
Real-time Optimal Navigation Planning Using Learned Motion Costs

Bowen Yang1∗, Lorenz Wellhausen2, Takahiro Miki2, Ming Liu1, Marco Hutter2

Abstract— Navigation on challenging terrain topographies
requires the understanding of robots’ locomotion capabilities to
produce optimal solutions. We present an integrated framework
for real-time autonomous navigation of mobile robots based on
elevation maps. The framework performs rapid global path
planning and optimization that is aware of the locomotion
capabilities of the robot. A GPU-aided, sampling-based path
planner combined with a gradient-based path optimizer pro-
vides optimal paths by using a neural network-based locomotion
cost predictor which is trained in simulation. We show that
our approach is capable of planning and optimizing paths
three orders of magnitude faster than RRT* on GPU-enabled
hardware, enabling real-time deployment on mobile platforms.
We successfully evaluate the framework on the ANYmal C
quadrupedal robot in both simulations and real-world environ-
ments for path planning tasks on multiple complex terrains.

I. INTRODUCTION

With the intensive research on legged system control in
recent years, quadrupedal robots are presenting increasingly
strong capabilities when operating on complex terrains. The
robot may have various motion outcomes and undertake
different risks when interacting with diverse environments [1]
and is expected to move along a smooth and reasonable path
with minimum travel expense and failure probability pro-
vided the local information. Furthermore, their locomotion
capabilities strongly depend on the applied locomotion con-
trollers. Therefore, traditional navigation approaches which
simply classify traversability and understand the planning
cost as distances, are unsuitable for quadrupedal robots
confronting complicated navigation tasks.

A popular research direction formulates motion costs from
topographical information and acquires an optimized path
with traditional planning approaches. Local terrain charac-
teristics are directly used to evaluate footprint traversability
and construct the cost function with a group of hand-tuned
formulas in [2], which may require strong specialty and
extensive experience on specific robots when the terrain
complexity increases or more cost factors such as energy
and time consumption are introduced. [3] adopts a deep
neural network that learns local motion cost estimates from
simulation, and [1] combines the estimator with variants of
RRT for global path planning. However, the pure sampling-
based planning frameworks require frequent queries of the

1Authors are with the Robotics and Multi-Perception Laboratory,
Robotics Institute, The Hong Kong University of Science and Technology,
Hong Kong SAR, China. byangar@connect.ust.hk Ming Liu is
the corresponding author. eelium@ust.hk

2Authors are with the Robotic Systems Lab, ETH Zürich, Switzerland.
∗Substantial part of the work was carried out during his stay at 2

Fig. 1. Our navigation framework returns an optimized path based on
elevation maps. Since the planner is aware of the locomotion capabilities
of the robot, it plans a safe, yet efficient path over challenging terrain.

network, which result in long planning times and may be
impractical for real-time applications.

We present a navigation framework that supports rapid
global path planning and optimization on complex terrains
and test it on an ANYmal C [4], a quadrupedal robot with
high mobility. We first train an accurate local motion cost
predictor in simulation in a similar approach [1], which
estimates several motion attributes based on a local height
scan and locomotion commands. To search for a globally
optimized path in a short time, we rapidly build a roadmap
by batch-processing of predefined local motions on a GPU
which we use to obtain a raw path using the A* algorithm.
To further improve the path, a gradient-based path optimizer
tunes the position and orientation of each intermediate state
on the raw path and further optimizes the planning cost
to find a final path for direct execution. We deploy the
whole framework in simulation and on the real ANYmal
C robot, demonstrating that the navigation loop is able to
run in real-time on mobile computation hardware. The main
contributions of this work include:

• Creating a sampling-based planner which exploits
batch-processing for parallel roadmap construction on
a GPU to obtain a path close to the global optimum in
a much shorter time than traditional approaches.

• Developing a novel gradient-based path optimizer that
leverages learned motion costs.

• Demonstrating the whole framework in reality and suc-
cessfully conducting real-time autonomous navigation
on the ANYmal C quadrupedal robot.

Fig. 2. A local motion cost predictor trained in simulation provides cost
estimates to a sampling-based planner and a gradient-based optimizer. The
path planner achieves fast computation time by sampling a fixed set of
motions batched on GPU. The gradient-based optimizer refines the raw path
by applying cost-gradients to path nodes.

