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Abstract— Recently, deep-learning based approaches have
achieved impressive performance for autonomous driving. How-
ever, end-to-end vision-based methods typically have limited
interpretability, making the behaviors of the deep networks
difficult to explain. Hence, their potential applications could
be limited in practice. To address this problem, we propose
an interpretable end-to-end vision-based motion planning ap-
proach for autonomous driving, referred to as IVMP. Given a
set of past surrounding-view images, our IVMP first predicts
future egocentric semantic maps in bird’s-eye-view space, which
are then employed to plan trajectories for self-driving vehicles.
The predicted future semantic maps not only provide useful
interpretable information, but also allow our motion planning
module to handle objects with low probability, thus improving
the safety of autonomous driving. Moreover, we also develop an
optical flow distillation paradigm, which can effectively enhance
the network while still maintaining its real-time performance.
Extensive experiments on the nuScenes dataset and closed-loop
simulation show that our IVMP significantly outperforms the
state-of-the-art approaches in imitating human drivers with a
much higher success rate. Our project page is available at
https://sites.google.com/view/ivmp.

I. INTRODUCTION

Motion planning is an important capability in autonomous
driving, serving as a fundamental building block [1]. With
the impressive advancement of deep learning technologies,
many researchers have tried to develop end-to-end motion
planning approaches using deep learning, which generally
employ deep neural networks (DNNs) to directly map the
raw sensor data (e.g., point clouds and images) to planned
trajectories [2]–[5] or control commands (e.g., throttle and
steering angle) [6]–[8]. However, end-to-end approaches are
often criticized for their lack of interpretability. Here, inter-
pretability refers to the ability to explain why the model can
produce specific results [9]. Interpretability is very important
for autonomous driving, since it can help people find out the
limitations of the network and further improve it, especially
when accidents such as collisions happen.
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To improve the interpretability of end-to-end approaches,
some researchers have adopted multi-task learning and de-
veloped models that can generate several interpretable rep-
resentations, e.g., the object detection and prediction results
[10] or the egocentric semantic maps in bird’s-eye-view
(BEV) space [9]. These approaches are generally based
on LiDARs, since motion planning is usually performed
in BEV space and the point clouds provided by LiDARs
inherently meet this requirement. Unfortunately, images are
located in perspective-view space, and there is a large gap
between perspective-view space and BEV space. To mitigate
this gap, some approaches have first transformed perspective
images into BEV semantic maps, which are then employed
to perform motion planning [11]. However, the neglect of
future environment prediction still restricts the interpretabil-
ity of end-to-end vision-based approaches. Since images can
provide more semantic information than point clouds, there
is a strong motivation to improve the interpretability of end-
to-end vision-based approaches.

In this paper, we propose an Interpretable end-to-end
Vision-based Motion Planning approach, referred to as
IVMP, for autonomous driving. Our IVMP, illustrated in
Fig. 1, takes as input a set of past surrounding-view images.
We first lift these images into three dimensions (3-D) and
employ a recurrent unit to predict a set of future egocen-
tric semantic maps in BEV space. Afterwards, our motion
planning module can employ these semantic maps to plan
trajectories for the self-driving vehicle (SDV). Moreover,
we develop an optical flow distillation paradigm to further
improve the driving performance. Specifically, we refer to
the above-mentioned network as the student network (IVMP-
S) and additionally propose a teacher network (IVMP-T),
which adopts a similar architecture to the student network but
further takes optical flow information as input. The explicit
motion information provided by the optical flow can signif-
icantly improve the teacher network, but the computation
and corresponding feature processing of the optical flow
also seriously slows down the network [12]–[14]. We then
use knowledge distillation techniques to effectively enhance
the student network based on the teacher network, while
still maintaining the real-time performance of the student
network. To verify the effectiveness and efficiency of our
approach, we perform evaluations on the popular nuScenes
dataset [15]. In addition, we conduct closed-loop evaluations
in the Carla simulation environment [16]. The experimental
results demonstrate that our approach can imitate human tra-
jectories more closely than existing approaches with a much
higher success rate. Furthermore, our student network runs
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Fig. 1: An overview of our IVMP, which consists of 1) a semantic map forecasting module to predict future egocentric
semantic maps in BEV space and 2) a motion planning module to generate trajectories for SDVs. In the proposed optical
flow distillation paradigm, the teacher network adopts a similar architecture to the student network but further takes optical
flow information as input. We then use knowledge distillation techniques to effectively enhance the student network based
on the teacher network, while still maintaining the real-time performance of the student network.

much faster than the teacher network with similar driving
performance thanks to the adopted optical flow distillation
paradigm. The major contributions of this paper can be
summarized as follows:
• We propose IVMP, an interpretable end-to-end vision-

based motion planner for autonomous driving.
• We develop an optical flow distillation paradigm, which

can effectively enhance the network while still maintain-
ing its real-time performance.

