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A B S T R A C T   

As a large amount of waste generated from global construction activities, robots that can automatically recycle 
construction and demolition (C&D) waste have become efficient tools for conserving natural resources, but the 
complex environment and high diversity of waste on the construction site raise challenges for robot patrolling, 
object recognition, and grasping. This paper describes a robot for C&D waste recycling, achieving real-time 
navigation through Simultaneous Localization and Mapping (SLAM). Additionally, a deep learning method 
and a high-precision 3D object pickup strategy were adopted for the accurate identification and stable grasping 
of waste items. The recognition accuracy of various kinds of C&D waste was analyzed under different illumi-
nation and spatial density conditions. Based on this research, the automation level and the application scenario 
of the robot prototype would be further improved and broadened.   

1. Introduction 

Human activities produce a huge amount of waste, which causes 
severe environmental problems. In 2015, 8.7 billion tons of municipal 
solid waste were produced worldwide, and the waste quantities 
continue to grow every year. By the end of the 21 century, it is expected 
that the amount of global waste will have doubled or even tripled if not 
managed properly [1]. Construction and demolition (C&D) waste is 
defined as the surplus or damaged products and materials that arise from 
construction, renovation, and demolition activities [2]. C&D waste often 
represents the largest proportion of the total waste generated. For 
example, in Australia, C&D waste accounts for about 44% of the total 
amount of annual waste across all industry sectors [3]. Generally, C&D 
waste is a mixture of inert, non-inert, harmless, and harmful materials, 
so effective sorting is an essential step in the disposal of C&D waste [4]. 
However, currently, the C&D waste mixture is usually transported 
directly to landfills without prior distinction [5,6]. This coarse waste 
management causes air, water, and soil pollution, and puts tremendous 
pressure on limited landfill spaces, which has resulted in many serious 
accidents. For example, in April 2017, at least 30 people died in a 
landslide at a solid waste landfill site in Sri Lanka, following the death of 

over 115 people from another landfill landslide in Ethiopia the prior 
month [7]. 

As C&D waste could be reused as raw materials, recycling C&D waste 
is a widely acknowledged way to conserve natural resources. Generally, 
there are two strategies for C&D waste recycling: off-site recycling and 
on-site recycling. In most countries, off-site recycling is a more popular 
strategy in which C&D waste is transported to centralized recycling 
plants for treatment. However, this strategy has certain drawbacks, such 
as tremendous transportation costs and high demand for land occupa-
tion [8]. In contrast, on-site C&D waste recycling, which sorts waste 
directly on the construction site, can minimize the cost and pollution 
issues associated with waste transportation and storage [9]. As such, on- 
site waste recycling is deemed to be one of the most efficient strategies of 
waste management [10]. In Japan, the overall recycling rate is higher 
than 90% as on-site waste sorting is strictly enforced on every con-
struction site. But limited site space, trivial management work, and high 
labor cost and time consumption collectively hinder the popularization 
of on-site waste recycling all over the world [11]. Therefore, new 
automation technology is in high demand to solve these problems of on- 
site C&D waste sorting. 

The past decade has witnessed advances in construction automation. 
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As an emerging technology, construction robots play an increasingly 
important role in the greening of the building sector [12–14]. In 
particular, off-site waste robotics integrating advanced computer vision 
and waste handling processes has been developed to sort and recycle 
bulky C&D waste with high efficiency. Xiao et al. developed a machine 
to automatically sort C&D waste on a conveyer belt [15]. Kujala et al. 
designed a truss-type robot for heavy objects grasping on a conveyer belt 
[16]. In comparison, mature technology for on-site C&D waste recycling 
has long been absent. Highly autonomous C&D waste recycling on 
construction sites remains a challenge, mainly due to unstructured 
construction environments and the wide variety of waste. Recently, 
robot prototypes for on-site waste recycling have been proposed 
[17,18]. Computer vision and neural network approaches have been 
used to identify waste objects [17], while LiDAR-based simultaneous 
localization and mapping (SLAM) technology is adopted for robot 
patrolling [18]. However, only two or three types of C&D waste, such as 
nails and screws, can be recognized. Moreover, an ordinary cam- era is 
used to determine the 2D position of the target object, which may pre-
vent precise grasping of waste with a complex 3D structure. In addition, 
the LiDAR- based SLAM algorithm suffers from unsuccessful localization 
due to the limited information acquired [19]. Therefore, it remains 
unclear whether automatic waste recycling can be achieved efficiently 
in a complex environments, such as the construction sites. 