II. RELATED WORK

One possible way to solve the robotic navigation problem
is to directly learn a planning policy. For instance, a Gaussian
process model is applied to improve navigation on different
terrains over time [5], which requires repeated attempts for
a better solution. Silver et al. [6] train an agent from human
demonstration for planning on unstructured terrains. Pfeiffer
et al. [7] present an end-to-end framework for planning in
a 2D view using a convolutional neural network (CNN)
that learns from imitation. However, these approaches either
require a large number of manual demonstrations or rely
on another existing global motion planner. Reinforcement
learning is also applied in commanding the robot to reach the
target while avoiding obstacles on a flat ground [8], but this
approach might be unsuitable for applications on complex
terrains due to the extension of observation dimension, which
brings difficulty in network training.

Another research direction focuses on predicting the mo-
tion properties from environmental information. Point cloud
data is directly used to evaluate terrain traversability for
optimal six-dimensional navigation [9] or online path plan-
ning through GPU accelerated tensor voting [10]. Elevation
information obtained from raw perception is employed to
construct a traversability map for individual cells [11] or
quadruped footprints [2]. Learning-based methods help the
prediction to generalize better in novel environments. Well-
hausen et al. [12] train a CNN to predict terrain properties
from image data and use them to compute locomotion costs.
In addition, regressing the robot motion outcomes gathered
from simulation helps to formulate the planning cost function
in a more convenient and intuitive way [6]. A CNN trained
with simulated data can outperform feature-based approaches
in traversability classification [3] and can be used in a
framework that estimates multiple local motion descriptors in
continuous configuration space to construct the cost function

for path planning using RRT* and Stable Sparse RRT [1].
Nevertheless, it requires a long planning time to successively
predict a large number of sampled motions for a smooth
and feasible path using a deep neural network. Based on
the concept of estimating local motion costs, we present a
novel approach that takes advantage of parallel computing
on GPUs to accelerate the path planning and optimization
process.

III. APPROACH

The navigation framework comprises three components
(Fig. 2): The local motion cost predictor estimates several
attributes of a given motion command over the local terrain.
The sampling-based path planner computes a rough path
which is close to the global optimum. Finally, the gradient-
based optimizer improves the rough path to find the locally
optimal path.

A. Local Motion Cost Predictor

We reference the model in [1] to develop the local motion
cost predictor: Each robot state qi in the configuration space
Q contains the robot’s center position xi, yi and the heading
direction ψi in the world frame:

Q = {qi|qi = (xi, yi, ψi)
T }.

A valid local motion e(qa, qb) denotes the translation and
rotation from the start pose qa to the target qb. The local
height scan ρq is centered at qa while its direction aligns
with the world frame. We define the transformation vector
ue = (∆x, ∆y, ∆ψ, ψa)T , where

∆x, ∆y = xb − xa, yb − ya,

∆ψ ∈ (−π, π] = the rotation angle from ψa to ψb,

ψa = robot’s initial yaw angle on ρq.

From ρq and ue, the predictor returns normalized motion
costs cE(e), cT (e), cR(e), which represent the extent of
the general energy consumption E, time duration T , and
the failure probability (risk) R of the robot in finishing
the local motion e. The prediction network consists of a
convolutional feature extractor and a fully connected cost
predictor (Fig. 3), which are jointly optimized. The feature
extractor generates terrain features from a height scan around
the current robot position. Then, the features combined
with the transformation vector ue are passed to the cost
predictor, which outputs motion cost estimates. Because
the feature extractor is convolutional, we can efficiently
precompute features for an entire map, which accelerates the
path planning and optimization steps. This, combined with
batch-processing queries in the cost predictor, is how we
leverage the massive parallel processing power of modern
GPUs to achieve real-time performance.

Fig. 3. The prediction network contains a feature extractor that is
constructed using convolutional layers, which supports height map inputs of
varying size, and a cost predictor using fully connected layers, which uses
the localized map features at the robot location and the motion commands
to predict motion costs.