• We present extensive experiments on the nuScenes
dataset and closed-loop simulation that demonstrate the
effectiveness and efficiency of our IVMP.

II. RELATED WORK

A. End-to-end Approaches for Autonomous Driving

Traditional autonomous driving approaches generally per-
form motion planning based on the perception results [17]–
[22], while end-to-end approaches directly map the raw
sensor data to the planned trajectories or control commands.
ALVINN was the first approach in this field, employing a
3-layer neural network to directly output control commands
[23]. Recently, with the success of deep learning, end-to-end
approaches have advanced with deeper network architectures
and more complex sensor inputs [2]–[8]. However, these end-
to-end approaches generally behave as black-box models and
have limited interpretability as previously mentioned.

To improve the interpretability of end-to-end approaches,
some researchers have adopted multi-task learning and de-
veloped LiDAR-based models that can generate several in-

termediate representations [9], [10], [24]. Specifically, Sadat
et al. [9] employed LiDAR data to predict egocentric se-
mantic maps in BEV space, which are then used for motion
planning. Other researchers have followed this paradigm
and attempted to improve the interpretability of end-to-end
vision-based approaches. For example, Gupta et al. [11] first
used a multi-layer perceptron (MLP) to transform perspective
images into BEV semantic maps, which are then employed
to perform motion planning. However, their approach only
utilizes a monocular camera with a limited field of view
(FOV) and does not predict the future environment. In
contrast, our approach takes a set of past surrounding-view
images as input and predicts the future semantic maps in
BEV space, which improves both interpretability and driving
performance.

B. Semantic Segmentation in BEV Space

Many studies have used perspective images to perform
semantic segmentation in BEV space [25]–[29]. Specifically,
Pan et al. [27] employed an MLP to conduct such trans-
formation for surrounding-view images. Roddick et al. [28]
and Philion et al. [29] incorporated the strong geometric
priors of camera extrinsic parameters into the pipeline, which
presents impressive performance. Moreover, Deng et al. [30]
and Yang et al. [31] used fisheye images to generate semantic
predictions in BEV space. The semantic map forecasting
module in our approach is inspired by these works. The
difference is that our approach has the capacity of predicting
future semantic maps in BEV space.
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Fig. 2: The pipeline of our semantic map forecasting module, which consists of a BEV feature map generation stage and a
BEV feature map exploitation stage. In the first stage, we lift each image into 3-D to generate a feature map in BEV space,
which is then processed by a recurrent unit to predict future egocentric semantic maps in the second stage. Please note that
we omit the visualization of the softmax operation in the recurrent unit (purple color) for brevity.

C. Knowledge Distillation

Hinton et al. [32] first proposed the concept of knowledge
distillation, which aims at leveraging the dark knowledge of
a teacher network to train a student network with fewer pa-
rameters. Since then many techniques, such as Hint Training
(HT) [33] and attention distillation [34], have been developed
to improve knowledge distillation, and it has been employed
in many applications, e.g., semantic segmentation [35] and
object detection [36]. However, knowledge distillation for
motion planning has not previously been explored, which is
one of the major contributions of this paper.

III. METHODOLOGY

In this section, we first introduce our semantic map fore-
casting module and motion planning module in Section III-
A and III-B, respectively. Then, we present our optical flow
distillation paradigm in Section III-C. Finally, Section III-D
elaborates the training phase.

A. Semantic Map Forecasting Module

Let Ikt ∈ RH×W×3 denote the input RGB image, where
k = 1, . . . , 6 denotes the six cameras used in our experi-
ments; and t = t0 − 4, . . . , t0 denotes the timestamp of the
past five frames. The six cameras with known extrinsic pa-
rameters Ek and intrinsic parameters Ik roughly point in the
forward, forward-left, forward-right, backward, backward-
left and backward-right directions respectively. Then, given
all images in the past five frames {Ikt }

k=1,...,6
t=t0−4,...,t0 , our

semantic map forecasting module can output a set of ego-
centric semantic maps in the future eleven frames M =
{Mt}t=t0,...,t0+10. Fig. 2 presents the pipeline of this mod-
ule, which consists of a BEV feature map generation stage
and a BEV feature map exploitation stage.

