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Abstract—The problem of calibrating an extrinsic pa-
rameter between a camera and an inertial measurement
unit (IMU) using an industrial robotic manipulator has
been studied. This generates a result of hand–eye/robot–
world/camera–IMU calibration in a simultaneous fashion.
The developed method is free of inertial integration over
time and, thus, is robust to uncertain IMU biases. It is de-
rived that the problem can be solved via a simultaneous
optimization of hand–eye/robot–world/camera–IMU trans-
formations. The resulted optimization is highly noncon-
vex on the special Euclidean group, and we give glob-
ally optimal solutions. Experiments verify that the pro-
posed method is capable of estimating accurate calibration
parameters. Comparative studies between representatives
show the global optimality of the proposed method. The
new simultaneous method is capable of conducting cali-
bration of a robot/camera/IMU combination. The designed
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method guarantees the global optimality; thus, the accu-
racy is ensured. The developed globally optimal solutions
will also be computationally efficient on modern industrial
computers. Finally, we show that the proposed method can
give accurate calibration results for a stereo/IMU sensor
combination.

Index Terms—Camera–IMU calibration, hand–eye cali-
bration, industrial robotic manipulator, nonconvex opti-
mization, pose estimation.

I. INTRODUCTION

A. Background and Related Work

PRECISION industrial grasping tasks have high demands
on the servoing accuracy. To meet such purposes, vi-

sual/inertial sensors are usually mounted to the robotic ma-
nipulator for precise inspection of the objects to be grasped.
In such a system, it is required that all frames of the sensors
and the manipulator should be aligned so that the processed
information can be mapped from one frame to another [1]. The
key step to obtain the unknown transformation from the vision
sensor frame to the frame of an end-effector attached to the
robotic manipulator is called the hand–eye calibration, which
was first proposed by robotic scientists in the late 1980s [2], [3].
Hand–eye calibration is usually abstracted as a mathematical
problem of the form AX = XB, in which X is the unknown
hand–eye parameter to be solved. Extensive efforts have been
paid to seek efficient and accurate closed-form solutions to the
hand–eye calibration problem [4]–[6]. It has been later found
out that, if one also takes the robot–world pose into account,
the hand–eye/robot–world calibration algorithm of the type
AX = Y B can be established, where X still represents the
hand–eye relationship, whileY exactly denotes the robot–world
transformation [7]. The problemsAX = XB andAX = Y B
stimulate many other industrial calibration works that resemble
their mathematical forms [8], [9]. Although many analytical
solutions (see, e.g., [10] and [11]) have been found for these
problems [12], they are still nonconvex ones indicating that a
closed-form solution cannot reach the global minimum, and
further iterative search is required. Therefore, in the past few
years, the community concentrated on finding globally optimal
solutions for these problems [13]–[15].
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Recently, industrial vision sensors have been usually designed
with an inertial measurement unit (IMU) in a compact manner.
Such a visual/inertial sensor combination brings great conve-
nience for very accurate and highly dynamical visual–inertial
odometry [16]. The calibration for extrinsic parameter between
the camera and the IMU is an important issue but may not
have been solved properly. The renowned toolbox Kalibr [17]
aims to offer a flexible calibration pipeline for most users. It
is based on motion-based calibration concepts [18], [19] that
significantly require IMU preintegration [20], which diverges
quickly in the presence of large inertial biases. Historically,
calibrating vision sensors using a robotic manipulator has been
studied [21]. Cameras can also help the calibration of com-
mon robotic manipulators [22] or parallel mechanisms like
six-degree-of-freedom Stewart platforms [23]. Unified camera–
robot calibration improves the calibration accuracy for respec-
tive calibration steps [24]. Moreover, inertial sensors can also
be calibrated using robotic manipulators [25]. IMUs are also
benefiting the calibration of robotic manipulators [26]. For
highly dynamical visual servoing tasks, the IMU also helps to
gap the low-rate data sampling of the camera and the robotic
manipulator [27]. Therefore, calibrating the robot, the camera,
and the IMU simultaneously can consider the measurement
errors in a unified fashion and, thus, enhances the calibration
accuracy.

