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Abstract— 3D object detection with only image inputs
is an interesting and important problem in computer vi-
sion and autonomous driving. Nowadays, most existing
monocular 3D object detection algorithms rely solely on
the approximation power of convolutional neural networks
to learn a mapping from pixels to 3D predictions without
knowing the projection matrix of the camera. To endow the
networks with camera projection knowledge, we propose
the Star-Convolution module for application to image-
based 3D detection. The introduced module increases the
receptive field of the detector and embeds the camera’s
projection geometry inside the network while keeping
the network end-to-end trainable. We test the module
with different baselines in both monocular and stereo
3D object detection, and we achieve significant improve-
ments on both tasks. The code will be published in
https://github.com/Owen-Liuyuxuan/visualDet3D.

I. INTRODUCTION

Detecting objects of interest and estimating their 3D
locations, orientations, and sizes with only images is
an important problem in computer vision and au-
tonomous driving. Compared to LiDAR, visual sen-
sors such as cameras are cheaper, smaller, consume
less energy, and are much easier to integrate into the
mechatronic system of a robot. As a result, even though
cameras do not provide accurate distance measure-
ments of the environment like LiDARs do, 3D detection
with monocular or stereo cameras has been drawing
increasing attention among researchers.

As a corollary to this lack of absolute scale mea-
surements in the input, performing 3D object detection
with only one image frame is an ill-posed problem.
Many recent works have directly applied convolutional
neural networks (CNNs) to learn a mapping from
image features to the depth of the objects [1], [2], [3].
Under such formalism, the 3D distances between the
objects and the camera are computed from a sequence
of local operations such as convolution on the input
image pixels. We note that the calibration matrix or
projection geometry is absent under such a CNN-based
paradigm. These works depend solely on the expres-
sivity of the neural network to ”learn” a functional
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Fig. 1: The sampling point of (a) the GAC module; (b)
the 2D Star-Convolution module; (c) the proposed 3D
Star-Convolution module. The proposed 3D
Star-Convolution extracts more sophisticated features
from the initially predicted keypoints.

mapping between image pixel inputs and the distance
measurements.

Brazil et al. [3] proposed to utilize the statistical prior
in the anchors to normalize the depth prediction tar-
gets. Such a strategy improves the convergence speed
and significantly boosts the prediction accuracy for
close-up objects. Taking a closer look into the anchors’
priors, we find that the 3D priors of the anchors are
implicitly determined by the projective geometry of the
camera and the dimensions of the target objects [4].
The performance improvements achieved by [3] and
[4] demonstrate how additional geometric priors boost
the performance of monocular 3D detectors, even when
only applied in the final decoding phase.

However, most existing monocular 3D detectors per-
form learnable inference solely in the image-view, with
mostly position-invariant operators. Thus, explicitly in-
tegrating the geometric knowledge into the inferencing
and even the training phase of the convolutional neural
network has long been the intuitions behind significant
advancements in monocular 3D object detection.

SS3D [5] apply non-linear optimization online to
minimize the reprojection error between the network’s
2D and 3D prediction, and supervise the result of
the non-linear optimization with ground truth, which
includes the camera parameters in the backpropagation
step. However, the inference pipeline of the learnable
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Fig. 2: The image is fed into a backbone to produce feature maps. A detection head predicts initial 3D object
estimations. We then apply Star-Convolution and an additional prediction head to refine the 3D predictions.

network is still completely decoupled with the projec-
tive geometry. GAC [4], inspired by the human behav-
ior of ground-based distance estimation, computes a
depth prior from the camera’s extrinsic parameters as
an additional feature map for the network and samples
ground-aware features from a learned offset. However,
only one keypoint is sampled in the GAC module,
and only a small part of the geometric information is
utilized in decoding, thus limiting its ability to reason
over complex geometric relations.

We propose Star-Convolution, a refinement mod-
ule for image-based 3D object detection. The Star-
Convolution module reprojects the initially decoded 3D
objects onto the image and re-aggregates features from
the sampled key points. Further, it predicts the residual
between the original prediction and the ground truth.
Since the decoding, projecting, and sampling opera-
tions are differentiable, the network can be trained
end-to-end with calibration geometry taking effects in
both inferencing and training. We test the module in
both monocular and stereo setups, and we observe
significant performance improvements in both cases.

