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Abstract— Path planning is a fundamental capability for
autonomous navigation of robotic wheelchairs. With the im-
pressive development of deep-learning technologies, imitation
learning-based path planning approaches have achieved effec-
tive results in recent years. However, the disadvantages of
these approaches are twofold: 1) they may need extensive
time and labor to record expert demonstrations as training
data; and 2) existing approaches could only receive high-level
commands, such as turning left/right. These commands could be
less sufficient for the navigation of mobile robots (e.g., robotic
wheelchairs), which usually require exact poses of goals. We
contribute a solution to this problem by proposing S2P2, a self-
supervised goal-directed path planning approach. Specifically,
we develop a pipeline to automatically generate planned path
labels given as input RGB-D images and poses of goals. Then,
we present a best-fit regression plane loss to train our data-
driven path planning model based on the generated labels. Our
S2P2 does not need pre-built maps, but it can be integrated into
existing map-based navigation systems through our framework.
Experimental results show that our S2P2 outperforms tradi-
tional path planning algorithms, and increases the robustness
of existing map-based navigation systems. Our project page is
available at https://sites.google.com/view/s2p2.

I. INTRODUCTION

Robotic wheelchairs play a significant role in improving
the mobility of disabled and elderly people. Autonomous
navigation is an essential capability for robotic wheelchairs
[1]. To achieve it, traditional approaches typically consist
of three modules: perception, path planning and control [2]–
[4]. Although decomposing the whole system into individual
modules allows each module to be developed independently,
it may suffer from the accumulation of the uncertainties of
each module. For example, inaccurate perception results may
lead to unsafe paths or detours.

To address this problem, Levine et al. [5] showed that
training the perception and control modules jointly could al-
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Fig. 1: The robotic wheelchair used in this work. It is
equipped with an Intel RealSense RGB-D camera to collect
data and an NVIDIA Jetson TX2 to run our S2P2 model.

low individual modules to cooperatively improve the overall
performance. Recently, many researchers have resorted to
the end-to-end control paradigm [6]–[8], which integrates
perception, path planning and control into one module.
However, Xu et al. [9] argued that the learned control policy
would be limited to specific actuation setups or the simula-
tion environments in which the training was performed.

Different from the above-mentioned approaches, many
end-to-end path planning approaches based on imitation
learning have been developed, which take as input raw sensor
data and output planned paths instead of control signals to
make the model more generic [10]–[14]. However, these
approaches generally have two disadvantages: 1) experts
are often required to drive robots many times in various
scenes, so extensive time and labor may be needed to
record expert demonstrations as training data; and 2) existing
imitation learning-based approaches could only receive high-
level commands at runtime, such as turning left/right or going
straight [12]. These commands could be less sufficient for
the navigation of mobile robots (e.g., our robotic wheelchair
shown in Fig. 1), which usually require exact poses of
goals. For example, given a right-turning command, a robotic
wheelchair in a large free space could have many options to
go to the right side. The simple high-level commands may
not accurately direct the robot to the goal.

To tackle the above issues, we present S2P2, a Self-
Supervised goal-directed Path Planning approach for robotic
wheelchairs, using an Intel RealSense RGB-D camera. The
main difference between our S2P2 and other networks is
that our S2P2 does not need manual demonstrations and
can directly take as input poses of goals instead of high-
level commands. Specifically, we adopt the end-to-end path

https://sites.google.com/view/s2p2


Off-line RGB-D Image

Self-Supervised Label

Off-line
Training

On-line
Runtime

PPG
𝒑𝒑𝑔𝑔
𝒑𝒑𝑁𝑁
⋮
𝒑𝒑
⋮
𝒑𝒑1
𝒑𝒑𝑠𝑠𝒑𝒑𝑔𝑔(𝑥𝑥𝑔𝑔,𝑦𝑦𝑔𝑔,𝜃𝜃𝑔𝑔)

Off-line Goal Pose

Path Node
Coordinates

On-line RGB-D Image

On-line Path Planning

𝒑𝒑𝑔𝑔
𝒑𝒑𝑁𝑁
⋮
𝒑𝒑
⋮
𝒑𝒑1
𝒑𝒑𝑠𝑠𝒑𝒑𝑔𝑔(𝑥𝑥𝑔𝑔,𝑦𝑦𝑔𝑔,𝜃𝜃𝑔𝑔)

On-line Goal Pose

Path Node
CoordinatesData-driven

Path
Planning
Model

i

i

Fig. 2: An overview of our S2P2. We first use our proposed
PPG to generate self-supervised labels (top), which are then
used to train the data-driven path planning model based
on our best-fit regression plane loss. At runtime, a robotic
wheelchair equipped with an RGB-D camera can perform
the on-line path planning (bottom).

planning paradigm, which directly takes as input RGB-D
images as well as poses of goals, and outputs planned paths.