B. Contribution

The contributions of this article are listed as follows:
1) A hybrid pose determination method is derived, which

considers the hand–eye/robot–world/camera–IMU trans-
formations in a unified framework. The developed algo-
rithm is free of IMU preintegration, so it is more robust
to unknown IMU biases.

2) The pose determination is refined by a nonconvex opti-
mization. We also give the globally optimal solutions to
this problem.

3) The designed method, according to its global optimality,
can obtain calibration parameters that are very close to the
ground truth offered by professional calibration services.

C. Outline

The rest of this article is organized as follows. Section II con-
tains the proposed algorithm. Section III illustrates experimental
results. Finally, Section IV concludes this article.

II. SIMULTANEOUS CALIBRATION ALGORITHM

A. Problem and Solution

Related notations are described as follows. The 3-D spe-
cial orthogonal group contains all 3 × 3 rotation matrices,
subject to orthonormality, i.e., SO(3) := {R ∈ R3×3|R�R =
RR� = I, det(R) = +1}, where I is the identity matrix.
Combining rotation on SO(3) with a translation vector, the 3-D

special Euclidean group is SE(3) := {T =
(RT tT

0 1

)|RT ∈

Fig. 1. Relationship between multiple poses involved in the studied
problem.

SO(3), tT ∈ R3}, where 0 denotes a zero matrix with proper
dimension. All the poses in this article are on SE(3).

The calibration problem considered in this article is illustrated
in Fig. 1. The studied problem is: given kinematics of the indus-
trial robotic manipulator A, pose C from calibration board to
the camera frame {C}, and angular rate measurements ω ∈ R3

in the IMU frame {B}, determine the unknown hand–IMU
parameter X , robot–world pose Y , and camera–IMU extrinsic
parameter W , in an optimal least-squares manner. In Fig. 1,
two virtual intermediate poses are illustrated, i.e., the pose B
from the calibration board to the IMU and the pose X from the
robot gripper to the IMU frame. The hand–eye parameter X
was originally defined as the transformation between the robot
gripper and the attached camera. It is assumed that the robotic
manipulator has been calibrated; thus, pose A is considered
to be accurate. As seen from Fig. 1, it is shown that the real
hand–eye relationship can be restored by combining X and W .
To determine unknown transformations optimally shown above,
we first establish the hand–eye/robot–world relation by

AX = Y B. (1)

Note that both sides of (1) can be differentiated with respect to
time t, i.e.,

ȦX +AẊ = Ẏ B + Y Ḃ (2)

in which, for arbitrary pose X ∈ SE(3), we have

X =

(
RX tX

0 1

)
(3)

Ẋ =

(
ṘX ṫX

0 0

)
. (4)

For the hand–IMU parameter, it is always assumed as a
constant once the installation is completed. Therefore, Ẋ = 0
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characterizes such static pose. For Y , it represents the transfor-
mation between the robot base to the calibration board in the
world frame, which is also static in our studied case, indicating
Ẏ = 0. Therefore, (2) is simplified as

ȦX = Y Ḃ. (5)

Note that since B is a virtual nonmeasurable pose, it must
be related to some measurable ones. Following this purpose,
the models of the angular rate ω and the camera pose C are
combined. For the rigid body of the IMU, the angular rate ω
contributes to the attitude dynamics [20] of

ṘB = RBω× (6)

in which ω× denotes the skew-symmetric matrix of ω. When
imaging the calibration in the image plane, the camera captures
2-D points in its frame. Commonly, the perspective-n-point
(PnP) problem seeks the camera pose by finding the trans-
formation between 2-D points in the image plane and 3-D
points in the world frame. As the calibration board is normally
standard, 3-D world points are easily obtained. However, since
the camera intrinsic matrix may not be accurate enough because
of inaccurate estimation of radial and tangential distortions, the
translational scale of the PnP pose must be adjusted. To this end,
we also model the positive scale as � ∈ R+ so that the camera
pose C is