Motivated by the urgency for efficient on-site waste recycling, a high- 
robustness robot prototype has been designed and built, which adopt a 
novel SLAM method and high-accuracy 3D object picking strategy for 
automatic C&D waste recycling on construction sites. Specifically, an 
advanced sensor module is assembled with two RGB-depth (RGB-D) 
cameras and a 3D LiDAR. The 3D LiDAR and one RGB-D camera at the 
top of the robot perceive the environmental information for fast and 
accurate robot localization. In comparison with a one-sensor SLAM al-
gorithm, the integrated LiDAR-camera sensory system takes advantage 
of both vision-based and range-based methods, allowing real-time 
localization of the robot, which is especially essential for patrolling 
around complex environments. Another long-existing challenge for 
waste collection on construction sites, is the wide variety of waste, with 
diverse morphology, volume and materials, thus resulting in great 

difficulty in waste classification and object grasping. To overcome this 
challenge, a second RGB-D camera is attached to the wrist of a six- 
degree-of-freedom (6-DOF) robotic arm, serving as an image and 
depth sensor to scan the ground, recognize waste objects, and determine 
their 3D positions. Accordingly, an expanded dataset is established by 
collecting RGB-D images of waste objects captured on construction sites 
with complex backgrounds. Thanks to this comprehensive dataset, the 
robot can recognize various waste objects efficiently with the Mask R- 
CNN (Region-Based Convolutional Neural Networks) algorithm [20]. 
Based on the depth information captured by the RGB-D camera, the 3D 
model of the detected waste object can be constructed, and the optimal 
3D pickup point can be computed. Then, the robotic manipulator can 
grasp each waste object and put it into a multi-cell recycling bin on the 
robot. A powerful and compact control system was built to efficiently 
drive the robot patrolling, object identification, and grasping functions 
to achieve automatic waste sorting and recycling on construction sites. 
The feasibility of the developed robot prototype was verified by both 
laboratory and field tests. It is demonstrated that this robot has an 
outstanding capacity to perform automatic C&D waste recognition and 
collection under complex environments, thus providing a robust and 
reliable prototype for automatic waste sorting on construction sites. 

2. Overview of the proposed robot prototype 

2.1. Hardware configuration 

The robot prototype for construction waste sorting is shown in Fig. 1. 
The robot system is composed of five major parts: (1) sensors for envi-
ronment perception, (2) a robot base, (3) a manipulator, (4) a Next Unit 
of Computing (NUC), and (5) a waste container. 

The sensor module of the robot consists of three environment 
perception devices, including a 3D Velodyne LiDAR PUCK-16 (VLP-16) 
and two D435i cameras. LiDAR is a method for determining variable 
distance by targeting an object with a laser and measuring the time of 
return for the reflected light. VLP-16 is a small, compact LiDAR opti-
mized for a variety of applications in mapping and robots. It can achieve 
high accuracy of 3 cm within its working range of about 100 m. The 

Fig. 1. (a) Prototype of the proposed robot, (b) construction of the prototype.  
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D435i camera is a cutting-edge stereo depth camera, which can collect 
RGB images and depth images simultaneously. The depth image pre-
sents the distance between the camera and the object with an error of 
smaller than 2% within a 2 m range. The D435i camera has been widely 
used for depth sensing thanks to its high resolution, low cost, and small 
size. 

The robot base is Robotnik Summit XL mobile robot with the di-
mensions 720 × 613 × 392 mm (length × width × height). It is equipped 
with 4 high-power motor wheels, which can be well adapted to complex 
outdoor environments with a skid-steering configuration. Its maximum 
speed is 3 m/s and it can carry up to 20 kg of weight. A motor driver is 
used to control the rotation, forward, or back translation of the robot. 

To manipulate objects of various shapes and sizes, a 6-DOF Kinova 
MICO2 arm equipped with a 2-finger gripper KG-2 was installed on the 
robot prototype. Kinova MICO2 is a lightweight humanoid arm, with a 
total weight of only 4.6 kg. The payload of the manipulator is 1.3 kg. 