The contribution of this paper is three-fold.

1) We provide a high-level view of the absence of pro-
jection geometry in the learnable inference phase
of current state-of-the-art (SOTA) monocular 3D
object detectors.

2) We propose the Star-Convolution refinement mod-
ule for image-based 3D object detection to incor-
porate the decoding process in both the training
and inferencing of the detector.

3) We evaluate the proposed module on the KITTI 3D
object detection benchmark under both monocular
and stereo settings. We show that the proposed
module, though inspired by existing monocular
detectors, can be extended to a more general field
of visual detectors.

II. RELATED WORKS

A. Monocular 3D Object Detection

Most of the recent advances in monocular 3D object
detection can be categorized into pseudo-LiDAR meth-
ods or one-stage detection methods.

Pseudo-LiDAR Methods: In pseudo-LiDAR meth-
ods, a depth prediction network first directly predict
pixel-wise depth prediction rom a single RGB image.
Then a 3D point-cloud-based object detector detects
and localizes 3D objects based on the predicted depth
[6], [7], [8], [9]. The scale-ambiguity problem is left
to the depth prediction network. However, without
explicit scale hints from particular objects, it is more
difficult to predict depth for every pixel in the image
than for just several objects of interest. Moreover, the
current SOTA monocular depth prediction networks
take about 0.05 s per frame, limiting the inference speed
of pseudo-LiDAR methods.

One-Stage Detection Methods: One-stage detection
methods are generally built upon the more mature
2D object detection architectures. Additional branches
are attached to the bounding box regression branch
of a 2D object detector, and these branches are su-
pervised by the 3D parameters of the target objects.
Recently, many researchers have been developing algo-
rithms that utilize the geometry constraints between 2D
bounding boxes and 3D parameters. SS3D [5] estimates
2D bounding boxes, depth, orientation, dimensions and
3D keypoints in parallel. It introduces nonlinear opti-
mization to merge these predictions. ShiftRCNN [10]
applies a sub-network to substitute the optimization,
while M3D-RPN [3] introduces post-optimization steps
to refine the orientation prediction. Recently, SMOKE
[1] and RTM3D [11] have introduced heatmap-based
keypoints prediction with an anchor-free object detec-
tor like CenterNet [12]. RTM3D also formulates the
post-optimization as a nonlinear least-squares problem.
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However, all the algorithms examined above apply
mostly convolutional layers or other position-invariant
operations to predict the initial 3D parameters. The
network has to learn a mapping from the projective
geometry under supervision, while the input and the
network’s inference process only contain image pixels.
Ground-aware Convolution (GAC) [4] uses the calibra-
tion matrix to generate a feature map of the depth prior.
To our knowledge, the proposed method is the first to
embed the entire projection process inside the network
and have learnable parameters after it.

B. Stereo 3D Object Detection
Stereo 3D object detection is considered a tractable

problem, although it is computationally intensive. Sev-
eral recent advances in stereo 3D object detection algo-
rithms follow pseudo-LiDAR methods, like the monoc-
ular cases do. They apply stereo matching networks to
generate the point clouds instead of applying monoc-
ular depth prediction networks. Although the detec-
tion accuracy improves significantly, the computational
costs are even larger than they are when generatting a
point cloud using monocular depth estimation.

Several recent advances have been achieved by lim-
iting the computational burden and focusing the net-
work on foreground pixels. DispRCNN [13], ZoomNet
[14], and OC Stereo [15] apply instance segmentation
on both images to construct a local point cloud for each
proposed instance to improve the accuracy of stereo
matching on foreground pixels.

RTS3D [16] and YOLOStereo3D [17], meanwhile, bor-
row ideas from monocular 3D object detection. They in-
tegrate stereo matching or coordinate warping modules
into monocular 3D detection baselines, and achieve
competitive performance with less computational cost.

We point out that advancements in monocular 3D
object detection can usually be extended to stereo 3D
object detection. We also test our proposed method in
stereo detection tasks.