C =

(
RC �tC

0 1

)
. (7)

Let us write the unknown camera–IMU extrinsic parameter as

W =

(
RW tW

0 1

)
=

(
RB

C tBC
0 1

)
(8)

which is assumed to be a fixed constant for the studied problem.
Therefore, the homogeneous transformation satisfies

RB = RCRB
C (9)

tB = RCtBC + �tC . (10)

Since RB
C , tBC , and � are constants, one obtains

ṘB = ṘCRB
C (11)

ṫB = ṘCtBC + �ṫC . (12)

Now, we have two categories of equations
{
AX = Y B(�)

ȦX = Y Ḃ(�)
(13)

which can be expanded as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

RARX = RY RCRB
C

RAtX + tA = RY

(
RCtBC + �tC

)
+ tY

ṘARX = RY RCRB
Cω×

ṘAtX + ṫA = RY

(
ṘCtBC + �ṫC

)
.

(14)

The first subequation in (14) is not solvable as RB
C can be

inverted to the left side and combined together with RX .
However, from the third subequation in (14), one may see that
such transform does not hold any longer, i.e., the parameter
RB

C is solvable in this subequation. In experiments, engineers
will gather a series of N measurements for error adjustment.
From another aspect, the relationship in Fig. 1 indicates that
AX = Y CW , which can be transformed as

AU = Y C (15)

in which U = XW−1. This shows that Y can be solved inde-
pendently from (15) with given matrices A and C. Therefore,
we have the following optimization:

argmin
U ,Y ∈SE(3)

J =
N∑
i=1

‖AiU − Y Ci‖2 (16)

in which ‖X‖ =
√
tr(X�X) for arbitrary X is the Frobenius

norm and the subscript i denotes the ith pair of measurements.
The problem in (16) is the typical AX = Y B one, which has
global solution using [14], [15]. For problem (14), the optimiza-
tion (17) as shown at the bottom of this page, is constructed. The
problem (17) is a highly nonconvex one due to the nonlinear
constraints of SO(3). Some parts of this problem belong to
the general type of AXB = Y CZ [8], but are not strictly
on SE(3). Therefore, solving (17) using analytical quaternionic
methods like [8] is infeasible because there is no conversion
from SE(3) derivatives Ȧ and Ḃ to quaternion derivatives. To
decrease these nonlinear constraints, quaternions are employed.
Then, the modified optimization Lagrangian is

L̃ = L+ λ�
(

qX
�qX − 1

qW
�qW − 1

)
(18)

where λ = (λ1, λ2)
� contains Lagrange multipliers, while qX

and qW are attitude quaternions of RX and RB
C , respectively.

All local minima of (17) can be obtained via

∇yL̃ = 0 (19)

in whichy = (qX
�, qW �, tX�, tW �, �,λ�)� ∈ R17 is the op-

timization variable. Equation (19) indicates a polynomial system
formed by components of y.

argmin
RX ,RB

C ∈ SO(3),
tX , tBC ∈ R3, � ∈ R+

L =
N∑
i

∥∥RA,iRX −RY RC,iR
B
C

∥∥2
+
∥∥ ṘA,itX + ṫA,i −RY ṘC,it

B
C − �RY ṫC,i

∥∥2

∥∥∥ṘA,iRX −RY RC,iR
B
Cωi,×

∥∥∥2
+
∥∥RA,itX + tA,i −RY RC,it

B
C − �RY tC,i − tY

∥∥2
.

