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Abstract— Object detection in 3D with stereo cameras
is an important problem in computer vision, and is par-
ticularly crucial in low-cost autonomous mobile robots
without LiDARs. Nowadays, most of the best-performing
frameworks for stereo 3D object detection are based on
dense depth reconstruction from disparity estimation, mak-
ing them extremely computationally expensive. To enable
real-world deployments of vision detection with binocular
images, we take a step back to gain insights from 2D image-
based detection frameworks and enhance them with stereo
features. We incorporate knowledge and the inference
structure from real-time one-stage 2D/3D object detector
and introduce a light-weight stereo matching module. Our
proposed framework, YOLOStereo3D, is trained on one
single GPU and runs at more than ten fps. It demon-
strates performance comparable to state-of-the-art stereo
3D detection frameworks without usage of LiDAR data.
The code will be published in https://github.com/Owen-
Liuyuxuan/visualDet3D.

I. INTRODUCTION

3D object detection is a fundamental problem in
computer vision, and a crucial engineering problem for
autonomous vehicles and mobile robots [1] [2]. With
two horizontally-aligned RGB cameras with known
displacement, it is possible to estimate depth by tri-
angulation according to the pin-hole camera model.
Though this is a non-direct measurement for depth
and is, in most cases, less robust than LiDAR-based
approaches, the binocular setup is generally much
cheaper and it is promising for low-cost applications
such as mobile robots and autonomous logistic vehi-
cles.

Many of the state-of-the-art frameworks in stereo
3D object detection stem from the idea of pseudo-
LiDAR and are motivated by general stereo matching
algorithms. However, in 3D object detection, the model
should focus on foreground objects. It is expected to
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be as accurate as possible since a disparity error of
one or two pixels would cause a large error in terms
of real-world distance. Many researchers have delved
deep into these problems to improve the performance
of pseudo-LiDAR-based algorithms; some directly fine-
tune the estimation of point clouds to improve per-
formance [3],[4], while others utilize instance segmen-
tation to focus the stereo matching network on fore-
ground pixels [5], [6], [7]. However, a high-performance
disparity estimation network, e.g., PSMNet [8], usually
takes more than 300 ms per frame on modern hardware
on the KITTI dataset [9] and requires a huge GPU
memory to train. These issues hinder the deployment
of stereo systems on low-cost robotic applications.

Many of the works mentioned above have shown
in practice that transforming images into 3D features
is usually sub-optimal and computationally expensive.
To improve the efficiency of stereo 3D detection algo-
rithms while maintaining as much of their performance
as possible, we propose selecting a different architec-
ture. Instead of casting the problem as a 3D detection
problem with less accurate point clouds, we take a step
back and treat it as a monocular 3D detection task with
enhanced stereo features, which is the fundamental
motivation of this work.

The framework we propose, YOLOStereo3D, is a
light-weight one-stage stereo 3D detection network
(Section III-A). To efficiently produce powerful stereo
features, we re-introduce the pixel-wise correlation
module to construct the cost-volume, instead of the
popular concatenation-based module (Section III-B.1).
Such a module produces a thin 2D feature map where
each channel corresponds to a disparity hypothesis in
stereo matching. We then apply this module hierar-
chically to efficiently produce stereo features as 2D
feature maps (Section III-B.2), and we densely fuse
these features (Section III-B.3) to form the base-feature
of detection heads. The network is trained end-to-end
without the use of LiDAR data (Section III-C).

The main contributions of this paper are three-fold.
• For the inference architecture, we incorporate and

optimize the inference pipeline from one-stage
monocular 3D detection into stereo 3D detection.

• For the design of the network, we introduce a
point-wise correlation module in stereo detec-
tion tasks and propose a hierarchical, densely-
connected structure to utilize stereo features from
multiple scales.
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Fig. 1: Network inference structure of YOLOStereo3D. YOLOStereo3D extracts multi-scale features from
binocular images with a backbone network (a). These features are passed through a multi-scale stereo matching
and fusion module (b) as described in Section III-B. Finally, the fused features are concatenated with the last
feature from the left image and sent to the classification/regression branch to densely predict the 3D bounding
boxes (c/d). The network also produces a disparity estimation during training (e).