C. Bounding Box Refinement in Object Detection
In 2D object detection, multi-stage methods have

been proposed to refine the accuracy of bounding
boxes. Fast-RCNN [18] and Faster-RCNN [19] set up
baselines for a two-stage detection structure. Algo-
rithms like Cascade RCNN [20] further push forward
the idea of refining bounding box sequentially with
multi-stage detections, while Reppoints [21] applies
deformable convolution [22] to refine bounding boxes
in one-stage object detectors.

We propose Star-Convolution, which is inspired by
2D-based refinement algorithms, and we further utilize
3D projective geometry to refine 3D bounding box
predictions under the one-stage detection frameworks.

III. METHODS

In this section, we elaborate on the methods we
propose in this paper.

Backbone Head

Loss

Decoder

Backbone Head

Loss

Decoder

Head

Loss

Decoder

Fig. 3: The meta-architecture of the current 3D
detection models (top) and the proposed model
(bottom). In the bottom diagram, additional gradients
propagating through the decoder are visualized with
cyan arrows.

First, we give a brief recapitulation of the exist-
ing monocular image-based detection structure and
GAC from a higher level. Second, we formulate Star-
Convolution in 3D and explain how it exploits the
projection geometry in end-to-end learning. Finally, we
briefly introduce the loss function and the training
scheme of the proposed module.

A. Monocular 3D Detection Nomenclature
We first recapitulate the general detection structure

of multiple state-of-the-art image-based detection algo-
rithms from a more abstract perspective, and explain
the current absence of projective geometry throughout
the inference process of the networks.

Although the model architectures of detectors vary,
many monocular 3D detection models are built upon
one-stage 2D detection models [1], [2], [3], [4], [23], [24].
Borrowing terminologies from 2D detectors [25] and
re-clarifying them under the 3D setting, we extract the
meta-architecture of existing image-based 3D detection
models at a more abstract level. These models can be
considered to consist of the following components.

1) Backbones Backbones are feature extractors con-
verting images to feature maps. ResNet [26] and
DLA [27] are common choices.

2) Heads Heads are layers that produce the desig-
nated outputs from feature maps. Heads vary de-
pending on how the feature outputs are encoded.
Most of the existing algorithms only apply basic
convolutional networks in this component [1], [3],
[23], [11].

3) Losses Losses are functions that produce super-
vision signals for the output of the heads. Some
loss functions require complete decoding of the
output [1], [5]. We note that, in most existing SOTA
networks [1], [4], [17], [23], [11], the loss function
does not contain learnable parameters.

4) Decoders Decoders are the functions that retrieve
object detection outputs from the feature maps, es-
pecially during evaluation. In general, this process
involves lifting the object from 2D to 3D using
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TABLE I: Monocular 3D Object Detection Results of Car on KITTI Test Set

Methods 3D Easy 3D Moderate 3D Hard BEV Easy BEV Moderate BEV Hard Time

MonoPSR[9] 10.76 % 7.25 % 5.85 % 18.33 % 12.58 % 9.91 % 0.2s
PLiDAR[6] 10.76 % 7.50 % 6.10 % 21.27 % 13.92 % 11.25 % 0.1s
SS3D[5] 10.78 % 7.68 % 6.51 % 16.33 % 11.52 % 9.93 % 0.05s
M3D-RPN[3] 14.76 % 9.71 % 7.42 % 21.02 % 13.67 % 10.42 % 0.16s
RTM3D[11] 14.41 % 10.34 % 8.77 % 19.17 % 14.20 % 11.99 % 0.05s
AM3D[8] 16.50 % 10.74 % 9.52 % 25.03 % 17.32 % 14.91 % 0.4s
D4LCN[23] 16.65 % 11.72 % 9.51 % 22.51 % 16.02 % 12.55 % 0.2s
YOLOMono3D[17] 19.24 % 12.37 % 8.67 % 27.21 % 17.24 % 12.58 % 0.05s
GAC[4] 21.65 % 13.25 % 9.91 % 29.81 % 17.98 % 13.08 % 0.05s
Ours 21.97 % 14.06 % 10.01 % 28.14 % 18.67 % 13.79 % 0.06s

the camera model, and does not contain learnable
parameters.