(17)
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B. Classification of Roots

Solving (19) completely will give all local minima. There
are many existing methods for solving all roots of polynomial
systems accurately or approximately. Representatives include
Gröbner-basis method and Wu Wenjun’s method [28], [29].
However, the current system given in (19) has 17 subequations
and an order of 3, indicating that the Gröbner basis of this sys-
tem can hardly be obtained symbolically. As the Gröbner-basis
method is essential for variable elimination, it is also hard for
Wu Wenjun’s method to compute all solutions to (19) within
tolerable computation time. What should be noted here is that,
although (19) has many solutions, only real ones are taken into
account. Therefore, the kernel task is to obtain all real roots
to (19). Moreover, analyzing (19) using symbolic computation
engines, one can write tX and tW in terms of qX , qW , and �.
Therefore, inserting these formulations back into (19) gives a
new system

f(z) = 0 (20)

which only consists of components in a new optimization vari-
able z = (qX

�, qW �, �,λ�)� ∈ R11. The system (20) is not
homogeneous in z, thus making it easier to be reduced. With
the aid of a supercomputer from Aliyun, Inc., China, we are
able to use Macaulay2 software to get a reduced system of (20).
Typically, this can be done by finding out the Sylvester matrix
S or Gröbner basis G of (20). As there are 11 dimensions in z,
neither S nor G is hand-writable. Rather, the final result of S
consumes a hard-disk storage of 728 GB, and for G, the storage
is 12 GB. Note that the above results are obtained by simplifi-
cation after the quaternion norm constraints qX

�qX = 1 and
qW

�qW = 1. If we extend G into the form of �, forming a
univariate polynomial as

g(�) = 0 (21)

the polynomial g(�) has at most terms of 6771, namely, for
extreme cases, (21) will have 6770 complex roots. However,
what we really care are those real roots that correspond to real
scale factors and, furthermore, real quaternions. To identify how
many real roots (21) will have, some symbolic theorems must
be introduced. Let

g(�) = a0�
n + a1�

n−1 + · · ·+ an (22)

where n ≤ 6770 is the order of the univariate polynomial of �
and ai−1 is the ith coefficient. The differential of (22) can be
given by

g′(�) = na0�
n−1 + (n− 1)a1�

n−2 + · · ·+ an−1. (23)

The discriminant of g(�) is defined as the Bezout matrix between
g(�) and g′(�), say discr(g) [29]. The second discriminant
of g(�) is defined as the Sylvester matrix between g(�) and
g′(�), say Discr(g). The generation of discr(g) and Discr(g)
can be fully completed by symbolic softwares like Mathematica
and Maple. Here, we would like to denote Mk as the matrix
associated with the kth subminor of Discr(g). In [32], it has
been pointed out that g(�) has k distinct roots if and only
if det(Mk) �= 0 and det(Mj), for j = k + 1, k + 2, . . . , n.

Moreover, the number of real rootsN�,R is equal to the variation
number of signs in children components of a quadratic term
ζ�Mkζ, where ζ is an arbitrary real vector. Therefore, it can be
verified via huge amount of synthetic samples up to the quantity
of 1 × 109 thatN�,R has the upper bound of 256. This means that
the polynomial (22) will have at most 256 real roots. Considering
that any combination of qX ,−qX and qW ,−qW is valid for
(20), the number of real roots z equals 256/4 = 64.

C. Numerical Solutions

In practice, due to the characteristics of data, the scale pa-
rameter � is always around 1. The values of Lagrange multiplier
λ actually represent the penalty factor of the optimization. For
the optimization (17), one must select the global minimum that
corresponds to the least loss function value L. Therefore, λ must
be a small value because if it is too large, it can be inferred that
the corresponding loss function value is also large. To effectively
obtain all the real local minima of (20), we use multiple random
sampled quaternions as initial conditions. To this end, via the
method in [31], we are able to uniformly and randomly sample
quaternions in the 4-D real unit-spherical vector space. By em-
pirical tests, we are able to conclude that (20) normally has 4–12
local minima, but will have at most 64 local minima for some
extreme cases, which coincides with previous theoretical find-
ings. Therefore, if we perform a search of 128 uniform random
samples for solving (20), it can be guaranteed that all solutions
can be obtained. Here, we use the Broyden–Fletcher–Goldfarb–
Shanno algorithm for unconstrained convergence of (20), which
is a quasi-Newton method free of computation of analytical
Jacobian. After obtaining all real solutions to (20), sorting loss
function values in the ascending order and selecting the solution
associated with the loss function value give the global optimum.
It can be seen from the above procedures that multiple searches
from different initial values will be easily implemented with
parallelization. Therefore, the complete solution on a modern
multicore industrial computer is computationally efficient. The
final algorithmic flow is provided in Algorithm 1.