Fig. 2 illustrates the overview of our S2P2. We first
develop a pipeline named the planned path generator (PPG)
to automatically generate planned path labels given as input
RGB-D images [15]–[17] and poses of goals. Then, we
present a best-fit regression plane loss to train our proposed
data-driven path planning model based on the generated
labels. We also propose a framework that allows our mapless
S2P2 to be integrated into existing map-based navigation
systems. Experimental results show that our S2P2 outper-
forms traditional path planning algorithms, and increases the
robustness of existing map-based navigation systems. The
contributions of this paper are summarized as follows:

1) We develop S2P2, which contains an automatic label-
ing pipeline named PPG, a novel best-fit regression
plane loss and a data-driven path planning model.

2) We propose a framework allowing our mapless S2P2 to
be integrated with any map-based navigation system.

3) Experimental results demonstrate the superiority of
both our S2P2 and the S2P2-integrated navigation
system.

II. RELATED WORK

A. Traditional Path Planning Approaches

Traditional path planning algorithms could be generally di-
vided into two categories, complete algorithms and sampling-
based algorithms. Complete algorithms, such as A* [18] and
JPS [19], could always find a solution if one exists, but they
are computationally intensive. Sampling-based algorithms,
such as PRM [20] and RRT* [21], trade off between the
quality of planned paths and efficiency. These algorithms
may fail due to the uncertainties from the perception module.

To address this problem, many researchers have proposed
to plan under obstacle uncertainties [22]–[24]. Kuwata et
al. [22] formulated this problem as a chance-constrained
dynamic programming problem, and solved it by performing
cost analysis. Recently, Jasour et al. [24] proposed a novel
risk-contour map and employed this map to obtain safe paths
for robots with guaranteed bounded risks.

B. End-to-end Path Planning Approaches

There are many studies that could output the coordi-
nates of the planned paths via imitation learning [10]–[14].
Bergqvist et al. [10] compared different combinations of
convolutional neural networks (CNNs) and long short-term
memory (LSTM) networks, and concluded that the path
planned by LSTM or CNN-LSTM is smooth and feasible
in many situations. Cai et al. [12] proposed a vision-based
model, which receives camera images to plan a collision-
free trajectory in the future. These imitation learning-based
approaches, however, have two disadvantages as mentioned
in Section I, which greatly limit their applications.

C. End-to-end Control Approaches

ALVINN [25] was the first attempt to implement end-
to-end control for mobile robots by using a shallow neural
network. Inspired by ALVINN, Bojarski et al. [7] proposed
PilotNet, which utilizes CNNs to map front-view images
directly to steering commands. There also exist studies that
utilize other sensors (e.g., LiDARs) besides cameras [6], [8].
However, these end-to-end control approaches exhibit low
generalization capabilities as already mentioned [9].

III. METHODOLOGY

A. Problem Formulation

Let (·)w denote the world frame, (·)b denote the robot
body frame and (·)c denote the camera frame. Rw

b and
Tw

b represent the rotation matrix and the translation matrix
from the body frame to the world frame, respectively. Given
an input registered front-view RGB image IR and depth
image ID, we can construct a 3-D point cloud of the front
scene, which contains the configuration space of the robotic
wheelchair. To simplify the analysis, we set the configuration
space C ⊂ R2 × SO(2), where SO(2) denotes the 2-D
rotation group. Since the z-axis value has no impact on
the path planning of robotic wheelchairs, we consider a 2-D
projected body frame denoted by (·)pb, which coincides with
the x− y plane of the body frame.