The inference structure and the gradient flow of
current monocular 3D models are visualized in the
upper part of Figure 3. Note that the camera model is
only used in the decoder, and it does not provide su-
pervising feedback to the network during the training
process. Therefore, the current state-of-the-art detection
networks adapt to a particular camera configuration
to produce distance estimation of the objects with
position-invariant convolutional networks. Projective
geometries are absent during the learning phase.

B. Overview of Ground-Aware Convolution

GAC is a module designed for monocular 3D object
detection and depth prediction that extracts features
and depth prior information from the ground plane
pixels [4]. It is a significant improvement on the ”head”
of the structure. The concept of GAC is visualized in
Figure 1 (a).

Given a feature map F as the input, the GAC module
first computes a depth/pseudo-disparity prior, assum-
ing all the pixels are on the ground plane, and attaches
this prior to the original feature map. Then, for a pixel
(x, y) in the feature map, we first estimate an offset ∆y
from the current pixel to the ground plane. Finally, we
sample the features from the predicted ground plane
pixel (x, y + ∆y) and aggregate them with the features
at (x, y).

The GAC module explicitly injects projection geome-
try into the monocular 3D object detection pipeline and
significantly improves the detection accuracy. However,
it is clear that there are some further short-comings of
the GAC module:

1) It only captures features at a single ground plane
pixel, which may not be sufficient for complex
geometric reasoning.

2) The network has to learn an offset from the center
pixel to the ground plane without explicit super-
vision. The learned offset is ambiguous for the
network.

These issues hinder the module’s capability to more
accurately capture features from other geometric key
points that are potentially more informative.

C. Star-Convolution in 3D

To fully exploit the 3D geometric information in
image-based 3D object detection, we further extend
the concepts in the GAC module with a 3D Star-
Convolution.

Inspired by the Star-DConvolution in 2D [29], which
is a bounding box refinement module that extracts
features from the sides of 2D bounding boxes, we
propose to apply Star-Convolution to extract features
from the projected keypoints of the initially detected
objects, as indicated in Figure 1 (b) and Figure 1 (c).

From a pixel (x, y) in the feature map, a 3D ob-
ject detector will predict one (anchor-free detector) or
multiple (anchor-based detector) objects. We first select
the 3D box prediction with the highest confidence
for each pixel. These objects are encoded as X0 =
(cx, cy, z, w, h, l, α), where z, (w, h, l), α and (cx, cy) is
the distance, dimensions, orientation and the projection
of its 3D center, respectively. The results are then
further lifted to 3D to form an initial guess of a 3D
object (x3d, y3d, z, w, h, l, θ) with the calibration matrix
P. Then, we project the corner points of this rectangular
3D object onto the image. The equation for the first
keypoint is provided as follows as an example:

[
xkp0
ykp0

]
= P̃


x3d+0.5·(l cos θ+w sin θ)

z3d+0.5·(−l sin θ+w cos θ)
y3d+0.5·h

z3d+0.5·(−l sin θ+w cos θ)

0
1

 , (1)

where P̃ is the first two rows of the calibration matrix.
We apply deformable convolution [22] to extract

features from nine sampling points, which are chosen
as the eight projected keypoints {(xkpi

, ykpi
)|i ∈ [1, 8]}

and the current pixel point (x, y). The projection pro-
cess and the bilinear sampling operation are differen-
tiable.

Intuitively, instead of sampling from a single ground
pixel from a learned offset as done in GAC, Star-
Convolution utilizes the results from the decoders to
extract features and more depth priors from the eight
projected keypoints. Moreover, the prior 2D/3D infor-
mation in the anchors is also incorporated into the
inference process.
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TABLE II: Stereo 3D Oject Detection Results on the KITTI Test Set.