An Intel NUC minicomputer (Intel(R) Core(TM) i5-6260U CPU @ 
1.80GHz, 16GB RAM, 1000 Mb Ethernet) was used to control the robot. 
All the hardware components were connected to the minicomputer via 
USB or serial ports without excessive wiring. 

A multi-cell garbage container was fixed to the button of the robot 
base, and used to collect and sort different kinds of C&D waste. 

2.2. Software system 

A software system was designed and built for automatic patrolling, 
waste detection, and grasping. As shown in Fig. 2, the software system 
can be divided into three sub-systems based on their functions: the 
patrolling system, the waste detection system, and the waste grasping 
system. Specifically, the patrolling system receives information from 
Camera 1 and the LiDAR, and then sends the localization information to 
the robot base, and Camera 2 collects images for the waste detection 
system. After waste identification, the manipulator is controlled by the 
waste grasping system to collect the waste object. As shown in Fig. 2, 
when waste is not detected, the robot base continues the patrolling 
process, and the manipulator maintains in the holding position. Camera 
1 and the LiDAR provide information about the environment for robot 
localization. During this period, Camera 2 continuously sends images to 
the waste detection system for object recognition. Once a waste object is 

detected by the waste detection system, the patrolling process is paused. 
Then, the waste detection system calculates the 3D coordinates of the 
pickup point and sends the results to the waste grasping system, which 
performs the motion planning for waste grasping. 

The software system was developed on the robotic operating system 
(ROS). As shown in Fig. 3, hardware and algorithms are presented as 
nodes in the graph. They retrieve or pass messages to each other to 
control the robot’s behavior. In brief, visual-LiDAR-localization is a node 
that localizes the robot on a pre-built map based on the images and point 
cloud information received from Camera 1 and LiDAR. Then, the output 
local occupancy map is transferred to the move base node for robot 
navigation. The images captured by Camera 2 are processed by the 
object-detection node. When a waste object is detected, its 3D co-
ordinates are calculated and transferred to the Judge node. A message is 
then broadcast to the base to stop patrolling, followed by a command to 
make the manipulator grasp the waste object. 

3. Key methodology 

3.1. SLAM 

3.1.1. Overview 
To improve the precision of robot localization, a novel 3D localiza-

tion method was developed by combining both visual and LiDAR in-
formation as illustrated in Fig. 4. Two advanced SLAM systems, ORB- 
SLAM2 [21] and LOAM [22], are employed to build the visual map 
and the LiDAR map, respectively. ORB-SLAM2 is an indirect visual 
SLAM method for building a lightweight visual map and localizing the 
camera. ORB-SLAM2 extracts local keypoints, and computes their de-
scriptors, which are matched against the visual landmark map. The 
camera pose is tracked with the matched correspondences. In the 
backend, ORB-SLAM2 jointly optimizes the landmark positions and the 
camera poses. LOAM is used to build a dense point cloud map. Planar 
and edge points are extracted from every LiDAR scan and are then 
aligned against the dense local map to estimate the frame pose. After 
registration, the current scan is inserted into the local map, which 
incrementally reconstructs the entire environment. 

Then the extrinsic parameters were calibrated, including the relative 
rotation and translation between the LiDAR and the camera, to generate 

Fig. 2. Architecture of the ROS system.  
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a consistent map by merging the visual map and the LiDAR map. For 
robot localization, firstly an initial guess of the robot location is 
computed from the visual information captured by Camera 1. Sequential 
images are acquired until the current visual frame is successfully 
localized on the pre-built map. Then, the visual-based pose is used as the 
initial guess for LiDAR localization, as shown in Fig. 4. Finally, the 
current LiDAR scan is registered to the dense map to output a 6-DoF pose 
estimation for navigation use. 

3.1.2. Mapping 
In the mapping stage, an integrated map containing both visual and 

LiDAR information is built by ORB-SLAM2 and LOAM, two state-of-art 
SLAM methods in visual and LiDAR localization fields, respectively. 
For map reconstruction, firstly, the visual images and LiDAR informa-
tion were captured simultaneously in the target scenario. Then, the 
trajectories of both sensors are computed to generate the visual map and 
the LiDAR map. The visual map is represented by a bipartite graph of 
keyframes and visual landmarks. The keyframe generally stores infor-
mation about the estimated pose and global descriptor for re- 
localization, while the visual landmark mainly stores its rep- resenta-
tive descriptor and position Pi. The visual observations are represented 
by the edges between the landmark and the keyframe. On the other 

Fig. 3. Structure of the ROS system.  