We consider the problem of generating a path given any
arbitrary goal pose ppb

g ∈ C without colliding with obstacles.
Then, the generated path can be expressed as:

P pb ,
{
ppb
1 , . . . ,p

pb
i , . . . ,p

pb
N ,p

pb
g

}
, (1)

where ppb
i ∈ C denotes a node of the planned path. In this

paper, we set N = 24. Note that we take the orientation of
the goal pose θpbg into consideration because it could affect
the generated paths. However, our S2P2 does not output the
orientation of the generated path nodes because the subse-
quent control module only needs the position information.
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Fig. 3: An overview of our data-driven path planning model, which consists of two different submodels. E3RS (left) transforms
the original path planning problem to a semantic segmentation problem. At runtime, the coordinates of the planned path
P pb can be computed by extrinsically reconstructing the binary path label LP . I3RS (right) utilizes a CNN-LSTM neural
network to output P pb intrinsically. Each LSTM module takes as input the combined feature including the current position
information, and outputs a feature that is then decoded to the next planned position.

B. Planned Path Generator

Our PPG is designed to automatically generate planned
path labels P pb given as input RGB-D images and poses
of goals. Given IR and ID, we first use [26] to generate
corresponding semantic segmentation image IS , which can
provide pixel-level predictions of the drivable area and
obstacles. For any pixel q in the image, we calculate its
3-D coordinate in the camera frame qc by using ID. Then,
we can obtain the point cloud in the camera frame PCc

by calculating the 3-D coordinates of all pixels. We further
employ [27] to filter out outliers in PCc. Afterwards, we
build an occupancy grid map named costmap Mpb in the pro-
jected body frame. The initialization approach is described in
Algorithm 1, where qpb

d and qpb
o denote the point belonging

to the drivable area and obstacles, respectively. For any point
qc ∈ PCc, we calculate its coordinate in the projected body
frame qpb via Rb

c and Tb
c (line 1). We then constrict the free

area (line 7) and inflate the occupied area (line 8). Since the
size of our robotic wheelchair is 1m×0.5m, we accordingly
set two radiuses both as 0.5m. The size of each cell in Mpb

is 0.1m× 0.1m.
Now, given a goal pose ppb

g , we can plan a path P pb in
Mpb by using traditional path planning algorithms. If ppb

g

lies outside the free area due to perception or localization
errors, we will take the closest point to ppb

g in the free area
as the new goal and replan the path. After obtaining P pb

from the above steps, we project the input goal pose and
the planned path to the original image and obtain the binary
path label LP and binary goal label LG, as presented in
Fig. 3. By sampling goal poses randomly, our proposed PPG
can generate a large number of planned path labels given as
input RGB-D images, which saves much time and labor.

Algorithm 1: Costmap Initialization
Input: PCc.
Output: Mpb.

1 Compute qpb for every point qc ∈ PCc

2 Initialize Mpb as unknown area
3 Compute region Rpb

d ← findConvexHull
(
qpb
d

)
4 Set Mpb

(
Rpb

d

)
as free area

5 Compute region Rpb
o ← findConvexHull

(
qpb
o

)
6 Set Mpb

(
Rpb

o

)
as occupied area

7 ConstrictFreeArea
(
Mpb

)
8 InflateOccupiedArea

(
Mpb

)

C. Data-driven Path Planning Model

Although our PPG can generate the coordinates of the
planned paths, the generated paths often present detours or
unsafe routes due to perception errors. Therefore, we propose
a data-driven path planning model to provide better planned
paths given as input RGB-D images and poses of goals. The
overview of our model is illustrated in Fig. 3.

Since the nodes of the planned paths are in sequential
order, our model should be able to model this relationship.
To this end, we propose two different submodels. The ex-
trinsic 3-D reconstruction submodel (E3RS) analogizes this
sequential relationship to the spatial continuity of an image
and transforms this problem to a semantic segmentation
problem, while the intrinsic 3-D reconstruction submodel
(I3RS) utilizes LSTM to model this sequential relationship.

1) Extrinsic 3-D Reconstruction Submodel (E3RS): We
first project the input goal pose ppb

g to the image frame and
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Fig. 4: Two examples (indoor and outdoor) with inaccurate perception results for the comparison between traditional
algorithms, RCM [24] with two different risk bounds, and our proposed E3RS and I3RS. Perceived costmaps and ground-
truth costmaps are constructed by the semantic predictions and ground-truth semantic segmentation labels, respectively. The
paths planned by different approaches are all displayed on the ground-truth costmaps. Although the perception results are
not entirely accurate, our proposed E3RS and I3RS can still present a better performance than the other approaches.

obtain the binary goal label LG. Then, we train an existing
data-driven semantic segmentation network, RTFNet-50 [28],
that takes as input the binary goal label LG and RGB image
IR, and outputs binary path label LP . At runtime, we use
ID to compute P pb for the subsequent control module.

