D 360◦field-of-view during the projec-
tion process. The h, ω stands for the height and width of the
desired range image. The calculated coordinates (u, v) serves
as the index in a hash map which contains the information of
each point cloud data x, y, z coordinates, its remission e, and
its range information r.

C. Network Architecture

We adapt the most promising Encoder-Decoder architecture
to our sparse tensor based network design. Inspired by [27], the
overall architecture of the proposed network is shown as Fig.5.
The input to proposed network is a sparse tensor containing
the spatial information from the raw 3D LiDAR data and
the temporal information from residual image. Specially, each
pixel (u, v) of the projected range image contains a vector
(x, y, z, r, e, d0, d1, ..., dP ) [1], where (x, y, z, r) is the spatial
information of the raw 3D LiDAR point cloud. Range r of
each point can be calculated as r =

√
x2 + y2 + z2.

The overall network can be divided into four modules,
namely, contextual enhance module, encoder module, decoder
module and prediction logit module. The contextual enhance
module plays a role of fusing local feature with a larger one
at the beginning of the network. However, due to the varying
length of the sparse tensor and multiple dimensional input
(feature and coordinate), we use MinkowskiEngine [40] to
handle the batch for each training.

The contextual convolution follows the pattern in [27] which
has one 1∗1 and two 3∗3 kernels with dilation rate of (1, 2).
Concatenating two context block to generate a N*32 tensor
serves as the input of the encoder module. The purpose of this
convolution is to make the 1 ∗ 1 sparse convolution captures
the local information while 3 ∗ 3 gets the global feature. Via
concatenating these two features together, we get a (N, 32)
sparse tensor that captures context information of the raw 3D
LiDAR point cloud.

The encoder module contains four residual blocks for down-
sampling sparse convolution. Each residual block has 3 sparse
convolution, ReLU, BatchNorm layers. All these basic blocks
are revised using MinkowskiEngine to fit the sparse convo-
lution requirement. These residual blocks output concatenate
together to formulate output using residual principle as [41].
One dropout and one pooling layer attach to the end of the
residual block to avoid the overfiting problem.

The decoder module has a sequence of upsampling blocks
similar to [27]. Each upsample block has 3 sparse convolution,
ReLU, BatchNorm layers. 3 upsampling block outputs are
concatenated together. One dropout layer follows this result
at the end of the decoder module. Logit module maps the
upsampling output to point cloud label to generate the final
prediction. F block is a tool in MinkowskiEngine used to
convert output sparse tensor to normal tensor for segmentation
result.

D. Loss Function

The class label imbalance problem exists in both typical
dataset and practical scene. For example, in the campus where
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Fig. 5: Architecture of EmPointMovSeg: Sparse Tensor Based Encode-Decode Sparse Convolution Network

we collect data, static objects are the majority of cases com-
paring to dynamic ones. As a result, training becomes useless
if one sequence overfits static ones and ignores dynamic cases,
which yields poor performance in network inference.

Therefore, we propose a strategy to cope with this class
labelling imbalance problem similar to [27]: calculating loss
by emphasizing the effect of under-presented classes via
taking its appear frequency into account. The loss formula
is expressed as:

Lwce(y, ŷ) = −
∑
i

aip(yi)log(p(ŷi)) with ai = 1/
√
fi,

(13)
where p(yi) stands for the probability of label yi and p(ŷi)

means the probability of prediction label of yi. fi indicates
the frequency. i is the ith class which contains only three
class in moving-object segmentation. This loss function takes
the class imbalance problem into consideration to avoid the
partially overfitting certain class phenomenon.

VI. EXPERIMENTAL EVALUATION

This paper targets at developing a practical moving-object
segmentation solution in 3D LiDAR scans. We construct our
first experiment on a most representative dataset to prove the
efficiency of our proposed method. The second evaluation
is performed on a practical embedded system platform to
check the real application effect. The following evaluation
results show that: 1) our propose method achieves comparative
segmentation performance while maintain a low computational
cost; 2) the relatively comparative low computational cost
leads to practical moving-object segmentation success, which
is able to apply proposed on-line segmentation method in
safety-critical tasks.

A. Evaluation based on Dataset

To fulfill the on-line segmentation performance in embedded
system, the first experiment in this section is to support
our claim of achieving comparative segmentation performance
while low inference time required.