Fig. 4. System flowchart of the localization module.  
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hand, the LiDAR map is simply represented by a point cloud. 
The next step is to align the maps of the two modalities that were 

built separately. The maps can be aligned based on the extrinsic pa-
rameters between the camera and LiDAR, i.e., the rigid body translation 
(RBT) from the camera to the LiDAR TLC, from the camera to the world 
TWC, and from the LiDAR to the world TWL. Here, an automatic method 
is employed, which does not need a calibration process in advance. First, 
the trajectories of two SLAM systems is synchronized with the closest 
time stamps, which gives two sets of poses, denoted as PC = {TWCk}k=1… 

nand PL = {TWLk}k=1…n. Then, the Umeyama method is used to align 
these two trajectories, which minimizes the following objective 
function: 

T̂LC = argmin
TLC

1
n
∑n

k=1

⃦
⃦tWLk −

(
RLCtWCk + tLC

) ⃦
⃦2

2 (1)  

where RLC and tLC is the rotational and translational component of TLC, 
respectively. With the extrinsic parameters, the visual map is then 
transformed under the global frame to ensure consistency between the 
two maps. 

3.1.3. Localization 
After map construction, localization procedures are performed hi-

erarchically, in which the initial frame is re-localized coarsely by the 
visual data and then is fine-tuned by the LiDAR data. This strategy can 
take advantage of both modalities. The visual localization system can 
recognize the revisited places and provide the initial guess, while the 
LiDAR localization systems can register the input scan with high 
accuracy. 

For the visual localization part, the system first extracts Oriented 
FAST and Rotated BRIEF (ORB), which is a feature descriptor invariant 
to rotation and scale, from the input image. Next, these features are 
assigned to the vocabulary tree and are transformed into a global 
descriptor using the Bag-of-Words (BoW) model [23]. BoW divides the 
descriptor space into several clusters, and each extracted descriptor is 
assigned to the closed cluster. The number histogram of descriptor 
assignment yields a global descriptor of the input image. With the BoW 
model, the relevant frames are retrieved by the similarity of the global 
descriptors against the keyframes. Next, for each candidate, the camera 
pose can be estimated by minimizing the reprojection error between the 
matched 3D landmarks and the 2D key points, also regarded as the 
Perspective-n-Point (PnP) problem [24]. According to the guidance of 
ORB-SLAM2, this problem was solved in a random sample consensus 
(RANSAC) scheme [25]. The method randomly samples minimal cor-
respondence pairs to estimate the camera pose and count the number of 
inliers. After a fixed number of iterations, the estimation with maximum 
inlier correspondences is considered to be the best solution. If the so-
lution is valid, the camera poses can be refined accordingly. Visual 
localization is performed continuously until the visual frame is suc-
cessfully matched in the map, and then the pose estimation will be sent 
to the LiDAR for further localization. 

With the initial guess, the LiDAR localization part registers sequen-
tial point cloud scans against the prior LiDAR map. For the first frame, 
the visual localization result was used as the initial guess, given by 
TWLO = TWCo T− 1

LC . Forthe subsequent kth frame, a constant velocity 
model is assumed and the pose is given by 

TWLk = TWLk− 1 T− 1
WLk− 2

TWLk− 1 (2) 

Then, the Generalized Iterative Closest Point (GICP) [26] is used as 
the registration method for pose fine-tuning. Compared to the tradi-
tional ICP method, GICP assigns each point with a Covariance matrix. 
Similar to ICP variants, GICP iteratively associates points between the 
source and the target point cloud and estimates the relative pose 
weighed by the covariance of each point. The original GICP method uses 
a KD-Tree-based association strategy, where a binary tree is built with 
each node dividing one of the three dimensions into two half-spaces. 

This KD-Tree-based [27] association requires high computational re-
sources for correspondence estimation. To alleviate the computational 
cost and perform scan-matching in real-time, a voxel-based imple-
mentation is adopted [28], where the information of components is 
stored in voxels with unique indices hashed from the voxel location. In 
addition to a voxel-based GICP implementation, two strategies are used 
to make the LiDAR localization module real-time. Firstly, the input point 
cloud is downsampled using a voxel filter with a specific resolution. 
Secondly, voxelization and covariance estimation are performed in 
advance of the scan matching. 