• For the experimental results, the proposed
YOLOStereo3D produces competitive results on
the KITTI 3D benchmark without using point
clouds and with an inference time of less than 0.1
seconds per frame.

II. RELATED WORKS

A. Stereo Matching
Stereo matching algorithms focus on estimating

the disparity between binocular images. The current
state-of-the-art frameworks for stereo matching apply
siamese networks for feature extraction from two im-
ages, and construct 3D cost volumes to search the
disparity value on each pixel exhaustively. Early re-
search applied the dot-product between binocular fea-
ture maps, with the resulting correlation directly form-
ing an estimation of the disparity distribution [10] [11].
PSMNet [8] and GCNet [12] constructed concatenation-
based cost volumes and applied multiple 3D convolu-
tions to produce disparity outputs. The recent FADNet
managed to perform a fast stereo estimation with a
point-wise correlation module [13]. Zhang et al. pro-
posed stereo focal loss to improve the loss function for-
mulation in disparity estimation [14]. Our work, similar
to many other stereo 3D object detection algorithms, is
developed upon these studies and utilizes the stereo
matching features to boost detection performance.

B. Visual 3D Object Detection
1) Stereo 3D Object Detection: Stereo 3D object de-

tection is usually considered as a tractable but com-
putationally hard problem. Recent advances in stereo

3D object detection algorithms are based on the idea
of pseudo-LiDAR [15]. DispRCNN [5], ZoomNet [6],
and OC Stereo [7] applied instance segmentation on
binocular images to construct a local point cloud for
each detected instance to improve the accuracy of
disparity estimation on foreground objects. Pseudo-
LiDAR++ [3] recognized that uniform 3D convolution
might not be suitable to process the disparity cost
volume, and transformation to the depth cost volume
may be needed.

We point out that all the aforementioned algo-
rithms require more than 0.3 seconds runtime per
frame. Moreover, Pseudo-LiDAR++ [3], ZoomNet [6],
OC Stereo [7] and DSGN [16] required point cloud
data during training or need point cloud data to help
the training process. DispRCNN [5] and the base-
line Pseudo-LiDAR [15] required off-the-shelf disparity
modules, which are usually trained with depth images
or point cloud data.

YOLOStereo3D is a light-weight model that performs
most of the convolution operation in the perspective
view, and the training and inference are significantly
lighter and faster than all methods mentioned above.
Moreover, the training process of YOLOStereo3D does
not depend on point-cloud data.

2) Monocular 3D Object Detection: Monocular 3D ob-
ject detection is an ill-posed problem, but it provides
many insights into how depth information can be esti-
mated from a single image. Tom et al. [17] demonstrated
that a typical monocular depth estimation network
mainly estimates depth from the vertical position of



an object. The authors [17] provided the theoretical
background for pseudo-LiDAR in monocular detection
[18][19]. YOLOStereo3D is built upon the inference
structure of M3D-RPN [20] and GAC [21] and further
enhances the final features with stereo matching results.

III. METHODS

In this section, we elaborate on the network struc-
ture and methods applied in this paper. First, we
introduce the output definition and data-preprocessing
tricks imported into and optimized for YOLOStereo3D
[21]. Second, we re-introduce the light-weight cost
volume that speeds up stereo matching and present
the hierarchical densely-connected structure that fully
exploits such thin features. Finally, we deliver the loss
function as well as the training and inference scheme
of YOLOStereo3D.

A. Anchors Definition and Preprocessings

Since we adopt the inference structure of a monocu-
lar 3D object detection framework, we need to import
the basic definition of anchors and we propose multiple
optimized processing methods. In this subsection, we
present some of the preprocessing on the input and
output of the network.