2) Intrinsic 3-D Reconstruction Submodel (I3RS): We
construct a CNN-LSTM network to model the sequential
relationship between each node of the planned path. We first
use the encoder of RTFNet-50 [28] to extract the visual fea-
tures of a given RGB-D image. To balance the dimensional
difference between the coordinate vector and visual features,
we encode the input coordinate vector to a feature that has a
higher dimension, which is then concatenated with the visual
features and fed to the LSTM cell. Each LSTM cell takes the
combined feature as input, and outputs a feature that is then
decoded to the next planned position. The current position
feature fed to one LSTM cell comes from the next planned
position feature given by the previous LSTM cell, and the
first LSTM cell takes (0, 0) as the current position. Since P pb

contains 25 nodes including the input goal node, there are
a total of 25 LSTM cells that constitute our many-to-many
LSTM model.

3) Training Loss for Our E3RS and I3RS: The training
loss for our E3RS LE consists of two terms:

LE = LEP + λERLER, (2)

where LEP and LER denote the PPG guiding loss and the
best-fit regression plane loss, respectively. LEP takes the
binary path label generated by PPG L̂P as the supervision,
and is defined as the cross entropy between L̂P and the
E3RS prediction LP . Moreover, since we regard the desired
path as a plane, we design LER to penalize off-plane pixels
with high probability in LP . Referring to the generalized v-

Algorithm 2: Intermediate Goal Pose Generator
Input: Pw, r.
Output: Gw.

1 Gw ← ∅
2 cur ← pw

s

3 for i = 1→M do
4 if

(
Visible (pw

i , cur) ∧ ¬Visible
(
pw
i+1, cur

))
∨(

Dist
(
pw
i+1, cur

)
> r
)

then
5 Gw.insert (pw

i )
6 cur ← pw

i

7 end
8 end
9 Gw.insert

(
pw
g

)

disparity analysis discussed in [29], [30], the inverse depth
(or disparity) pixels 1/ID(q) are typically projected as a
non-linear pattern f(a, q, φ) = a0 + a1(−u sinφ+ v cosφ)
in the v (vertical) direction [31], [32], where q = [u, v]T

denotes the pixel and φ denotes the RGB-D camera roll
angle. a = [a0, a1]

T and φ can be yielded by finding the
best-fit regression plane, which corresponds to the minimum
of the mean of squared residuals between the non-linear
pattern and the pixels q with high probability in LP [33],
[34]:

LER =
1

Np

Np∑
i=1

(1/ID(qi)− f(â, qi, φ̂))
2, (3)

where Np represents the number of pixels with a probability
larger than 0.5 in LP ; and â and φ̂ separately denote the
optimum a and φ. Their closed-form solutions are provided
in [33]. The off-plane pixels with high probability in LP can



TABLE I: Performance comparison between traditional algorithms, RCM [24] with two different risk bounds, and our E3RS
and I3RS. ↑ means higher numbers are better, and ↓ means lower numbers are better. The best results are bolded.

Evaluation
Metrics

Traditional (PPG) E3RS (Ours) I3RS (Ours) RCM (∆ = 0.01) RCM (∆ = 0.1)

A* JPS RRT* PRM A* JPS RRT* PRM A* JPS RRT* PRM A* JPS RRT* PRM A* JPS RRT* PRM

SR ↑ 70.7% 65.6% 70.4% 68.6% 89.2% 86.9% 91.7% 88.1% 90.2% 87.9% 89.6% 86.4% 87.8% 85.7% 86.5% 83.6% 69.6% 67.3% 70.2% 65.9%
TC ↓ 0.132 0.151 0.127 0.187 0.115 0.116 0.089 0.096 0.091 0.121 0.082 0.125 0.159 0.167 0.131 0.192 0.137 0.152 0.125 0.179

produce a relatively high LER, and vice versa.
Similarly, the training loss for our I3RS LI also consists

of two terms:
LI = LIP + λIRLIR, (4)

where LIP and LIR denote the PPG guiding loss and the
best-fit regression plane loss, respectively. LIP takes the
planned path generated by PPG P̂ pb as the supervision:

LIP =
1

25

25∑
i=1

∥∥∥p̂pb
i − ppb

i

∥∥∥
2
, (5)

where p̂pb
i and ppb

i denote the planned path node via PPG and
I3RS, respectively; and ||·|| denotes the L2-Norm. Moreover,
we use the I3RS prediction P pb and ID to compute LIR

based on (3). LIR is also employed to penalize the on-path
but off-plane points.