3.2. Picking strategy 

A robust picking strategy for C&D waste objects of varied shapes is 
established. The picking strategy is divided into three parts: object 
detection, 3D coordinate estimation, and coordinate transformation. 
Firstly, the Mask R- CNN method [20] is applied to detect the object’s 
boundary. Mask R-CNN is a deep neural network architecture that aims 
to solve instance segmentation problems in computer vision. It can 
identify an object’s class, draw the bounding box, and delineates an 
object’s boundary. Then, the RGB-D camera is used to get both the RGB 
images and the corresponding aligned depth images for 3D coordinate 
estimation of the center of gravity. Finally, the estimated 3D coordinate 
is transformed from the camera coordinate to the base of the robot 
manipulator for grasping pose estimation. 

3.2.1. Object recognition 
To ensure precise object grasping, firstly the boundary of the waste 

object should be delineated at pixel-level accuracy. In this study, 
instance segmentation, a deep learning technology, was adopted to 
detect the contours of all objects in the image. Among the state-of-the- 
art algorithms for instance segmentation, Mask R-CNN surpasses other 
algorithms, such as MNC[29] and FCIS+++[30], in terms of accuracy in 
various categories [20]. The basic structure of the Mask R-CNN is shown 
in Fig. 5. Firstly, the input image is sent to the region proposal network 
(RPN), which consists of a ResNet backbone network, feature pyramid 
network, and class-agnostic detection head. The RPN outputs multiple 
candidate bounding boxes. Then, features in the proposed regions are 
aligned and fed to additional prediction branches. A classification 
branch is applied to predict the class of the object and output the class 
label. Meanwhile, a bounding-box regression was performed for the 
candidate box to get the offset for bounding boxes refinement. Within 
the box boundary, a segmentation mask is then predicted in a pixel-to- 
pixel manner using a fully convolutional network (CONV). A great 
challenge for precise detection of C&D waste objects is that the back-
ground and light conditions on construction sites are largely variable 
and distinct. Therefore, to improve the applicability of the proposed 
method in field tests, it is necessary to create a dataset of images 
collected under real construction site circumstances. 

In detail, the newly collected construction waste dataset has 756 RGB 
images with the same resolution of 640 × 480 pixels. The dataset con-
tains seven classes of waste objects, including cotton gloves, wood 
blocks, small ferrous, plastic pipe, bamboo, corrugated paper, and rebar. 
All the images were taken on a construction site covering large varia-
tions in scenes and illumination conditions. Each waste object in the 
dataset was annotated by classical pixel-wise segmentation with a class 
label, as shown in Fig. 6. The 756 images were split into 454 identities 
for training, 151 identities for validation, and the remaining 151 iden-
tities for testing. The dataset was trained using the mmdetection2 
platform. Table 1 shows the mAP (mean averaged over IoU thresholds) 
at the Intersection-over-Union (IoU) metrics from 0.5 to 0.95. As can be 
seen, the mAP for box detection and segmentation approaches 0.66 and 
0.68, respectively. Meanwhile, the Average Recall (ARs) for box detec-
tion and segmentation is 0.70 and 0.72, respectively. The mAP 
(IoU = 0.5:0.95) for different kinds of objects is shown in Table 2. 

The representative outputs of Mask R-CNN are demonstrated in 
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Fig. 7. As can be seen, Mask R-CNN can precisely identify various kinds 
of objects with diverse shapes and colors, even under complex light 
conditions and with different backgrounds, suggesting the high robust-
ness of the Mask R-CNN model. 

Next, an in-depth evaluation was conducted to evaluate the recog-
nition accuracy in different site environments. Specifically, the waste 
images were classified into three classes according to different spatial 
densities and light contrasts, as shown in Fig. 8. Quantitative analysis of 
the segmentation results Table 3 in shows that Mask R-CNN can recog-
nize waste targets under different light conditions, with the mAP values 

Fig. 5. MaskR-CNN framework.  

Fig. 6. Data examples, (a) RGB images, (b) corresponding label images.  

Table 1 
mAP for box and segmentation.  