1) 3D Anchors and Statistical Priors: Each anchor
is described by 12 regressed parameters includ-
ing [x2d, y2d, w2d, h2d] for the 2D bounding boxes;
[cx, cy, z] for the 3D centers of objects on the left im-
age; [w3d, h3d, l3d] corresponding to the width, height
and length of the 3D bounding boxes respectively;
and [sin(2α), cos(2α)] to estimate the observation an-
gle/orientation of objects.

We observe that [sin(α), cos(α)] and [sin(α +
π), cos(α + π)] correspond to the same rectangular
bounding box results in 3D object detection. As a result,
we instead predict [sin(2α), cos(2α)] in the regression
branch. We also add a classification channel to predict if
|α| > π

2 to eliminate ambiguity, which intuitively means
whether or not the object is facing the camera.

We incorporate 3D statistic priors into 2D anchors to
improve the regression results. To collect prior statistics
of the anchors, we iterate through the training set, and
for each anchor box of different shapes, collect all the
objects assigned to this anchor based on the IoU metric.
Then, we compute the mean and the variance of z,
sin(2α), cos(2α) for each box.

Furthermore, we explicitly exploit scene-specific
knowledge for autonomous vehicles and utilize the
statistical information from the anchor boxes. During
training, we project dense anchor boxes into 3D with
the mean depth value ẑ and filter out anchor boxes that
are far away from the ground plane based on their, as
displayed in Figure 2.

For multi-class training, since the statistics for dif-
ferent types of obstacles, e.g., cars and pedestrians,
are significantly different, we compute 3D priors for

each category, separately. During training, we filter
out anchor boxes dynamically based on the categories
assigned. During inference, we also filter out anchor
boxes dynamically based on the anchors’ local categor-
ical predictions.

2) Data Augmentation for Stereo 3D Detection: Data
augmentation is useful to improve the generalization
ability in deep learning applications. However, the
nature of stereo 3D detection limits the number of
possible augmentation choices. We follow [20] to apply
photometric distortion concurrently on binocular im-
ages. We also follow [22] to apply random flipping on-
line during training. Random flipping includes flipping
both RGB images, flipping the position and orientation
of objects, and then switching left/right images.

B. Multi-Scale Stereo Feature Extraction

The extraction of stereo features is one of the most
time-consuming parts for many pre-existing stereo 3D
object detection algorithms. In this subsection, we re-
introduce the cost volume formulation based on dot-
product/cosine-similarity and present the hierarchical
structure to utilize these features effectively.

1) Light-weight Cost Volume: Current state-of-the-art
stereo matching algorithms usually construct 3D cost
volume with concatenation, where the module itera-
tively shifts the right feature map horizontally over
the left feature map, and at each step, concatenate the
two features at each overlapping pixel. For binocular
feature maps with the shape [B,C,H,W ], the shape of
the output tensor fi is [B, 2 ·C,max disp,H,W ]. In this
paper, we follow [10] and [13] to apply a normalized
dot-product to construct a thin cost volume. Such a
module compute correlation between two overlapping
pixels of the feature maps instead. The shape of the
output tensor f ′i becomes [B,max disp,H,W ].

The stereo matching process can be much faster. Con-
sider two input feature maps of [1, 64, 72, 320], which is
a common shape of a KITTI image down scaled by 4.
The forward pass of concatenation-based cost volume
construction takes about 200 ms while the correlation-
based cost volume takes about 7 ms on an Nvidia-
1080Ti.

However, the number of output channels is smaller,
which could cause the network to be numerically
skewed towards monocular features during the fusion
stage and downsampling the stereo matching results
could induce further information loss. We ease these
two problems with densely connected ghost modules
[23] and a hierarchical fusion structure.

2) Densely Connected Ghost Module: As mentioned
in Section III-B.1, we need to expand the width of
the features to guide the network to skewed towards
features produced by stereo matching.