1) BEV Feature Map Generation Stage: The purpose of
this stage is to lift each Ikt into 3-D to generate a feature map
Fb in BEV space, which is the key to the prediction of M.
Inspired by [29], we achieve this by generating contextual

features at all possible depths for each pixel. Specifically,
we associate each pixel with a set of |D| discrete depths,
where D = {d0 +∆d, . . . , d0 + |D|∆d}. Then, based on the
intrinsic parameter Ik, we can easily generate a large point
cloud Pk

t that contains H ·W ·|D| 3-D points for each Ikt . The
contextual feature for each point in Pk

t is a combination of
the feature for the corresponding pixel and the discrete depth
inference. To be specific, our network utilizes the backbone
to predict a contextual feature f ∈ RC and a distribution π
over the discrete depth set D for each pixel p. The contextual
feature fd ∈ RC for point pd is then computed by

fd = πd · f , (1)

where d ∈ D refers to any discrete depth in D.
For the teacher network, we further incorporate optical

flow into Pk
t to enable the network to better learn the past

motion for predicting future semantic maps. Specifically,
given any Ikt and Ikt−1, we first utilize an off-the-shelf
optical flow estimation network, PWCNet [12], to compute
the backward optical flow Ok

t ∈ RH×W×2, which contains
the explicit past motion information from Ikt−1 to Ikt . Then,
we utilize another backbone to predict a contextual feature
f ′ ∈ RC for each pixel p. We concatenate f ′ with f and
then generate a new feature. For notational simplicity, we
still denote this new feature as f . We further employ (1) to
compute a contextual feature fd ∈ RC for every point pd

in the teacher network. Note that the following architectures
are almost the same for the teacher and student networks.

Then, for each timestamp t, we can utilize the extrinsic
parameters {Ek}k=1,...,6 to aggregate {Pk

t }k=1,...,6 into a
large point cloud Pt. After that, we follow [37] to con-
vert Pt into “pillars”, which refer to voxels with infinite
height. Specifically, we assign each point to its nearest
pillar and conduct pooling to construct a feature map Ft ∈
RX′×Y ′×C . Now Ft can be processed by convolutional
layers to predict future egocentric semantic maps in BEV
space. We then concatenate the features of all five past frames



{Ft}t=t0−4,...,t=t0 to generate the BEV feature map Fb.
2) BEV Feature Map Exploitation Stage: Given Fb, which

consists of all past information in BEV space, we will
generateM in this stage. Note thatMt ∈ RX×Y×|C|, where
C denotes the semantic classes, which include the drivable
area, lane, vehicle and pedestrian in our experiments.

We first utilize several fusion layers to aggregate the
spatio-temporal information of Fb and generate a fused
feature map Ff . The adopted fusion layers include two
parallel convolutional layers with different dilation rates.
Afterwards, we update the future egocentric semantic logits
St ∈ RX×Y×|C| repeatedly via a recurrent unit:

St(c) = St−1(c) + U (C(Ff ,St−1(c) ↓)) , (2)

where c ∈ C denotes any semantic class; ↓ denotes 1
2×

downsampling; C(·, ·) denotes concatenation; and U(·) de-
notes a 2× upsampling operation, consisting of a 2× bilinear
interpolation followed by convolutional layers. Please note
that St0 is predicted from Ff via initialization layers, which
consist of convolutional layers and the upsampling operation
U(·). Then, we perform softmax on St to generate the future
egocentric semantic map (predicted distribution) Mt. We
further define a future semantic map loss LM :

LM (M̂,M) =
∑
t

H
(
M̂t,Mt

)
= −

∑
t

∑
c

∑
i,j

M̂t(i, j, c) · log(Mt(i, j, c)),

(3)
where H(·, ·) denotes the cross entropy; and M̂ denotes the
ground truth distribution.

B. Motion Planning Module
Based on M, the current SDV state st0 and a given

high-level route planned by a global planner, the purpose
of our motion planning module is to generate a planned
trajectory that contains the SDV states in the future ten
frames, i.e., T = {st}t=t0+1,...,t0+10. In our experiments,
we adopt st = [xt, yt, θt, κt, vt, at], where x and y denote
the position coordinates; and θ, κ, v and a denote the heading
angle, curvature, velocity and acceleration, respectively.