IoU 

mAP 0.5:0.95 0.5 0.75 

segm 0.683 0.867 0.772 
box 0.657 0.865 0.788  
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of high light-dark contrast images slightly lower than those of medium 
and low light-dark contrast ones, possibly due to the highly heteroge-
neous brightness caused by light and shadows. The recognition accuracy 
increases with the decreasing spatial density of the waste, as shown in 
Table 3. These results indicate that the Mask R-CNN algorithm is highly 
robust to different site environments. 

3.2.2. 3D coordinate estimation 
In order to pick up waste objects stably, the center of gravity should 

be calculated with high accuracy, which is presented as the pickup point 
Pin Fig. 9. To locate the point P, the 3D model of the waste object is 
firstly built prior to the calculation of the 3D coordinate of the center of 
gravity (XC,YC,ZC). Next, the point P is transformed from the camera 
coordinate to the robot manipulator coordinate (XR,YR,ZR) using RRtoC 
and TRtoC, which are the external parameters connecting the two coor-
dinate systems. 

3D model reconstruction. Prior to 3D coordinate estimation, 3D model 
reconstruction should be conducted based on the RGB and depth images 
captured by the RGB-D camera, as shown in Fig. 10(a) and (b). Firstly, a 
median filter is used to make the depth image more smooth (Fig. 10(c)). 

Then the depth image is transformed to the 3D point cloud by using the 
calibrated internal parameters of the camera [31], as shown in Fig. 10 
(d). Next, with the help of instance segmentation results obtained from 
Mask R-CNN (Fig. 10(e)), the point cloud of the detected waste objects 
can be separated from that of the background, which is marked in yellow 
and blue respectively in Fig. 10(f), respectively. 

Computation for center of gravity. The center of gravity P, which is 
presented as XC, YC, and ZC, is calculated by the following equations: 

XC =

∫∫∫

DXCdσ
∫∫∫

Ddσ (3)  

YC =

∫∫∫

DYCdσ
∫∫∫

Ddσ (4)  

YC =

∫∫∫

DYCdσ
∫∫∫

Ddσ (5)  

in which D is the total volume of the detected waste object, and dσ is a 
unit volume in D. After calculation of the center of gravity P(XC, YC, ZC), 

Table 2 
mAP for different classes of objects.  

mAP Different classes of objects 

Cotton gloves Wood block Small ferros Plastic pipe Bamboo Bamboo Corrugated Paper Steel Bar 

segm 0.734 0.711 0.405 0.593 0.805 0.952 0.771 
box 0.666 0.737 0.549 0.584 0.721 0.768 0.782  

Fig. 7. Instance segmentation results, (a) RGB images in the test datasets, (b) corresponding predicted images.  
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the pickup direction is determined as the shortest line segment that 
passes through the point P. 

3.2.3. Coordinate transformation 
After obtaining the pickup point P and the pickup direction in the 

camera coordinate system, they are transferred to the coordinate system 
of the robot manipulator with the following equation: 

⎡

⎣
XR
YR
ZR

⎤

⎦ = RRtoC ×

⎡

⎣
XC
YC
ZC

⎤

⎦+TRtoC (6)  

where RRtoC and TRtoC is the rotation matrix and translation matrix, 
respectively, from the robot manipulator coordinate system to the 
camera coordinate system. They are obtained using the eye-in-hand 
calibration method [32,33]. 

4. Experiments 

4.1. Laboratory test 

To evaluate the performance of the robot prototype, a laboratory test 
was conducted (Fig. 11(a)). Firstly, the camera and LiDAR were used to 
scan the laboratory and construct a visual map (Fig. 11(b)) and a LiDAR 
map (Fig. 11(c)). Then a merged global map was constructed by using 
the extrinsic parameters between the camera and the LiDAR (Fig. 11(d)). 
Next, the 3D global map was transformed to the 2D map, and the 
extended BSA method was then applied [34] to do full coverage path 
planning, as shown in Fig. 12(a). During automatic patrolling (Fig. 12 
(b)), Camera 1 and the LiDAR continuously perceived the environment 
and sent the information to the SLAM system for robot pose estimation. 
As shown in Fig. 12(c), the visual frame was successfully re-localized as 
the feature points of the input image matched with the visual landmarks 
on the keyframe. Then the LiDAR localization was conducted for fine- 
tuning of the robot’s pose. It was found that the proposed SLAM 
method can register the sequential point cloud with the pre-built dense 

Fig. 8. Instance segmentation results of C&D waste under different site envi-
ronments. (a) RGB images with different light-dark contrast and spatial density, 
(b) corresponding predicted images. 