Han et al. propose the ghost module, which is an
efficient module to produce redundant features [23].



Fig. 2: We project the center of each anchor box from the left image plane to 3D with its mean distance ẑ. We
visualize the projected 3D bounding boxes with the mean width/height/length of the cars. We filter out
anchors that are far from the ground plane during training (transparentized in the figure). Point clouds are
displayed to indicate 3D positions in the figure. Best viewed in color.

It applies depthwise convolution to produce extra fea-
tures, which requires significantly fewer parameters
and FLOPs. We go one step further and densely con-
catenate the original input features with the output of
the original ghost module, thereby tripling the number
of channels. As indicated in Figure 1, the mauve blocks
in (b) are the results from ghost module and others
denote densly connected residuals.

Such a module preserves more information before
downsampling and also rebalances the number of
channels between stereo features and monocular se-
mantic features during the fusion phase.

3) Hierachical Multi-scale Fusion Structure: To mini-
mize the information loss during the stereo matching
phase while keeping the computational time tractable,
we engineer a hierarchical fusion scheme. At the down-
sampling level of 1

4 and 1
8 , we construct a light-weight

cost volume of a max-disparity of 96 and 192, respec-
tively. As shown in Figure 1, they are fed into a densely
connected ghost module, downsampled, and concate-
nated with features at a smaller scale. At a downsam-
pling level of 1

16 , we first downsample the number of
channels with 1 × 1 convolution. We then construct a
small concatenation-based cost volume (also flattened
to be a 2D feature map) to preserve more semantic
information from the right images.

This arrangement can also be justified with high-
level reasoning. Features with higher resolution are
usually local features with higher frequency portions,
which are suitable for dense and accurate disparity
estimation. In contrast, features with low resolution
contain semantic information at a larger scale.

C. Training Scheme and Loss Function
The overall network structure is presented in Fig-

ure 1. Multi-scale features from binocular images are

extracted and fused into stereo features to construct
hierarchical cost volumes. The stereo feature map is
concatenated with the last feature map of the left image
and fed to the regression/classification branch. The
stereo feature map is also fed into a decoder to predict
a disparity map trained with an auxiliary loss. The
auxiliary loss can regularize the training process.

1) Auxiliary Disparity Supervision in Training: As
pointed out by Chen et al. [16], disparity supervision
is important to improve detection performance. We
also observe a similar phenomenon in our framework.
Without disparity supervision, the network may not
be guided to produce local features useful in stereo
matching to fully utilize the geometric potential of
binocular images, and the network could be trapped
in a local minimum similar to that of a monocular
detection network.

We upsample the output of the final stereo features
to [W/4, H/4], and supervise the prediction with a
sparse ”ground truth” disparity derived from the tradi-
tional block matching algorithm in OpenCV [24] during
training. During evaluation and testing, this disparity
estimation branch is disabled to improve efficiency.

Though the disparity from the block matching algo-
rithm is coarse and sparse, we empirically show that it
significantly improves the network’s performance.

2) Loss Function: We apply focal loss [26][27] on
classification, and smoothed-L1 loss [28] on bounding
box regression. We follow the scheme of [14] to apply
stereo focal loss on the auxiliary disparity estimation.
First, we compute the expected distribution of disparity
with a hard-coded variance σ = 0.5:

P (d) = softmax

(
−|d− d

gt|
σ

)
=

exp
(
−cgtd

)∑D−1
d′=0 exp

(
−cgtd′

) .



TABLE I: 3D object detection results on the KITTI test
set on Car. ”*” indicates usage of point cloud data or
pretrained disparity estimation module.