D. Sensitivity Analysis

The sensitivity analysis aims to find out the relationship
between the input uncertainty and the output uncertainty. There-
fore, we use the covariance as the quantitative result of sensitivity
analysis. Since the covariance of measurement input is small, we
use the following small-angle approximation to account for the
rotation infinitesimal θG = (θ1, θ2, θ3)

� of the rotational part of
a given pose G:

δRG =

⎛
⎝ 1 −θ3 θ2

θ3 1 −θ1

−θ2 θ1 1

⎞
⎠ (24)

so that the rotation after perturbation is R̃G = (δRG)RG. The
perturbation of translation is additive, such that t̃G = tG + δtG.
In Algorithm 1, there are two key steps. First, we obtain Y from
(16). The covariances of components of pose Y can be obtained
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Algorithm 1: Proposed Simultaneous Hand–Eye/Robot–
World/Camera–IMU Calibration Algorithm.

1. Preliminaries
1) Number of available measurements: N ≥ 2.
2) Synchronized measurements pairs:

{Ai,Bi}, {Ȧi, Ḃi}, for i = 1, 2, . . . ,N .
2. Algorithmic Steps

1) Generate uniformly random samples of quaternions
as initial start point of optimization by [31]. Use
� = 1 as initial solution.

2) Conduct parallel computation of globally optimal
SE(3) poses U and Y
from (16) using methods from [14], [15].

3) Conduct parallel computation of globally optimal
quaternions qX , qW and scale factor � from (17)
by solving (20) with the developed algorithm.

4) Compute the corresponding translation tX and tW .

by Hessian inverse as the Fisher information

Σcd =

(
∂2J

∂c ∂d�

)−1

(25)

in which c and d represent combinations of θY and tY . When
the covariance of Y has been obtained, it can be used as input
uncertainty of the next problem (17). Likewise, the covariances
of components of X , W , and � can be obtained by setting J
as L, and c and d as combinations of θX , θW , tX , tW , and
�. For detailed computation of derivatives, one may turn to [30]
for analytical formulas. Moreover, in engineering applications,
one may also use numerical central differentiation or Padé
approximation to compute the Hessian.

III. EXPERIMENTAL RESULTS

A. Overview

The experimental setup is shown in Fig. 2. There is a Univer-
sal Robot UR5 industrial robotic manipulator with a mounted
camera and a gripper. Calibration patterns, including a 12 × 9
chessboard with each block size of 30 mm, together with several
Aruco markers of ID582 being presented on the test table.
The chessboard and the markers are placed statically on the
table. The installed camera is the Intel Realsense D435i with
infrared/visible-light subcameras and a Bosch BMI055 IMU.
The camera has the measurement uncertainty of 0.5 pixels and
that of IMU is 0.005 rad/s for the gyroscope. The transformation
of robot links is generated from the angular encoder of the
UR5 robot. The repeatability of the UR5 robot is ±0.1 mm,
which is comparatively noiseless according to the manual. The
chessboard has been set as the origin of the world frame, and
the visible-light camera is selected for calibration. The BRISK
descriptor is utilized for feature extraction of the corners [33]. A
sample image of extracted corners after filter is shown in Fig. 3.
The direct least-squares method is used for pose estimation of
the camera relative to the chessboard via PnP mechanisms [34].
The Quicksort algorithm is employed to sort loss function

Fig. 2. Experimental setup for industrial hand–eye calibration. Related
essential hardware include a robotic manipulator, an Intel Realsense
camera, and several static calibration patterns. Via continuous motion
of the robotic manipulator, the captured motion parameters can be used
for the sensor calibration algorithm proposed in this article.