We first test all the methods on a powerful server equipped
with:

* Intel(R) Xeon(R) Gold 5118 CPU.
* Sytem memory up to 128GB.
* NVIDIA GeForce RTX 3090 Graphic Card.
The dataset we choose should fulfill the harsh autonomous

driving requirements comparing to traditional dataset just for
single object segment:

* Large scale sequential 3D LiDAR-based data including
cloud point spacial and reflection information.

* Containing groundtruth in dynamic traffic participants
with distinct classes, which can reason our model ratio-
nality.

We choose SemanticKITTI [21] as our testing dataset.
Besides fulfilling the above requirements, SemanticKITTI
provides LiDAR-based pose information so that odometry,
object detec- tion, tracking, semantic segmentation, panoptic
segmentation, and scene completion tasks are proposed as
open challenge issues for dataset users. SemanticKITTI are
currently the most representative benchmark for moving-object
segmentation.

SemanticKITTI dataset contains 22 dense LiDAR individual
scans. For sequences 00−10, dense annotations were provided
for semantic scene interpretation, like semantic segmentation
and semantic scene completion. For sequences 11−21, labels
for the test set are not provided so that we consider them as test
scans. SemanticKITTI contains in total 28 semantic classes
such as vehicles, pedestrians, buildings, roads, etc. Thanks
to the effort in [1], moving-object segmentation benchmark
contains three types of classes: unlabelled, moving and non-
moving. The actually moving vehicles and humans belong to
moving objects and all other classes belong to the non-moving
objects. Here, we choose sequence 08 for validation during
training process as [1] does.

For quantitative study in moving-object segmentation per-
formance, we use intersection-over-union (IoU) metric [42]
over the objects:

IoU =
TP

TP + FP + FN
, (14)

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 11,2022 at 01:48:15 UTC from IEEE Xplore.  Restrictions apply. 



0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3172031, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

9

where TP, FP, and FN correspond to the number of true
positive, false positive, and false negative predictions for the
class.

1) Ablation Study on Input and AR-SI filter: According to
the theory in Section 3, the AR-SI filter targets at calculating
rational threshold value to separate moving objects from non-
moving ones. This step involves two modules to generate final
sparse input tensor:

* Efficient temporal LiDAR sequence module containing
rational P value in Exp.1, which stands for the number
of time steps we need to track back.

* Robust AR-SI filter module blocks residual depth error
caused by sensor ego-motion noise to affect the sparse
convolution network.

For the first module, according to the theory in [15], we
compare different P value to maximize the IoU performance.
Current methods do not give a rational interpretation about
the temporal length theoretically. In this paper, we leverage
the AR-SI theory to calculate P value, which presets P value
to 10 according to [15] and compares the IoU performance
around this preset value.

TABLE I: IoU segmentation result using different P value

P value 4 6 8 10 12

ResUnet 0.21 0.25 0.28 0.33 0.34
EmPointMovSeg 0.31 0.37 0.42 0.46 0.47

From table I, we can observe that selecting P value to 12
have best IoU performance. While the tracking back length
set to 4, 6, 8, we can see the IoU is improving because the
depth information enhances. This enhancement serves as the
temporal feature in sparse tensor so that IoU performance can
be improved. However, there is not that much improvement
when P value is bigger than 10. The con side of prolonging
the temporal sequence is that the residual image requires more
time to be ready for the CNN inference (explained in the 4th
subsection). We have to balance the computational expense
and segmentation accuracy so that 10 is chosen as the most
rational sequence length P value.

Fig. 6: Residual depth when P is set to 4, 8, 10,
respectively. A projected moving car becomes more obvious

when the P value increases in residual image.

As the AR-SI theory indicates, a static object projected
depth equals to zero in a sequential residual depth image,

which means the same color as the background. In other
words, moving ones owns contrasting color to the background.
As Fig. 6 shows, the residual depth feature of moving object
becomes more obvious when the P value increases from 4
to 10. This feature contributes to CNN to get a better IoU
performance in segmentation task. What is more, residual
depth feature of the non-moving objects becomes zero helps
to distinguish these two classes significantly. However, due to
ego-motion sensor error or pose calculation error, non-moving
objects are sometimes considered as moving ones. We use AR-
SI filter to block this error to propagate in the CNN prediction.
We prove the AR-SI filter effect in both sparse and dense
convolution methods with P value fixed in 10. Here we select
or reconstruct ResUnet, SpSequenceNet [43] and our proposed
EmPointMovSeg in sparse convolution methods. For dense
convolution solutions, Unet [8], SalsaNext [27] and KPConv
[44] are chosen respectively.