Methods Easy/Moderate/Hard Time
RT3DStereo[25] 29.90 %/23.28 %/ 18.96 % 0.08s
StereoRCNN[22] 47.58 %/30.23 %/ 23.72 % 0.30s
Pseudo-LiDAR*[19] 54.53 %/34.05 %/ 28.25 % 0.40s
OC Stereo*[7] 55.15 %/37.60 %/ 30.25 % 0.35s
ZoomNet*[6] 55.98 %/38.64 %/ 30.97 % 0.35s
Disp R-CNN(velo)*[5] 59.58 %/39.34 %/ 31.99 % 0.42s
Pseudo-LiDAR++*[3] 61.11 %/42.43 %/ 36.99 % 0.40s
DSGN*[16] 73.50 %/52.18 %/ 45.14 % 0.67s
Ours YOLOStereo3D 65.68 %/41.25 %/ 30.42 % 0.08s

TABLE II: 3D object detection results on the KITTI
test set on Pedestrians.

Methods Easy/Moderate/Hard Time
RT3DStereo[25] 3.28 %/ 2.45 %/ 2.35 % 0.08s
OC Stereo*[7] 24.48 %/ 17.58 %/ 15.60 % 0.35s
DSGN*[16] 20.53 %/ 15.55 %/ 14.15 % 0.67s
Ours YOLOStereo3D 28.49 %/ 19.75 %/ 16.48 % 0.08s

Where d represents the disparity and cd indicates the
predicted confidence at disparity d. Then, following
[14], stereo focal loss is defined as:

LSF =
1

|P|
∑
p∈P

(
D−1∑
d=0

(1− Pp(d))−α ·
(
−Pp(d) · log P̂p(d)

))
where D is the max-disparity, α is the focus weight,
P presents the set of pixels involved, and Pp(d), P̂p(d)
represents the expected and predicted distribution map
of disaparity d.

The final loss function is simply the sum of the three
losses.

IV. EXPERIMENTS

We evaluate our method on the KITTI Object De-
tection Benchmark [9]. The dataset consists of 7,481
training frames and 7,518 test frames. Chen et al. [29]
further split the training set into 3,712 training frames
and 3,769 validation frames. In this section, we provide
further training details and show the performance of
YOLOStereo3D on the test set to compare it with
existing models.

A. Implementation and Training Details

Modern deep learning frameworks are sensitive to
hyperparameters choices, and critical design choices
could profoundly influence the final performance. We
introduce some crucial design choices before showing
the performance, and the code will be made open
source upon publication.

We first determine the structure and the hyperpa-
rameters of the network on Chen’s split [29]. Then, we
retrain the final network on the entire training set with
the same hyperparameters before uploading the results
for testing onto the KITTI server. An ablation study is
also conducted on the validation set of Chen’s split.

TABLE III: Monocular 3D object detection results of
Cars on the KITTI test set.

Methods IoU ≥ 0.7 3D Easy/Moderate/Hard Time
M3D-RPN[20] 14.76 % / 9.71 % / 7.42 % 0.16s
RTM3D[31] 14.41 % / 10.34 % / 8.77 % 0.05s
AM3D[32] 16.50 % / 10.74 % / 9.52 % 0.40s
D4LCN[33] 16.65 % / 11.72 % / 9.51 % 0.20s
Ours 19.24 %/ 12.37 %/ 8.67 % 0.05s

The backbone of the network is ResNet-34 [30]. The
top 100 pixels of each image are cropped to speed up
inference and training. The cropped input images are
scaled to 288×1280. The network is trained with a batch
size of 4 on a single Nvidia 1080Ti GPU (it takes about 7
GB of GPU memory, significantly less than other SOTA
stereo detection algorithms) for 50 epochs on the KITTI
training dataset. During inference, the network is fed
one image at a time, and the total average processing
time, including file IO, is about 0.08 s per frame. In
contrast, most other stereo-based networks in the KITTI
benchmark are several times slower.

B. Results on Test Set

The results are presented in Table I alongside those
of other state-of-the-art stereo 3D detection algorithms.

The proposed YOLOStereo3D is fast and outper-
forms many pseudo-LiDAR methods or local point
cloud methods and is the best performing algorithm
without LiDAR usage. It also outperforms DSGN [16]
on pedestrian detection without an additional training
schedule.