Fig. 3. Camera-captured calibration patterns and detected corners
(in red).

values of different local minima [35]. We use the factory default
intrinsic parameter to conduct PnP pose estimation. Several
experiments have been conducted for validation of the proposed
simultaneous hand–eye/robot–world/camera–IMU calibration
method. The D435i is factory calibrated, and the default extrinsic
parameter can be regarded as the ground truth, which is denoted

as W true =
(Rtrue ttrue

0 1

)
. The rotational and translational

errors for a given pair of rotation R and translation t are

εR = arc cos
{[
tr
(
R�Rtrue

)− 1
]
/2

}
(rad). (26)
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εt = ‖t− ttrue‖ /
√

3 (mm). (27)

Prior to experiments, we conduct a synthetic study showing the
effect of measurement noise levels to the developed algorithm.
In this synthetic study, the true rotation and translation of A are
perturbed by noise such that

RA = RA,true exp(ξ×)

tA = tA,true + γ (28)

where ture denotes true values and ξ and γ are noise terms
that are subject to Gaussian distribution. The noise model (28)
also applies for C. The gyroscope readings are also perturbed
via ω = ωtrue + β, where β is subject to Gaussian distribution
as well. The noise level is defined as the variance of the noise
terms. When evaluating noise effect from a single source, the
noise from other sources will be set to zero so that the evaluation
will be independent. In a single test, the noise levels of rotational
and translational parts are the same. For each test, we use 1000
synthetic cases for averaged performances.

Next, via experiments, it can be concluded that the D435i
camera has angular accuracy of 10 arcsec and translation ac-
curacy of 2 mm (1280 × 720 resolution). The experiments are
conducted on a typical MacBook Pro 2017 with processor of
i7-4core 3.2 GHz, running an Ubuntu 18 system with ROS
Melodic. The data rates of different sensors are downsampled to
30 Hz (30 frames/s) for synchronization. We use the Moveit!
toolbox in the robotic operating system (ROS) to conduct motion
planning of the UR5 robot. Since there is no ground truth for the
hand–eye parameter X and the robot–world pose Y , the only
way to verify the performance is by validating the camera–IMU
calibration results. We also use the Kalibr algorithm [17]
and the method of Mirzaei and Roumeliotis [18] to conduct
the camera–IMU calibration as comparative results. Kalibr
refines the calibration parameters by considering the camera
intrinsic parameter and the camera–IMU extrinsic parameter in a
unified manner via the Levenberg–Marquadt algorithm (LMA).
The method of Mirzaei and Roumeliotis estimates camera pose
and IMU biases using a Kalman filter. The parameters of these
algorithms for the presented experimental validation can be set
according to the datasheets of Intel D435i and Bosch BMI055
IMU. The experimental steps are as follows:

1) Make sure that all the robotic components are self-
calibrated. First, the robotic manipulator should be cali-
brated on the table. Second, we need an accurate intrinsic
calibration of the camera. Third, the basic parameters
of the IMU, including scale factor, misalignment, and
offsets, should be estimated.

2) Use a planning algorithm, for instance, a rapidly exploring
random tree algorithm, to generate a smooth trajectory of
the robotic gripper. It should be guaranteed that through-
out the trajectory, the calibration pattern is always within
the field of view of the camera. The motion should be
distinctive enough for observable angular rates but should
not be too drastic such that the data magnitude overflows
the full measurement range.

Fig. 4. Camera poses and trajectory in one experiment.

3) When gathering data, make sure that all the sensor data
will be sampled at the same time instant. This some-
times requires synchronization mechanisms in hardware.
For software implementation using ROS, we suggest
the Synchronizer function to conduct synchronized
measurements.1

B. Results

The synthetic accuracy tests for different noise levels by
perturbing A are shown in Figs. 6 and 7. When perturbing C,
we obtain results in Figs. 8 and 9. The perturbation of the IMU
model generates the results in Figs. 10 and 11.