TABLE II: Sparse convolution network MOS IoU results
with/without AR-SI filter

Non-filter AR-SI filter

ResUnet 0.33 0.36
SpSequenceNet 0.42 0.46

EmPointMovSeg 0.46 0.51

TABLE III: Dense convolution network MOS IoU results
with/without AR-SI filter

Non-filter AR-SI filter

Unet 0.12 0.15
SalsaNext 0.51 0.53
KPConv 0.59 0.61

We choose SemanticKITTI scan 00 sequence to check all
the non-moving object. We calculate outlier threshold ei value
via the same theory in [15] which regards a data point outside
of (mean ± 6std) as an outlier. Both Table. II and Table. III
indicate AR-SI filter is able to improve segmentation results
in both sparse and dense convolution approaches.

2) Inference Time Study: As shown in Fig.4, the total
inference time contains the residual depth calculation time and
the CNN inference time. We fix P value to 10 as last section
discussed and discover the key constraint on time consump-
tion: max dense residual depth calculation uses 251ms and
CNN inference uses 42ms in scan 00 of SemanticKITTI. Since
the LiDAR frequency of SemanticKITTI is around 10HZ,
traditional method [12], [27], using residual depth is not able
to operate on-line segmentation task on a powerful server, not
even to mention embedded system.

To overcome this bottleneck, we choose to voxelize each
scan of point cloud to generate sparse tensor. Less depth
information is generated in order to accelerate the residual
depth calculation step in inference. The voxel size is the key
factor in voxelization, which influences the granularity of a
sparse tensor so that efficiency is affected. Smaller voxel size
can achieve better IoU performance but efficiency would be
reduced. We test the voxel sizes with 0.1m, 0.3m, 0.5m and

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on May 11,2022 at 01:48:15 UTC from IEEE Xplore.  Restrictions apply. 



0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3172031, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

10

0.7m in order to discover the best segmentation performance
while fulfilling the real time requirement in LiDAR.

TABLE IV: Inference time for different voxel sizes

voxel size 0.1m 0.3m 0.5m 0.7m

Time 135.49ms 78.23ms 60.88ms 52.34ms
IoU 0.51 0.43 0.32 0.25

As shown in Table IV, with AR-SI filter turned on and
P value fixed to 10, we can get low segmentation perfor-
mance (0.25) if we want to speed up the EmPointMovSeg
using 0.7m voxel. However, given the practical velodyne
LiDAR frequency is below 10HZ, we choose voxel size
equals to 0.3m to achieve real time performance. With the
model inference time 36.14ms, the total inference time is
78.23ms+36.14ms = 114.37ms, which can fulfill the on-line
requirements in LiDAR segmentation with an acceptable IoU
performance 43.13%. Comparing to 62.5% [27] in dense resid-
ual image, our EmPointMovSeg suggests a way of balancing
computational time and segmentation IoU, which makes on-
line LiDAR moving-object segmentation possible in embedded
system.

3) Moving-object Segmentation Performance Comparative
Study: In this section, we create baselines in the following
aspects for comparative study:

* No-Seq Non-Sparse Method: This baseline indicates
traditional segmentation method which input raw point
cloud data and output segmentation label directly. We
do not input sequential data and use each scan raw
data to predict segmentation mask. We choose the most
representative method PointNet as this baseline. Also,
considering the performance on embedded system, we
also add MINet [45] into this baseline for comparison.
For MINet, projected image is compulsory input to the
network so that the total processing time should take
project map calculation into account.

* Seq Non-Sparse Method: This baseline means using
the sequential raw point cloud containing residual depth
information as input. Combing the spacial and temporal
information as input, we choose residual depth equals to
10 which is the same as our proposed method. We train
the network using the label in [1] as current majority
dense segmentation methods. Here, we select most recent
method SalsaNext as this candidate. Also, we reconstruct
MINet to serve as sequential segmentation competitor for
the reason that: MInet is projected-based multi-label Li-
DAR segmentation, which is very similar to our proposed
method. In order to keep fairness in the comparison, we
set the sequence length N to 10 in MINet. The time in
total inference progress should add projected image time
consumption into calculation.