C. Test results for Monocular 3D Setting

To verify the effectiveness of the proposed anchor
pre-processing techniques, we further test them in the
task of monocular 3D object detection. Recall that
we claim YOLOStereo3D being a monocular detector
enhanced with stereo features. By taking away the
image from the right camera, the multi-scale fusion
module, and the disparity estimation branch, we obtain
a standalone monocular detector. We enhance the back-
bone to be ResNet-101 [30]. Following the proposed
YOLOStereo3D, we compute the statistic for each an-
chor box and filter out deviated anchor boxes during
training.

We also follow M3D-RPN [20] to post-process the
prediction results to maximize the 2D-3D coherence.
Notice that in YOLOStereo3D, we empirically find this
post-processing step deteriorate the final performance,
but it is beneficial in the monocular setting.

The results are presented at Table III. As shown in
Table III, the proposed framework achieves state-of-the-
art performance in KITTI Object Detection Benchmark
under the monocular setting. The running time of the
proposed monocular detector is about 50 ms per frame.



TABLE IV: Ablation study results of cars on the KITTI
validation set

Methods IoU ≥ 0.7 3D Easy/Moderate/Hard
YOLOStereo3D 72.06 %/ 46.58 %/ 35.53 %
w/o Anchor Prior 65.09 %/ 41.38 %/ 30.90 %
w/o Anchor Filtering 71.37 %/ 45.03 %/ 35.83 %
w/o Channel Expand 64.16 %/ 39.96 %/ 30.02 %
w Naive Channel-expand 70.70 %/ 45.74 %/ 34.87 %
w/o Scale 8 70.80 %/ 45.71 %/ 35.86 %
w/o Scale 16 68.64 %/ 44.54 %/ 33.95 %
w/o Disparity supervision 62.58 %/ 39.09 %/ 30.34 %
w PC supervision 72.05 %/ 46.59 %/ 35.62 %
YOLOMono3D 21.66 %/ 14.20 %/ 11.07 %
Mono w/o Prior 19.90 %/ 13.36 %/ 9.68 %
Mono w/o Filtering 20.50 %/ 13.45 %/ 10.50 %

V. MODEL ANALYSIS AND DISCUSSION

In this section, we further analyze the performance of
YOLOStereo3D and discuss the effectiveness of several
important design choices. The baseline model here is
only trained on the ”Car” type. We first conduct an
ablation study to validate the contribution of anchor
preprocessing, hierarchical fusion, and the densely con-
nected ghost module on the validation set. Then, we
present and discuss some qualitative results.

A. Ablation Study

1) Anchor Preprocessing: We first test the effectiveness
of including statistical information in each anchor. In
the first experiment, instead of predicting a depth value
normalized by the depth prior, the network outputs a
transformed depth output ẑ, where z = 1/σ(ẑ) − 1,
following [34]. In the second experiment, we do not
filter out anchors during training, and the training
loss is evaluated with all anchors. We conduct these
two experiments in both the stereo setting and the
monocular setting. The results are presented in Table IV
respectively.

From the two table, we can observe that anchor pri-
ors significantly boost the performance of the network,
and filtering out irrelevant anchors during training is
also helpful. The performance gain can be observed in
both monocular 3D detection and stereo 3D detection.
We suggest that we can ease the difficulty of depth
inferencing by properly defining and preprocessing
anchors specifically for 3D scene understanding in
autonomous driving.

The improvement we apply on anchors can also
be applied and verified in monocular 3D detection.
We further provide ablation experiments to validate
the effectiveness of these processing methods under
monocular 3D detection setting.

2) Densely Connected Ghost Module: Densely-
connected ghost modules are useful in expanding the
number of channels in stereo processing. We conduct
two experiments to verify its effectiveness. In the
first experiment, we use a BasicBlock in resnet [30]
to replace the ghost module without expanding the

number of channels, resulting in fewer channels during
the fusion between RGB features and stereo features.
In the second experiment, we directly upsample the
number of channels with 1 × 1 convolution before
feeding the tensor into a BasicBlock.