Methods 3D Easy 3D Moderate 3D Hard BEV Easy BEV Moderate BEV Hard Time

RT3DStereo[24] 29.90 % 23.28 % 18.96 % 58.81 % 46.82 % 38.38 % 0.08s
StereoRCNN[28] 47.58 % 30.23 % 23.72 % 61.92 % 41.31 % 33.42 % 0.30s
Pseudo-LiDAR*[6] 54.53 % 34.05 % 28.25 % 67.30 % 45.00 % 38.40 % 0.40s
OC Stereo*[15] 55.15 % 37.60 % 30.25 % 68.89 % 51.47 % 42.97 % 0.35s
ZoomNet*[14] 55.98 % 38.64 % 30.97 % 72.94 % 54.91 % 44.14 % 0.35s
YOLOStereo3D [17] 65.68 % 41.25 % 30.42 % 76.10 % 50.28 % 36.86 % 0.08s
Ours 67.32 % 42.56 % 30.82 % 77.20 % 51.34 % 36.74 % 0.08s

The extracted features are further fed into con-
volutional layers to predict a residual ∆X =
(∆cx, ∆cy, ∆z, ∆w, ∆h, ∆l, ∆α). These refinement layers
do not share weights with the base output layers. The
final output of the module is simply the aggregation:
X′ = X0 + ∆X.

The gradient flow of the network structure enhanced
with Star-Convolution is visualized at the bottom of
Figure 3. A more detailed visualization of the inference
process is presented in Figure 2. We point out that the
network can now be trained with supervising feedback
from camera projections, and the refinement head can
produce more accurate detection predictions.

In the proposed Star-Convolution pipeline, there are
learnable modules following a full decoder; thus, these
modules can learn to predict residuals by examining
the projected key points of the initial guess during
training and inferencing. Such a characteristic differ-
entiates the proposed module from those in existing
works where camera projection is only used in con-
structing loss functions or decoding final outputs.

D. Learning Scheme and Loss Function
The proposed network has two detection output

branches, one from the baseline model and the other
from the Star-Convolution refinement. Both are trained
with supervision from the ground truth label.

During backpropagation, since all the operations are
differentiable, the gradients will also flow through the
decoding and projection process, improving the output
quality of the refinement module. The model is thus
trained end-to-end.

To supervise the prediction of 3D boxes, we apply
focal loss [30], [31] on classification, and smoothed-L1
loss [18] on bounding box regression. The total loss L
is the sum of the classification loss Lcls and regression
loss Lreg for the two branches:

L = α(̇Lcls0 + Lreg0) + (L′cls + L′reg)

where the parameter α is a balancing weight. We will
give a more detailed discussion of the parameter α in
Section V.

IV. EXPERIMENTS

A. Experiments Settings and Training Details
1) Dataset: We perform the experiments on the KITTI

dataset [32], which contains 7,481 training frames and

7,518 test frames. For choosing hyperparameters and
conducting ablation studies, we further split the train-
ing set into 3,712 training frames and 3,769 validation
frames, following Chen [33].

2) Model: Our experiments on monocular 3D object
detection are based on the YOLOMono3D baseline [17].
We add two extra convolutional layers to predict the
residual between the ground-truth and the first predic-
tion from the refined feature. The enhanced monocular
model runs at about 16 frames per second (FPS).

We note that YoloStereo3D [17] also shares the infer-
ence structure of a monocular 3D detector. Thus, we
also enhance it with the Star-Convolution refinement
head. The enhanced stereo model runs at about nine
FPS, which is much faster than other SOTA stereo
algorithms.

3) Training Details: We follow the training scheme
of in [4] and [17]. Both the left and right RGB image
data are utilized in training the monocular detectors [4],
[17], [11]. The top 100 pixels are cropped to speed up
inference. After a simple grid search on the validation
set , we select α = 0.3 as the baseline parameter choice
for the loss function.

4) Evaluation Protocol: The evaluation protocol
closely follows other SOTA methods [4], [17] the official
KITTI benchmark [32]. We evaluate performance with
40 recall positions (AP40) instead of the 11 recall
positions (AP11) proposed in the original Pascal VOC
benchmark[34]. All presented results on the test set
and also ablation study based on AP40.