Table 3 
mAP for waste recognition under different site conditions.  

mAP Spatial density Light-dark contrast 

High Medium Low High Medium Low 

segm 0.571 0.653 0.707 0.565 0.664 0.672 
box 0.618 0.676 0.719 0.611 0.701 0.704  

Fig. 9. 3D coordinate estimation: (a) photography of the robot manipulator for 
waste grasping, (b) schematics of the robot manipulator and 3D coordi-
nate systems. 
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map with high accuracy in real-time. As shown in Fig. 12(d), the green 
point clouds received in real-time were well-aligned with the point 
clouds in the pre-built LiDAR map. 

At the same time, during the patrol of the robot prototype, Camera 2 
sent sequential images to the waste recognition system for automatic 
detection of waste objects on the path. Once a waste object was detected, 
its 3D coordinate of the center of gravity was calculated, and the robot 
manipulator performed motion planning for object grasping. As shown 
in Fig. 13(a), the robot manipulator was in the holding pose. In Fig. 13 
(b), the manipulator grasped the waste object successfully. Then the 
waste objects were sent to the dustbin automatically, as shown in Fig. 13 
(c). After the process of waste sorting, the robot arm returned to its 
original pose for waste objects detection (Fig. 13(d)), and the robot 
continued its patrolling process. 

4.2. Field test 

A field test was conducted to evaluate the outdoor performance of 

Fig. 10. 3D reconstruction and pickup point calculation: (a) RGB image and (b) 
corresponding depth image of the detected waste object, (c) smoothed depth 
image, (d) 3D model of the waste object, (e) the segmented waste object, (f) 
pickup direction and point of the waste object. XC, YC, and ZC are the three axes 
of the camera coordinate). 

Fig. 11. Map construction for the laboratory experiment: (a) environment of 
the laboratory; (b) visual map; (c) LiDAR map; (d) global map merged by visual 
map and LiDAR map. 

Fig. 12. Patrolling and localization for the laboratory experiment: (a) planning 
path for the laboratory test; (b) the patrolling robot; (c) visual frame with 
matched features; (d) localized LiDAR map. 

Fig. 13. Automatic picking process for the laboratory experiment: (a) original 
holding pose; (b) grasping pose; (c) dustbin pose; (d) holding pose. 
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the pro- posed robot prototype. When the robot entered the outdoor 
environment (Fig. 14(a)), it used the camera and the LiDAR to scan the 
site and build the visual map and the LiDAR map, as shown in Fig. 14(b) 
and (c), respectively. After the estimation of the extrinsic parameters 
between the cam- era and the LiDAR, a 3D global map was obtained, as 
shown in Fig. 14(d). Based on the 3D global map, the 2D global map was 
computed after compression. Then the extended BSA method was 
applied to perform full coverage path planning. The planed path is 
shown in Fig. 15(a). Based on the pre-built map and planned path, the 
robot prototype started to patrol around the out- door environment, as 
shown in Fig. 15(b). The 3D localization module also started to work. 
Firstly, the initial pose was calculated based on the visual features, as 
shown in Fig. 15(c). Then the following pose was successfully traced by 
the LiDAR localization part, which is shown in Fig. 15(d). 

During the patrol of the robot prototype, the robot manipulator was 

in the holding position, and Camera 2 scans the ground for automatic 
waste objects detection, as shown in Fig. 16(a). Once a waste object was 
detected, the patrolling process was paused, and the waste grasping 
system started its motion planning. Firstly, the pickup point and direc-
tion were calculated. Then the robot prototype grasped the waste object 
and sent it to the dustbin, as shown in Fig. 16(b) and (c), respectively. 
After sorting the detected waste object, the robot manipulator returned 
to the holding position (Fig. 16(d)). 

5. Conclusions 

In this study, a robot prototype was developed for automatic waste 
recycling on construction sites. The main contribution of this study re-
sides in the fol- lowing aspects: (1) build a compact robot prototype 
equipped with a high-load robot base, high-power motor wheels, and 
high-performance sensory modules for waste collection under complex 
outdoor circumstances; (2) develop an automatic patrolling system 
based on a two-sensor (RGB-D camera and 3D LiDAR) SLAM strategy for 
real-time 3D localization and navigation with high efficiency and ac-
curacy; (3) train a Mask R-CNN-based recognition model using an 
expanded image dataset of different types of C&D waste objects 
captured on real construction sites; (4) establish a high-precision 3D 
grasping strategy by calculating the 3D coordinates of waste objects 
based on depth images. 