D. The Proposed Framework for Integrating S2P2 into Ex-
isting Map-based Navigation Systems

For long-range autonomous navigation tasks, the input
goals are often outside the field of view (FOV) of the
front-view camera. To address this problem, we propose a
framework allowing our mapless S2P2 to be integrated into
existing map-based navigation systems.

Given a goal pose, we can first plan a global collision-free
path in the world frame Pw =

{
pw
s ,p

w
1 , . . . ,p

w
M ,p

w
g

}
using

global path planners (e.g., PRM [20]), where pw
s and pw

g are
start and goal poses, respectively. Then we use Algorithm 2
to generate an intermediate goal pose array Gw, where each
pose can lie within the FOV of the camera. r is the distance
measurement range of the camera, and we set r = 10m
in this paper. In Algorithm 2, Visible (m,n) determines
whether pose m is within the FOV of the camera when the
robot is located at n. Dist (m,n) is the euclidean distance
between m and n. With Gw transformed from the world
frame to the projected body frame, our mapless S2P2 can be
used as a local planner given as input RGB-D images and the
intermediate goal poses in Gpb incrementally until the robot
reaches the input goal. Fig. 6 shows two example trajectories
from real-world experiments by using an existing navigation
system with S2P2 integrated, where orange points represent
the intermediate goals generated by Algorithm 2.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Datasets and Implementation Details

We use the RGB-D dataset from [26], which covers 30
common scenes where robotic wheelchairs usually work. The
input images are downsampled to 224 × 320 for efficiency.
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For our PPG, we employ four different traditional path
planning algorithms: two complete algorithms, A* [18] and
JPS [19]; and two sampling-based algorithms, PRM [20] and
RRT* [21]. Each PPG generates a total number of 26429
self-supervised planned path labels given as input RGB-
D images and randomly sampled goal poses. The 26429
planned path labels are split into training, validation and
test sets, which contain 15859, 5285 and 5285 samples,
respectively. Moreover, we adopt λER = 0.10 and λIR =
0.15 in our experiments. For all networks, we use the
stochastic gradient descent (SGD) optimizer and adopt an
initial learning rate of 10−4.

We use two metrics, of which the most important is
success rate (SR). SR is defined as the ratio of the number
of successfully generated paths and total generated paths. A
successfully generated path is defined as a path that reaches
the input goal pose without colliding with obstacles. Inspired
by [35], we also adopt turning cost (TC) to measure the
smoothness of each path, as follows:

TC =

∑25
i=1

∣∣∣θpbi ∣∣∣
25× 90◦

, (6)

where θpbi denotes the turning angle at ppb
i .

B. Path Planning Results

Jasour et al. [24] proposed a novel risk-contour map
(RCM), a state-of-the-art approach for path planning un-
der obstacle uncertainties. We test this approach with two
different risk bounds in our test set. Table I presents the
evaluation results. It is evident that our E3RS and I3RS
present significant improvements compared with the other
approaches. Note that although RCM with a low risk bound



TABLE II: Experimental results of different variants. LR de-
notes LER and LIR for our E3RS and I3RS, respectively. ↑
and ↓mean higher and lower numbers are better, respectively.
The best results for our E3RS and I3RS are both bolded.

No. Architecture LR SR ↑ TC ↓

(a) A*-PPG – 70.7% 0.132

(b) A*-E3RS – 68.6% 0.139
(c) A*-E3RS (Adopted) 3 89.2% 0.115

(d) A*-I3RS – 71.8% 0.130
(e) A*-I3RS (Adopted) 3 90.2% 0.091

(f) A*-I3RS (Only RGB Images) 3 83.1% 0.124
(g) A*-I3RS (Only Depth Images) 3 81.4% 0.119

(h) A*-I3RS (One-to-Many LSTM) 3 77.2% 0.128
(i) A*-I3RS (FCN) 3 76.3% 0.155

performs well in SR, it presents a much worse performance
in TC than E3RS and I3RS because it can generate detours
easily to meet the low-risk-bound requirement. To analyze
why our E3RS and I3RS can perform better than the PPG,
we present some experimental results in (a)–(e) of Table II.
We can clearly observe that our best-fit regression plane loss
LR can effectively reduce the adverse impact of off-plane
points and further improve the performance of planned paths.