We can observe from Table IV that the densely-
connected ghost module is useful in improving the
network’s capability. From the first experiment, we
demonstrate that expanding the number of channels is
crucial for the network’s performance. In the second ex-
periment, we further show that the densely-connected
ghost module is better at preserving information than
the naive 1× 1 convolution.

3) Hierachical Fusion: We respectively disable the
stereo matching output on scale 8/16 to produce two
networks to justify the usage of multi-scale fusion.
We can observe from Table IV that the results of the
two ablated models are inferior to that of the baseline
model. We also point out that the forward pass of stereo
matching modules on scale 8/16 is several times faster
than that on scale 4.

As a result, we argue that hierarchically fusing
stereo features from scale 8 and 16 is worth the ef-
fort. The baseline structure of hierarchical fusion in
YOLOStereo3D achieves a fair balance between speed
and performance.

4) Disparity Supervision: We also have an ablation
study on the importance of disparity supervision. Sim-
ilar to the conclusion in DSGN [16], disparity su-
pervision significantly boosts the performance of the
network.

In the experiment, we show that such supervision
is essential, but the results are not sensitive to the
accuracy of the ”target” disparity map. The insight is
that the network may only need slight regularizations
in stereo matching submodules. The auxiliary loss is
required to drive the network from falling back to a
naive local optimal of monocular 3D object detection.

B. Qualitative Results

We show qualitative validation results in Figure 3.
The model displayed is YOLOStereo3D sharing the
same hyperparameters as the model submitted to the
KITTI server, but it is only trained on the training sub-
split.

From the RGB images, we can observe that most
of the successful predictions of YOLOStereo3D are
visually consistent with the context. As shown in the
bird’s-eye-view images, though the disparity estima-
tion may not correctly align with the ground truth 3D
bounding boxes, the bounding box predictions from
YOLOStereo3D are still reasonably accurate.

The examples suggest that priors in anchor heads
and the fusion between stereo matching features and
RGB features could help the network to produce more
visually consistent predictions and make the network



Fig. 3: Qualitative examples from the validation set. The RGB images show the detection results and ground
truth 3D bounding boxes on the left images. The bird’s eye view images show the disparity prediction from the
networks, along with detection results. The blue bounding boxes are 3D predictions from YOLOStereo3D, the
pink bounding boxes are ground truth 3D bounding boxes, and point clouds are predictions from the disparity
estimation branch of YOLOStereo3D.

more robust against potentially misleading disparity
matching results.

VI. CONCLUSION

In this paper, we presented YOLOStereo3D, an effi-
cient stereo 3D object detection framework. This work’s
major contribution is to take a step back to consider
stereo 3D object detection as an enhanced monocular
detection problem, rather than as an inaccurate LiDAR-
based detection problem. To achieve this, we first in-
corporated knowledge from real-time monocular 3D
object detection frameworks and used priors in anchors
for depth inference. Then, we introduced the point-
wise correlation module into the detection problems.
Finally, we used a hierarchical fusion framework that
balances information preservation and computational
burden. We tested YOLOStereo3D on the KITTI Object
Detection Benchmark. The model produces competitive
results among stereo frameworks while running at
more than ten frames per second without any usage
of LiDAR data.

It should be noted that we are converting the features
from the right image to the left image. In other words,
the computational roles of the two images are not
equal. Information loss in the right image is significant.
As a result, when an object is occluded in the left image
but is more visible in the right image, the model could
be significantly sub-optimal.

Nevertheless, since the model can achieve a compet-
itive result with only one GPU and a short training
time, YOLOStereo3D lowers the bar of stereo detection
research. With a significantly faster inference speed
and competitive performance, YOLOStereo3D can also
boost the deployment of stereo setups on self-driving
cars and mobile robots in the future.
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