For experimental study, the continuous motion planned can
be visualized via the motion of camera (see Fig. 4). We generate
distinctive motion to conduct the proposed simultaneous cali-
bration. The inertial data of one experiment of 150 s duration
are shown in Fig. 5. If there is no motion selection, i.e., small
angular rates also take part in the calibration, the accuracy is
not satisfactory. One may add more measurements for error
adjustment, and the relationship between measurement number
N and the accuracy is shown in Fig. 12. However, if we set a

1The open-source codes of this method can be accessed at https://github.com/
zarathustr/SHERWCIC, where detailed procedures of experimental setup and
data gathering can be found.
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Fig. 5. Inertial data recorded for one of the experiments.

Fig. 6. Rotational and translational errors subject to different noise
levels when perturbing manipulator measurements A.

threshold η as the minimum tolerant angular rate norm, the cali-
bration accuracy performances (100 pairs of randomly selected
measurements) are shown in Fig. 13. Using η = 0.05 rad/s,
we compare the results from various algorithms, whose details
are shown in Fig. 14. For such a parameter set, the scale factor
is estimated as � = 0.99158 ± 5.23 × 10−5. The uncertainty is
generated using the sensitivity analysis shown in Section II-D.
We also add unknown IMU biases bω to the inertial data ω
so that the utilized angular rate is ω̃ = ω + bω and show the
performance results in Table I. The run-time stats for all these
algorithms are presented in Table II. The error performances of
various methods are shown in Table III.

C. Discussion

From the results shown in Section III-B, one may be able to
know the following:

1) From Fig. 12, largerN results in more accurate estimation
results. This finding coincides with the basic principle of
the least-squares algorithm.

2) From Fig. 13, a slightly higher angular-rate threshold η
helps improve the calibration accuracy of the proposed
method. This is because when ω ≈ 0, the value of RCω

Fig. 7. Scale error subject to different noise levels when perturbing
manipulator measurements A.

Fig. 8. Rotational and translational errors subject to different noise
levels when perturbing camera pose C.

Fig. 9. Scale error subject to different noise levels when perturbing
camera pose C.
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Fig. 10. Rotational and translational errors subject to different noise
levels when perturbing the IMU.

Fig. 11. Scale error subject to different noise levels when perturbing
the IMU.

Fig. 12. Relationship between measurement number N and accuracy.

approaches zero as well, which will make the equality
ȦX = XḂ singular. However, when η is too large,
much useful information will be lost.

Fig. 13. Relationship between angular-rate threshold η and accuracy.

Fig. 14. Comparisons between various algorithms for camera–IMU
calibration.

3) From Figs. 6–11, it can be shown that the logarithm
rotational and translational errors grow linearly with in-
creasing noise levels of different error sources. It also
comes to a consensus that larger measurement number N
leads to a better calibration accuracy. However, when the
noise levels become sufficiently large, for instance 10%,
the algorithm becomes insensitive to the variation of N .
This shows that, to guarantee a satisfactory calibration
performance, the sensor noise must be suppressed, which
may require digital filters. The utilized IMU contains
built-in digital low-pass filter (DLPF), which significantly
decreases such an effect, and it brings convenience in
further experimental validation.

4) From Fig. 14 and Table III, the proposed method achieves
the best of overall accuracy. The other two algorithms
converge with increasing time and own slightly better
accuracies for the translational part.

5) The scale factor � is not exactly 1 in practice, this shows
that:
1) the intrinsic calibration of camera may not be very

accurate;

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 19,2022 at 04:33:26 UTC from IEEE Xplore.  Restrictions apply. 



2286 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 27, NO. 4, AUGUST 2022

TABLE I
ACCURACY PERFORMANCES OF VARIOUS ALGORITHMS WITH UNKNOWN IMU BIASES

TABLE II
RUN-TIME STATS OF VARIOUS ALGORITHMS FOR CAMERA–IMU

CALIBRATION

TABLE III
ERROR STATISTICS OF VARIOUS ALGORITHMS

2) the correspondence and precision of 2-D/3-D points
may not be refined.