B. Path Planner and Optimizer

The navigation problem is modeled as globally minimizing
the cost to move from the initial state q0 to the target qt in a
given search space Q. We interpret the path P as sequential
robot configurations: P = {q0, q1, . . . , qt} with qi ∈ Q.
Sampling-based planners are widely adopted to solve high-
dimensional planning problems in robotics [13]. For instance,
the probabilistic road map (PRM) algorithm [14] randomly
samples free states inside Q and checks the connectivity
among their neighbours to build a roadmap, then returns a
solution through a graph traversal approach. In our case, for
a motion e between two adjacent states, the linking state l(e)
can be obtained by taking a threshold on R, and the cost c(e)
can be formulated from E, T , and R, which are represented
by predicted motion costs cE(e), cT (e), cR(e) in Section
III-A.

For path optimization, PRM* [15] achieves asymptotic
optimality [13] by continuously adding samples to the search
graph. However, in our case, it may result in an unacceptable
planning time if we frequently query the prediction network
on new samples to obtain an adequately smooth path for
deployment. Directly applying batch-processing on multiple
samples may accelerate the prediction process, but the loca-
tions and the lengths of randomly sampled motions may vary
greatly, which requests massive individual preprocessing for
valid network inputs. Therefore, we define a specific robot
state group along with its corresponding edge set from a grid
map to simplify the tensor preparations of parallel prediction.
After obtaining a rough path through graph traversal, we use
a gradient-based method for further optimization.

1) Path Planner: We modify the PRM algorithm to de-
velop the path planner for parallel roadmap construction.
We initialize the graph by sampling a group of uniformly
distributed grid states qgi from a grid map which covers
the planning space Q and guarantees appropriate distances
between neighbouring states. After each update of the global
map, the predictor on the GPU is provided with prede-
fined coordinates to locate local features and corresponding
transformation vectors uei

. It then returns motion costs

cE(ei), cT (ei), cR(ei) for each e in the edge set. We
obtain connectivity l(ei) by applying a threshold Rmax as the
maximum allowed risk for traversable edges and obtain the
motion cost c(ei) through a weighted sum of the individual
cost terms:

l(ei) = true where cR(ei) < Rmax,

c(ei) = wEcE(ei) + wT cT (ei) + wRcR(ei).

Because the number and distribution of samples depend
on a fixed grid, this approach is probabilistically incomplete
and can fail in narrow environments due to aliasing effects.
To overcome this, we introduce vague sampling: For each
ei, we apply multiple random tiny location and orientation
perturbations, as shown in Fig. 4, to obtain a group of vague
samples V = {v1, . . . , vnv}, where nv denotes the group
size. We choose the minimum risk value among the grid
sample cR(ei) and vague samples cR(v), v ∈ V as the final
risk c′R(ei) of the motion, and adapt connectivity l(ei) based
on this:

c′R(ei) = min(cR(ei), cR(v1), . . . , cR(vnv)),

l(ei) = true where c′R(ei) < Rthresh.

Vague sampling enables the planner to consider a large
number of possible motions in continuous space, which
increases the probability of finding a solution. V is only
used to refine the connectivity of ei and is excluded from
the roadmap, which avoids introducing additional nodes and
therefore computational complexity to the graph search. The
roadmap still uses the original cost c(ei), such that the
original risk value cR(ei) is used for cost computation rather
than the possibly lower c′R(ei). This way, the graph traversal
algorithm typically prefers safer paths and does not rely on
vague sampling to find connectivity.

Fig. 4. All sampled local motions (green lines are traversable, orange lines
untraversable) between a grid state (blue) and its neighbours (yellow) shown
in (a) are shifted and rotated within a small range to create vague samples
(b). We then combine all traversable edges obtained from grid and vague
samples to determine the connectivity of the planner graph (c), which has
nodes placed on the grid.