We also choose RRT* and our RRT*-E3RS for further
analysis. We use the costmap-distance-function D in [36]
to measure the difference between the perceived costmap
constructed by the predicted semantic segmentation image
and the ground-truth costmap constructed by the ground-
truth semantic segmentation label. The larger the value of
D, the worse the quality of the perceived costmap. Then, we
divide the test set into six categories based on the quality of
the perceived costmaps, and test the SR of RRT* and RRT*-
E3RS on each category. Fig. 5 shows that the SR of RRT*
decreases much more rapidly than our RRT*-E3RS when
the quality of the perceived costmap drops, which is also
confirmed by the qualitative results shown in Fig. 4. We can
see that when the perception results are not very accurate, our
E3RS and I3RS still present a better performance than the
other approaches. The reason is that the other approaches
depend on the perception results, while our S2P2 is an
end-to-end approach that does not. In addition, our best-
fit regression plane loss LR can effectively improve the
performance of planned paths.

C. Ablation Study

We perform ablation studies on our A*-I3RS, which
presents the best performance in our I3RS. We first test the
network structures with only one kind of input, either RGB or
depth images. The results in (e)–(g) of Table II demonstrates
the superiority of using RGB-D images [37]. We speculate
that it is promising to fuse RGB images with other modalities
of data, such as surface normal [38], [39] and optical
flow [40], [41], for autonomous navigation. To show the
effectiveness of our many-to-many LSTM model, we replace
the many-to-many LSTM model with two different models,
a one-to-many LSTM model and a fully connected network

TABLE III: Performance comparison between different nav-
igation systems in real-world experiments with our robotic
wheelchair. The best results are bolded.

Approaches SR (Indoor) SR (Outdoor)

PRM-APF [44] 60% 50%
PRM-DWA [45] 65% 55%
PRM-S2P2 (Ours) 95% 90%

Indoor environment (20.1m×26.5m) Outdoor environment (49.7m×83.5m)

Fig. 6: Two examples from real-world experiments using
PRM-S2P2. Green and magenta lines denote the actual robot
path and the path planned by the global planner PRM,
respectively. Red, blue and orange points denote the start, the
goal and the intermediate goals generated by Algorithm 2,
respectively.

(FCN). We can see that our many-to-many LSTM model
achieves the best results from (e), (h) and (i) of Table II.

D. Navigation Experiments with Our Robotic Wheelchair

To test the performance of the existing navigation system
integrated with our S2P2, we use our robotic wheelchair
to perform navigation tasks in one indoor environment and
one outdoor environment, respectively. We choose our best
approach RRT*-E3RS for our S2P2. The RGB-D SLAM sys-
tem RTAB-Map [42] is adopted for mapping and localization.
Additionally, we use PRM [20] as the global path planner
and optimal time allocation [43] as the trajectory generator.
The robotic wheelchair is commanded to track the trajectory.
We call this navigation system PRM-S2P2. Fig. 6 shows two
example trajectories in real-world environments using our
PRM-S2P2. We can see that the robotic wheelchair can reach
the goal successfully without colliding with obstacles in both
the indoor and outdoor environments. As aforementioned,
our S2P2 behaves as a local planner, and therefore we also
compare the performance between our PRM-S2P2 and the
same navigation system with other local planners integrated.
The results in Table III demonstrate the superiority of our
PRM-S2P2 over PRM-APF [44] and PRM-DWA [45].

V. CONCLUSIONS

In this paper, we proposed S2P2, a self-supervised goal-
directed path planning approach for robotic wheelchairs. Ex-
perimental results have demonstrated that our S2P2 outper-
forms traditional path planning algorithms, and increases the
robustness of existing map-based navigation systems. One
limitation is that the proposed approach does not explicitly
model moving obstacles. Therefore, in the future, we will
incorporate the moving obstacle model into our S2P2, to
enable the mobile robot to present more robust and accurate
navigation performance in dynamic environments.
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