Thus, the estimation of � has been validated to be neces-
sary, and the simultaneous calibration accuracy also relies
on this value.

6) From Table I, the sensitivities to the magnitudes of
unknown IMU biases indicate that the proposed algo-
rithm is robust to these uncertain biases. The reason
is that the proposed method is free of IMU preintegra-
tion and, thus, is independent of attitude integral, which
highly depends on the bias stability of the gyroscope
measurements.

7) From Table II, the computational efficiency shows that the
proposed method is fast for computation. The Kalibr
processes data using Python language and refines a
huge optimization via LMA, which consumes too many
computational resources and can only be executed on one
single core. The method of Mirzaei and Roumeliotis [18]
is much faster, which uses a 21-state Kalman filter. How-
ever, as the covariance matrix is of the size 21 × 21,
for one loop, there must have been matrix inversion
for 441 elements. While the Kalman filter can only be
implemented sequentially, the proposed method, which
has been realized with parallelization, is the fastest one
among all candidates.

D. Extended Applications: Stereo/IMU Calibration

The studied simultaneous hand–eye/robot–world/camera–
IMU solver can be extended to calibration between stereo

Fig. 15. Schematic of the stereo/IMU calibration.

cameras and the attached IMU. Fig. 16 depicts the schematic of
the poses applied to this problem, which are very similar with
that in Fig. 1. This system is important since in the 3-D recon-
struction, one may require the IMU to enhance scale based on a
pure stereo system. Using the proposed algorithm and two inde-
pendent patterns visualized by two different cameras, we are able
to obtain extrinsic parameters between left and right cameras, pa-
rameters between cameras and the IMU, and parameters between
pattern frames. The stereo calibration parameters are given by
X and W in Fig. 15. In this experiment, we use a pattern board
with several AprilTags ([36]; see Fig. 17). Each AprilTag has a
unique identifier, and the relative transformations between them
can be given by the computer design system. When making
the calibration board, we use very solid material so that the
relative transformations are solid and can be considered as
ground truth. The upper two patterns are selected for calibration.
By capturing images and IMU readings at multiple positions in
the 30-Hz continuous synchronized mode, we first evaluate the
calibration results via the accuracy of Y . The results indicate
that the rotation error is within 0.01◦, and the translation error
is within 1 mm. Then, we compare the proposed method with
a state-of-the-art method by Huang et al. [37]. Huang’s method
aims to give online extrinsic calibration between stereo/IMU
combination. By following the algorithmic steps in [37], we
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Fig. 16. Hardware of the stereo/IMU calibration.

Fig. 17. Captured calibration patterns.

TABLE IV
REPROJECTION ERRORS OF VARIOUS METHODS

perform the calibration and summarize the reprojection errors
of calibration patterns from one camera to another in pixels. The
results are shown in Table IV. Huang’s method requires simul-
taneous calibration and visual inertial odometry. Therefore, it
may be affected by long-term drift factors from the IMU, and

the accelerometer in the IMU gives the initial scale estimation,
which may be affected by in-motion vibration. The proposed
method does not rely on the integral of IMU measurements and,
thus, is much more static than Huang’s method and will give
better calibration results for the designed hardware system.

IV. CONCLUSION

A new algorithm for simultaneous calibration of hand–
eye/robot–world/camera–IMU relative transformations has
been proposed in this article. Globally optimal estimation of
these unknown transformations on SE(3) has been studied.
The developed method offers a new method for calibrating the
camera–IMU accurately using industrial robotic manipulator
and calibration patterns. Through experiments, we verify that
the method developed in this article is more robust to unknown
IMU biases and is computationally efficient. Moreover, extended
applications show that it is effective for stereo/IMU calibration.
Future efforts will be paid to study online variants of the devel-
oped method.
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