2) Path Optimizer: We design a gradient-based path opti-
mizer to iteratively adjust path nodes based on their motion
costs. Provided a raw path Praw = {q0, q1, . . . , qt} with
t local motions ei(qi−1, qi), i ∈ [1, t], the local motion
cost predictor returns cost terms cE(ei), cT (ei), cR(ei). To
keep the distance di between nodes in the range for a valid

cost prediction, the optimizer ignores micro motions which
are smaller than prediction resolution and introduces an
additional penalty pdi if di is overlong: pdi = ωpdi

2 if di >
dmax, where ωp is the penalty factor and dmax is the
maximum prediction distance. The local costs c(ei) and the
global planning cost f(P) for path P are formulated as

c(ei) = ωEcE(ei) + ωT cT (ei) + pdi
,

f(P) = t · ωR ·max(cR(ei)) +

t∑
i=1

c(ei),

where ωE , ωT , ωR are the weights for different costs and the
optimizer regards the highest risk value among all motions
on the path as the overall risk of the path. The initial state q0

is determined by the robot’s current pose and the target qt is
manually selected. Therefore, the objective of the optimizer
is to take all intermediate states qi = (xi, yi, ψi)

T , i ∈
[1, t − 1] as parameters and minimize the overall planning
cost, which is performed through iterative gradient-based
optimization:

Poptim = arg min
P

f(P).

IV. IMPLEMENTATION DETAILS

A. Local Motion Cost Predictor

1) Dataset: We simulate the ANYmal C in Raisim [16]
with a state-of-the-art learning-based locomotion controller
[17], which enables the robot to travel on challenging ter-
rains. The data collection scheme is adapted from [1] using
more samples and 3-DoF motion commands. Considering the
robot’s collision space, the local height scan ρq is 2m×2m
around the robot’s geometric center with a resolution of
4cm. In each attempt, we randomly sample a local motion e
with a translation distance within (0.0, 0.5]m and a rotation
∆ψ ∈ (−π, π], while ensuring a minimum |∆ψ| = 10deg
if the motion distance is close to zero. The general energy
and time consumption values E, T are approximated by
averaging over 12 repeated attempts while applying trivial
changes to the terrain and randomizing friction coefficients
µ ∈ [0.75, 0.80] between the robot’s feet and the ground.
The motion risk R ∈ [0.0, 1.0] is computed as the empirical
failure probability over all repeats.

We collect 370k samples by simulating the robot on
multiple randomly generated terrains, including structured
terrains, like simple stairs, slopes, and steps with multiple
sizes and steepness (Fig. 5 (a)(b)), as well as irregular
terrains through compositions of features that are generated
through the additive combination of Perlin noise at different
scales (Fig. 5 (c)(d)). To improve the prediction accuracy
in narrow environments, 36% of the samples are collected
in narrow paths (Fig. 5 (e)(f)) with varying path width
within [0.5, 2.0]m. Instead of sampling e randomly, one-
third of the motions in the narrow environment command
the robot to walk along the path without turning, so that
the dataset will contain more meaningful samples of how to
travel through narrow environments. We add noise with an

Fig. 5. We train our locomotion cost predictor in simulated environments
which contains structured terrains (a)(b), irregular terrains (c)(d), and narrow
paths (e)(f).

amplitude of a few centimeters to all terrains to approximate
terrain roughness and mapping noise of the real system.

2) Training: We average the values of successful attempts
and rescale them to (0, 1] to obtain the training ground
truth. We regard the prediction as a multi-output regression
problem and train the network with the mean squared error
loss. The prediction network in Fig. 3 is trained with 80%
of samples in the dataset and validated with the remaining
20%.

B. Path Planner and Optimizer

1) Path Planner: In the initialization phase, we sample
states from a grid mesh which is 50 × 50 points in size
and covers Q with a resolution of 0.2m. For each state, we
evaluate the motions to travel to its 20 neighbours from 16
different orientations as shown in Fig. 4 (a). For computa-
tional simplicity, the planner does not sample different target
orientations but choose the direction of a motion ei as the
value of ψi while ∆ψ = 0.0. This greatly increases planning
speed and was found to yield suitable paths to initialize the
path optimizer.

We take nv = 10 vague samples for each local motion
ei with location perturbations in the range of [−0.1, 0.1]m
and orientation perturbations within [−0.4, 0.4]rad, which
generates totally 500k vague samples and magnifies the
sample group by 11 times. Then, the planner creates the
roadmap based on l(ei) and c(ei) introduced in Section III-
B-(1). Here, we set the risk threshold Rmax = 0.5, and the
weights in c(e) are tunable around the default values: wE =
5.0, wT = 5.0, wR = 100.0, where wR is significantly
larger to ensure it has the highest priority in reducing path
risk. We adopt A* for graph traversal with the heuristic cost
function h(qgi) set to be one-tenth the euclidean distance
between state qgi and the goal qgt to make it comparable
to the cost of moving on flat ground with zero risk.