This robot integrates multiple functions, including map reconstruc-
tion, navigation, re-localization, waste objects detection, and sorting. 
Especially, the newly developed SLAM method integrates the visual and 
LiDAR information for global localization, which aims to estimate the 
pose of the robot in a pre-built map without any prior knowledge of its 
initial pose. Global localization can be divided into two stages: initial 
localization, and pose tracking. LiDAR can track the robot’s position 

Fig. 14. Map construction for field test: (a) environment of the field; (b) visual 
map; (c) LiDAR map; (d) global map merged by visual map and LiDAR map. 

Fig. 15. Patrolling and localization for the field test: (a) planning path; (b) the 
patrolling robot; (c) visual frame with matched features; (d) localized 
LiDAR map. 

Fig. 16. Patrolling and localization for the field test, (a) planning path for the 
field test, (b) the patrolling robot, (c) visual frame with matched features, (d) 
localized LiDAR map. 
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with high accuracy in a prior map [35]. However, in the stage of initial 
localization, it is difficult for the LiDAR to recognize a place that has 
been seen before with only a limited number of LiDAR scans. In contrast, 
vision-based methods usually show better performance in this specific 
stage as rich visual information can be utilized for feature matching. In 
the second stage for pose tracking, however, vision-based methods have 
their problems; their computational cost is too high to search for the 
exact feature correspondences as there are thousands of 3D points and 
associated feature descriptors in the whole space. Therefore, for 
continuous pose tracking in the second stage, high-accuracy LiDAR- 
based methods are preferred. To take full advantage of the two kinds of 
information, they were integrated for robot localization. Firstly, both the 
camera and the LiDAR were used to construct a visual map and a LiDAR 
map, respectively. These two maps are merged to generate a global map 
after calibration. Next, in the following global localization stage, the 
visual information is utilized to recover the initial pose of the robot, and 
the LiDAR localization part registers sequential point cloud scans against 
the pre-built global map. 

C&D waste objects are of varying 3D shapes, making them difficult to 
grasp by robot manipulator. Traditional 2D image-based detection 
methods are applicable to objects of similar dimensions, and usually 
require a fixed distance between the manipulator and the object. How-
ever, the environments of construction sites are extremely complex in 
terms of both waste types and ground conditions. As such, the proposed 
3D detection and picking strategy based on depth images are of great 
significance to increase the robustness and precision of C&D waste 
sorting and collection. Successful laboratory and field tests demonstrate 
that the proposed robot prototype can serve as a powerful tool for 
automatic collection of C&D waste, which would greatly facilitate effi-
cient waste recycling and preservation of natural resources. 

The accuracy of target recognition decreases with the increased 
light-dark contrast and spatial density of objects. Therefore, in case of 
poor lighting conditions, it is advisable to assemble additional light 
sources on the robot to create a relatively homogeneous lighting back-
ground. As regards the situation of cluttered objects, a sequential 
grasping scheme can be adopted based on their distance from the robot. 

In future work, the robot functions, especially the automatic 
patrolling and waste grasping processes, will be fully evaluated on 
actual construction sites under different conditions. Additionally, the 
application scenarios of this robot will not be limited to construction 
sites but will be further extended to public places, such as markets, 
subway stations, and airports. Accordingly, the types of objects for 
recycling are no longer limited to the C&D waste but will cover more 
domestic garbage, such as plastic bags, bottles, and so on. A variety of 
waste images in different architectural scenes should be collected to 
establish a large dataset. Coupled with optimized Mask R-CNN algo-
rithms, it is applicable for the recognition of a wide spectrum of waste 
objects under a complex environment. On the other hand, the wide 
applications of construction robots in public places also raise higher 
requirements for the grasping system. An improved motion planning 
scheme should be introduced to avoid any collision with surrounding 
obstacles or people while grasping the target object. Highly repetitive 
scenes would degrade the performance of place recognition and locali-
zation during robot patrolling. Thus, other sensors, such as GPS, can be 
integrated into the sensory module to promote robot navigation in both 
outdoor and indoor environments. 
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