* No-Seq Sparse Method: This baseline picks up each
frame of raw point cloud converting into sparse tensor.
This sparse tensor, selecting 0.3m voxel size as discussed
in the last section, generates the input of the sparse
convolution network which outputs the final prediction
result. Here, we use MinkUNet in MinkowskiEngine

[40], the most representative segmentation method in
sparse tensor, to serve as this baseline.

* Seq Sparse Method: The final method, which is our
proposed method, EmPointMovSeg, use sequential point
cloud as input and use the sparse convolution network
architecture as Fig. 5 shown. This method works as
sequential input and sparse tensor/convolution competitor.

Since one complete segmentation process involves raw point
cloud captured to residual depth images generation if sequen-
tial data is used, and inference via CNN network. As a result,
residual depth image generation time should be added into
final inference time in case that the temporal sequential data is
required. Otherwise, no such time slot is added, and only raw
point cloud is used directly. All the residual depth images are
calculated in Python3.8 environment. The quantitative results
for the comparison are shown in Table. V.

TABLE V: Comparative study of different segmentation
methods in IoU and inference time performance

IoU Time

PointNet [16] 0.16 273.78ms
MINet [45] 0.19 92.21ms

SalsaNext/N = 10 [27] 0.62 293.12ms
MINet/N = 10 0.31 105.29ms

MinkUNet [40] 0.17 106.46ms

EmPointMovSeg 0.43 114.37ms

From Table.V we can see that our proposed EmPoint-
MovSeg is able to achieve on-line LiDAR data segmenta-
tion while maintaining a relatively high IoU performance.
Although MINet with sequential input can satisfy the on-line
segmentation requirement, lower IoU is achieved comparing
to EmPointMovSeg. Since PointNet baseline uses raw point
cloud and process directly, dense and spacial varying density
data requires long inference time, which can neither perform
on-line segmentation, nor accurate semantic segmentation in
3D LiDAR data. MINet is able to achieve best on-line per-
formance (21ms in reference time and 71.21ms in projected
image calculation time). But low IoU performance in movable
class segmentation because no sequential feature is imported.
SalsaNext serves as our non-sparse convolution competitor
using sequence point cloud to calculate residual depth image
and then use CNN network for inference. Although best
achievement in segmentation IoU, we can see dense raw
point cloud data generates high residual image computational
consumption which is not practical for real-time segmentation.
The real LiDAR frequency ranges from 8HZ to 20HZ [46],
which means on-line segmentation inference time varying
from 125ms to 50ms. Under this real-time constraint, MINet
using sequential data can give an acceptable movable class IoU
performance. For rest two methods using sparse tensor, both
MinkUNet and our proposed EmPointMovSeg can satisfy the
on-line segmentation requirements. However, with poor IoU
performance of MinkUNet, our proposed EmPointMovSeg
can narrow the gap between accurate segment and real-time
performance. Our proposed EmPointMovSeg is not able to
achieve best IoU as dense convolution network SalsaNext
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which use sequential and dense input. Instead, considering
practical use in embedded system on autonomous vehicle, we
sacrifice IoU for an rational ratio but give possibility for on-
line LiDAR segmentation task, which is more important for
safety-critical cases.

4) Moving-object application study: In this section, we
analyze the effect of AR-SI to assist LiDAR-based odom-
etry/SLAM. SLAM applications highly rely on the static
objects to converge to an precise pose estimation. Dynamic
objects should be constructed as outliers in SLAM reprojection
error. As a result, MOS and AR-SI methods, both having
moving/non-moving objects separation character, are supposed
to improve the rotational accuracy.

TABLE VI: KITTI Odometry Benchmark Results

SuMa++ SuMa+MOS SuMa+AR-SI

Seq.00-10 (Train) 0.32/0.74 0.32/0.71 0.31/0.69
Seq.11-21 (Test) 0.34/1.10 0.34/1.08 0.32/1.05

Similar to [1], we apply our enhanced prediction mask
before feeding the point cloud into the SLAM pipeline in
KITTI odometry benchmark. We evaluate these odometry
methods, namely, SuMa++ [47], SuMa+MOS and our pro-
posed SuMa+AR-SI. We select two key values to illustrate
odometry accucacy: relative rotational error in degrees per
100m and relative translational error in %. The quantitative
results in Table. VI shows MOS and AR-SI methods are
the same as our claim of improving the odometry results
slightly. Base on the well-designed semantic-enhanced SuMa,
our proposed method AR-SI raise up the accuracy a little
because the AR-SI method directly targets on filtering out
moving objects.