2) Path Optimizer: The path optimizer explained in Sec-
tion III-B(2) locally adjusts the raw path in continuous space.
We set cost weights ωE , ωT , ωR to be the same values
as the path planner wE , wT , wR, and set the distance
penalty factor to ωp = 10.0. While our cost network is fully

differentiable and we could use back-propagation to obtain
gradients, we found that finite-difference is faster in practice,
e.g., applying a δx on the position of state qi will affect local
motions ei and ei+1 and result in differences in local costs
δc(ei) and δc(ei+1). The gradient of parameter xi w.r.t the
path cost is calculated as

∇xi =
δc(ei) + δc(ei+1)

δx
.

∇yi and ∇ψi are computed in the same way. For our
experiments, we set δx = δy = ±0.08m and δψ =
±0.05rad. Because the raw path may have a varying number
of nodes depending on path length, we choose the Adam [18]
optimizer to update P , for it can be interpreted as applying a
vector of adaptive learning rates on different parameters [19]
and has high performance and fast convergence speed with
minimum tuning for hyper-parameters [20]. The learning rate
is initially set to 0.16 and is adjusted by an exponential
scheduler with decay factor γexp = 0.96 to ensure stable
convergence in the late optimization stage. Normally, it
requires 50 iterations for a feasible path.

V. EXPERIMENTS

A. Setup

We deploy the navigation framework in both simulation
and reality on the ANYmal C. The global maps used for
planning are all 12m×12m and 4cm in resolution and for
each map, the valid search space Q is 10m×10m and 8cm
in resolution after the convolutional layers. In the simulation
experiments, we compare the performance of our planning
framework to the RRT* planner, as used in [1]. All the
tested approaches run on a modern desktop with an AMD
Ryzen 9 3950X and an Nvidia GeForce GTX 970 graphics
card, and work with the same motion cost predictor that
directly receives a static map without perception noise. The
RRT* planner is set to finish within 150s, which results in
a tree of 10k edges, and ignores the rotation optimization
for simplicity. We first randomly sample start-goal pose
pairs that are 4.0m in distance on three maps of different
topographies including rough terrain, irregular steps, and the
combination of stairs and slopes (Fig. 6 (a) to (c)). In an
individual attempt, all planners are provided with the same
start-goal pair and we analyze the planning times and the
costs of returned paths. Next, we visualize the paths of
multiple navigation tasks from RRT* and our framework in
two environments: a mountain with unstructured terrain and
a garden with various urban features (Fig. 6 (d)(e)).

For real-world experiments on ANYmal C, we run our
navigation framework in a loop on an onboard Nvidia Jetson
AGX Xavier which is also used to continuously construct and
update the surrounding height scan in an unknown environ-
ment with a GPU version of elevation mapping [21], [22]
with two RoboSense RS-BPearl lidars. In each experiment,
we provide a target pose which is far away from the starting
point and outside the initial search space. As the robot moves,
our framework runs in a loop on the updated map. In each
loop, the framework sets a temporary goal in the direction of

Fig. 6. The first simulation experiment is conducted on rough terrain (a),
irregular steps (b), and the combination of stairs and slopes (c). Next, we
prepare mountain (d) and garden (e) for the visualization experiments.

the final target, which is reachable and close to the boundary
of the current search space, and provides an optimized path
that encourages the robot to explore towards the final target
with a simple path follower.

B. Results in Simulation

First, we compare the path costs from three planners: the
RRT* planner, our sampling-based planner without optimiza-
tion (raw), and our whole navigation framework with the
gradient-based optimizer (optimized). On each of the three
maps we record 60 successful planning attempts. Fig. 7
presents the path costs of equally distant start-goal pairs
from different planners. On all terrains our path planner
outperforms RRT*, even without feeding the results to the
path optimizer. This indicates that our approach of combining
fixed-grid and vague sampling is competitive with standard
sampling-based approaches in producing high-quality solu-
tions within reasonable computation times. The path opti-
mizer can significantly reduce path cost mean and variance
even further, without introducing significant computational
burden.