B. Performance Increment from Star-Convolution
The results for monocular 3D object detection are

presented in Table I. The proposed methods out-
performs most of the current state-of-the-art monoc-
ular methods. We further point out that the pro-
posed Star-Convolution also outperforms the baseline
YOLOMono3D.

Qualitative results from the monocular 3D object
detectors are shown in Figure 4. The figure demon-
strates that our proposed Star-Convolution module can
improve the original prediction results and improve 3D
detection accuracy.

The results for stereo 3D object detection are pre-
sented in Table II, where a similar performance boost
from the baseline methods can be observed. Because
most of the stereo detection’s accuracy depends on the
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Fig. 4: Visualizetion, in both image view and bird-eye-view, of some qualitative results. Green boxes are final
predictions of the network, blue boxes are predictions from the base branches, and red boxes are ground truth
annotations.

quality of stereo matching, the relative improvement is
less than that of the monocular methods.

TABLE III: Monocular 3D Detection Ablation Study
Results of Car on KITTI Validation Set

Methods IoU ≥ 0.7 3D Easy/Moderate/Hard

Baseline Model 23.12 %/ 15.64 %/ 11.81 %
YOLOMono3D [17] 21.66 %/ 14.20 %/ 11.07 %
2D Star-Conv 22.31 %/ 15.10 %/ 11.26 %
Deformable Conv 22.38 %/ 14.64 %/ 11.50 %
α = 0.0 19.89 %/ 12.87 %/ 10.02 %
α = 0.5 23.52 %/ 15.28 %/ 11.28 %
α = 1.0 22.72 %/ 14.86 %/ 11.55 %

V. ABLATION STUDY AND DISCUSSION

In this section, we take a closer look into the pro-
posed Star-Convolution with multiple experiments.

A. Star-Convolution vs. Additional Heads

We first conduct experiments on the design of the
Star-Convolution. In the experiments, we first substi-
tute 3D star convolution with the 2D star convolution
proposed in [29], while the refinement paradiam re-
mained the same.

The Star-Convolution we propose also enlarges the
receptive fields of the network. We conduct another
experiment using standard deformable convolutional
layers to substitute for the convolutional head of
YOLOMono3D. The results are presented in Table III.
We empirically show that, while both deformable con-
volution and 2D Star-Convolution can improve the de-
tection performance, 3D Star-Convolution outperforms
them both.

We also note that the result on the validation set is
lower than the reported number in GAC [4] while we
outperforms it in test set, which is because the pro-
posed Star Convultion is more robust to the variation
in the extrinsic/intrinsic paramter of the camera.

B. Parameter α

The hyper-parameter α weights the relative impor-
tance between the two prediction branches and is an
important parameter determining the behavior of the
proposed Star-Convolution module. We present the
experiment results by varying the hyper-parameter α
within [0, 1].

The results are presented in Table III. In the case of
α = 0.0, the initial bounding box proposal for Star-
Convolution is not trained and is far from the correct
objects; thus, the performance decreases instead. If α
becomes too large, the network may fall back to the
un-refined baseline, and the performance will drop.
Although the choice of α seems critical, the detection
accuracy is stable between α = 0.3 and α = 0.5.
We show that the performance is comparatively in-
sensitive to the choice of α in this range.

VI. CONCLUSION

In this paper, we presented Star-Convolution for
image-based 3D object detection. First, we briefly re-
viewed the state-of-the-art monocular 3D object detec-
tors from an abstract level, and identified the absence
of projection geometry in the training phase of the
network. Second, we introduced Star-Convolution as
a refinement module for both monocular and stereo
3D object detectors. The proposed module wraps the
projection process inside both the inference and end-
to-end training processes. We tested both the monoc-
ular and stereo enhanced networks on the KITTI de-
tection benchmark and achieved SOTA performance
among purely vision-based methods. Finally, we con-
ducted further experiments to demonstrate that the
Star-Convolution refinement module is indeed a supe-
rior design to other naive modules.

Although the proposed module increases the compu-
tation burden of current image-based detection models,
we manage to further push the performance potential
of 3D object detection algorithms. We produce more
powerful neural network models for autonomous driv-
ing and vision-based mobile robots.
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