B. Study on Practical Embedded System

In this section, we focus on evaluating our algorithm on a
real embedded system. In aspect of safety, we mainly check
two capabilities in details:

1) Whether the algorithm runtime can fullfill real-time
detection requirement;

2) Whether the algorithm can detect real potential threat to
the vehicle.

1) Embedded system hardware: The runtime hardware we
choose NVIDIA Jetson Xavier Developer kit. This platform
contains 512-core NVIDIA Volta GPU with 64 tensor cores,
16GB 256-bit wide LPDDR4X memory and 64-bit 8-core
NVIDIA Carmel CPU on board. The real-time 3D LiDAR
sensor have 16 channels, vertical field of view ranging from
+15.0◦ to −15.0◦ and 10 HZ rotation rate. The LiDAR
sensor communicates with Xavier board via gigabit Ethernet
interface.

2) Practical results: The proposed method involves two
operations to calculate the final segmentation result: first to
use odometry data to generate residual depth, then to combine
captured data (x, y, z, remission) with residual depth for
model inference.

As shown in Fig. 8, EmPointMovSeg is evaluated in the
most representative segmentation dataset, SemanticKITTI. We

Fig. 7: Embedded system equipped with velodyne vlp-16
LiDAR sensor.

can reach a consensus that EmPointMovSeg distinguishes
moving car clearly from the static environment around. In Fig.
9, EmPointMovSeg is deployed in the mentioned equipment
in Fig. 7 and process real-time point cloud. The original road
has fence and tree on the left side and a truck on the right
side. From Fig. 9, we can see clearly our proposed method,
EmPointMovSeg, filters out the static objects on the left side
and predicts a truck as moving-object using red mask. Also,
benefit from AR-SI filter, the fence point cloud on the right
side is also filtered. This result proves that EmPointMovSeg,
not only manages the segmentation task on a resource-limit
embedded system platform, but also discover the potential
safety-critical threat to self-driving car. This achievement is
meaningful to practical moving-object segmentation task in
autonomous driving.

EmPointMovSeg takes 81.47ms in pose estimation and
input tensor preparation, and then use 36.14ms for in-
ference the prediction mask. The total time consumption
is 81.47ms + 36.14ms = 117.61ms, which stands for
1/117.61ms = 8.5HZ in the above mentioned embedded
system. This performance can fully satisfy on-line LiDAR
segmentation which is novel to current existing methods only
evaluated in powerful computer or GPU. EmPointMovSeg
narrows the gap between accurate segmentation performance
and high computation time consumption, which is a vital step
for practical LiDAR segmentation use in autonomous driving.
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Fig. 8: 3D LiDAR MOS using EmPointMovSeg in SemanticKITTI.

Fig. 9: 3D LiDAR MOS using EmPointMovSeg in practical HKUST campus.

What is more, EmPointMovSeg provides a hint to accelerate
the safety-critical task in autonomous driving reaction rather
than optimizing the hardware only. It provides a solution in
algorithm calculation that is cost insensitive.

VII. CONCLUSION

In this work, we first figure out the importance of moving-
object segmentation in autonomous driving safety-critical
scene context analysis and dig into current drawbacks that
constrains moving-object segmentation used in reality. We
theoretically solve the moving-object problem using AR-SI
math, which is novel comparing to current existing large
scale 3D LiDAR segmentation. Using the the advantages of
combining the temporal and the spatial features in AR-SI
filter, we propose our sparse tensor based CNN network,

EmPointMovSeg, to balance the process efficiency and seg-
mentation accuracy. The balance is the key in making large
scale 3D LiDAR segmentation practical in autonomous driving
embedded system, and most importantly, provides possibility
for the mission of safety-critical task reaction. This algorithm
is cost insensitive so that it can be transplanted to other
platforms easily. The evaluation results show that our proposed
scheme works efficiently in both synthetic dataset and real
hardware platforms.
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