Fig. 7. Path costs from three tested planners on different maps. In all testing
environments, the performance of our raw path planner is competitive with
RRT* and our optimized approach can further reduce the path cost means
and variances.

Table I shows the averaged path costs and planning times
for the three planners on all terrains. It shows that not
only does our approach produce much lower cost paths
than traditional RRT*, it is also faster by multiple orders
of magnitude, thereby enabling deployment in real-time on
mobile robots.

TABLE I
AVERAGED PATH COSTS AND COMPUTATION TIMES.

Planner Rough terrain Irregular steps Stairs and slopes
types Cost Time[s] Cost Time[s] Cost Time[s]
RRT* 62.75 141.20 58.65 143.20 38.82 148.01
Raw 52.65 0.40 51.93 0.42 29.93 0.36

Optimized 30.32 0.52 31.04 0.55 17.32 0.49

We further visualize the planning results of RRT* and our
optimized framework in garden and mountain environment in
Fig. 6 (d)(e). The sampling-based planner in our framework
ensures the same globally optimized results as the RRT*,
which navigates between steep peaks and valleys on irregular
topographies in mountain (Fig. 8 (a)), avoids rough terrain
and steps, plans up and down stairs to the target pose, and
walks along a narrow path in garden (Fig. 8 (b) to (d)).
For task (b), although the learned locomotion policy can
usually overcome the steps and the slightly rough region,
the planners prefer walking on flat land instead of planning
straight. Comparing the visualized results, our framework
provides smoother paths than RRT*, which are more feasible
for real-world deployment.

Fig. 8. The RRT* planner and our framework perform navigation tasks in
simulation based on the same local motion cost prediction. Both approaches
provide globally optimized solutions when planning on unstructured terrain
in mountain (a), avoiding rough terrain (b), navigating through stairs (c), and
planning on a narrow path (d) in garden. Our approach with the gradient-
based optimization provides smoother solutions than the pure sampling-
based RRT* planner.

C. Results on ANYmal C

In the real-world experiments, we deploy the navigation
framework on ANYmal C with an Nvidia Jetson AGX
Xavier. The feature extractor generates global features from
the elevation map within 0.05s. Next, the cost predictor
takes 0.20s for checking 550k grid and vague samples to
generate the roadmap, and A* takes 0.30s to plan a raw
path. Finally, the raw path is optimized for 50 iterations in
1.00s. Altogether, the framework requires around 1.50s for
each planning loop to find a solution.

The first experiment (Fig. 9) navigates ANYmal in a
crowded corridor with a goal set 10m in front of the robot,

Fig. 9. Our framework navigates the robot to explore along a crowded
corridor and move through obstacles based on the elevation map that is
continuously constructed by the robot.

demonstrating the ability to plan in narrow environments.
The robot was able to successfully reach the goal without
collision or human intervention in multiple repeats.

In the second experiment, the robot is presented with a
low-lying obstacle to demonstrate the locomotion capabilities
awareness of our approach. A wooden block with a step
height of 12cm is placed in front of the robot. The locomo-
tion policy can overcome this obstacle but might be briefly
tripped up, since it does not use exteroceptive sensing. When
it can avoid the obstacle, the robot takes a detour while it
walks across the obstacle if the detour is obstructed (Fig. 10).

Fig. 10. The navigation framework prefers flat ground than the low-lying
obstacle, while if other ways are blocked, it can also navigate the robot to
walk across the obstacle.

VI. CONCLUSION

We present a controller-aware robot navigation approach
for complex terrains which benefits from parallel computing
on a GPU to achieve short planning times, making it applica-
ble to real-time applications. The locomotion costs used for
planning are learned by deploying the locomotion controller
in simulation and then estimated by a neural network. We
use predefined grid samples for fast roadmap construction on
a GPU and introduce the vague sampling method to improve
the probabilistic completion. By employing a gradient-based
path optimizer we can rapidly obtain an optimized solution,
which outperforms RRT* planning times by three orders of
magnitude. The framework provides global path planning
when provided a whole map, but also supports real-time au-
tonomous exploration tasks in an unknown environment with
continuously updated map information. Since the learning-
based motion cost estimation is applicable to multiple types
of robots [1] [3] and the training data are obtained from
simulation, our planning framework can also be deployed
on other robotic platforms with low manual effort.

REFERENCES

[1] J. Guzzi, R. O. Chavez-Garcia, M. Nava, L. M. Gambardella, and
A. Giusti, “Path planning with local motion estimations,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 2586–2593, 2020.

[2] M. Wermelinger, P. Fankhauser, R. Diethelm, P. Krüsi, R. Siegwart,
and M. Hutter, “Navigation planning for legged robots in challenging
terrain,” in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 1184–1189, 2016.

[3] R. O. Chavez-Garcia, J. Guzzi, L. M. Gambardella, and A. Giusti,
“Learning ground traversability from simulations,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 1695–1702, 2018.

[4] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis,
J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch, R. Diethelm,
S. Bachmann, A. Melzer, and M. Hoepflinger, “ANYmal - a highly
mobile and dynamic quadrupedal robot,” in 2016 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 38–
44, 2016.

[5] L. Nardi and C. Stachniss, “Actively improving robot navigation
on different terrains using Gaussian process mixture models,” in
2019 International Conference on Robotics and Automation (ICRA),
pp. 4104–4110, 2019.

[6] D. Silver, J. A. Bagnell, and A. Stentz, “Learning from demonstration
for autonomous navigation in complex unstructured terrain,” The
International Journal of Robotics Research, vol. 29, no. 12, pp. 1565–
1592, 2010.

[7] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena,
“From perception to decision: A data-driven approach to end-to-end
motion planning for autonomous ground robots,” in 2017 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 1527–
1533, 2017.

[8] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement
learning: Continuous control of mobile robots for mapless navigation,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 31–36, 2017.

[9] P. Krüsi, P. Furgale, M. Bosse, and R. Siegwart, “Driving on point
clouds: Motion planning, trajectory optimization, and terrain assess-
ment in generic nonplanar environments,” Journal of Field Robotics,
vol. 34, no. 5, pp. 940–984, 2017.

[10] M. Liu, “Robotic online path planning on point cloud,” IEEE Trans-
actions on Cybernetics, vol. 46, no. 5, pp. 1217–1228, 2016.

[11] A. Stelzer, H. Hirschmüller, and M. Görner, “Stereo-vision-based
navigation of a six-legged walking robot in unknown rough terrain,”
The International Journal of Robotics Research, vol. 31, no. 4,
pp. 381–402, 2012.

[12] L. Wellhausen, A. Dosovitskiy, R. Ranftl, K. Walas, C. Cadena, and
M. Hutter, “Where should I walk? predicting terrain properties from
images via self-supervised learning,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. 1509–1516, 2019.

[13] K. E. Bekris and R. Shome, “Asymptotically optimal sampling-based
planners,” arXiv preprint arXiv:1911.04044, 2019.

[14] L. E. Kavraki, P. Svestka, J. . Latombe, and M. H. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, 1996.

[15] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[16] J. Hwangbo, J. Lee, and M. Hutter, “Per-contact iteration method for
solving contact dynamics,” IEEE Robotics and Automation Letters,
vol. 3, no. 2, pp. 895–902, 2018.

[17] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
Robotics, vol. 5, no. 47, 2020.

[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[19] N. S. Keskar and R. Socher, “Improving generalization performance
by switching from Adam to SGD,” arXiv preprint arXiv:1712.07628,
2017.

[20] R. Sun, “Optimization for deep learning: theory and algorithms,” arXiv
preprint arXiv:1912.08957, 2019.

[21] P. Fankhauser, M. Bloesch, C. Gehring, M. Hutter, and R. Siegwart,
“Robot-centric elevation mapping with uncertainty estimates,” in In-
ternational Conference on Climbing and Walking Robots (CLAWAR),
2014.

[22] P. Fankhauser, M. Bloesch, and M. Hutter, “Probabilistic terrain
mapping for mobile robots with uncertain localization,” IEEE Robotics
and Automation Letters (RA-L), vol. 3, no. 4, pp. 3019–3026, 2018.