To achieve motion planning, we first employ the sampling
technique proposed in [38] to sample a diverse set of
trajectories for the SDV based on st0 , and then select the
one with the minimal cost of a learned cost function f as
follows:

T ∗ = arg min
T

f(st0 ,M, T ;w), (4)

where w denotes the learnable parameters of our motion
planning module. f consists of two subcosts: 1) fm, which
focuses on the safety of the planned trajectory based on M;
and 2) fo, which focuses on the comfort and the consistency
between the high-level route and the planned trajectory.

The intuition for fm is that the SDV should not collide
with other objects and also should not drive on non-drivable
areas. Thus, we define fm as follows:

fm =
∑
t

∑
c

wc · Mt(Tt, c), (5)

where wc ∈ w; c ∈ C′ and C′ includes the vehicle,
pedestrian and non-drivable area (as opposed to the drivable
area) classes inM; andMt(Tt, c) denotes the corresponding
probability for class c onMt based on the position provided
by the sampled trajectory Tt. The advantage of fm is that it
employs the probability instead of the binary classification
result, and thus can handle objects with low probability and
further improve the safety of autonomous driving.

As for fo, we define it as a linear combination of several
cost terms. Specifically, to ensure the consistency between
the high-level route and the planned trajectory, we adopt
the distance between the end position of the trajectory
and the given high-level route as a cost term. We also
penalize the number of times the SDV changes lanes to
encourage maneuvers that are consistent with the high-level
route. Moreover, to encourage comfortable driving, we define
several thresholds to penalize aggressive behaviors.

During training, considering that selecting the trajectory
with the minimal cost in a discrete set is not differential, we
follow [9] and develop a motion planning loss LP :

LP (T̂ , T ) = max
T

[
f(T̂ )− f(T ) +

∑
t

||T̂t − Tt||1

]
+

,

(6)
where || · ||1 denotes the L1-Norm; [·]+ denotes the ReLU
function; and T̂ denotes the trajectory of human drivers.
Please note that we omit st0 , M and w in f for brevity.
LP adopts a similar formulation to the max-margin loss,
which can encourage the trajectories of human drivers to
have a smaller cost f than other trajectories. Moreover, LP

can also penalize trajectories that have a small cost but are
different from the trajectories of human drivers.

C. Optical Flow Distillation Paradigm

Our teacher network and student network have been in-
troduced in the above two subsections. The explicit motion
information provided by the optical flow can significantly
improve the teacher network, but the computation and corre-
sponding feature processing of the optical flow also seriously
slows down the network. In contrast, the student network
can conduct motion planning in real time with a poorer
performance than the teacher network. To further improve the
driving performance of the student network, we develop an
optical flow distillation paradigm, which distills the knowl-
edge from a trained teacher network to the student network
via knowledge distillation techniques. The distillation loss
LD consists of three terms, as follows:

LD = λDMLDM + λDPLDP + λDFLDF , (7)

where LDM , LDP and LDF denote the distillation loss for
M, T and Fb, respectively; and λDM , λDP and λDF are
hyperparameters that scale the three loss terms.

Specifically, since the prediction of future semantic maps
is a classification task, LDM is designed based on the con-
ventional knowledge distillation technique [32], as follows:

LDM = LM (MT ,MS) =
∑
t

H
(
MT

t ,MS
t

)
, (8)
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where MT and MS denote the predicted future semantic
maps of the teacher and student network, respectively. Dif-
ferent from M̂ in (3) that can only provide hard information,
MT can provide useful soft information. For example, for
a pixel that belongs to the drivable area class, M̂ can only
show that it belongs to the drivable area class and does not
belong to any other classes; whileMT can further show that
it may belong to the lane class, but it is almost impossible
for it to belong to the vehicle or the pedestrian classes. The
soft information provided by MT can effectively improve
the student network.

In addition, inspired by [36], we design LDP as follows
for motion planning:

LDP =


LP (T T∗, T S),

if
∑

t ||T̂t − T S∗
t ||1 >

∑
t ||T̂t − T T∗

t ||1,
0, otherwise.

where T S denotes a set of sampled trajectories of the student
network; T T∗ and T S∗ denote the trajectories of the teacher
and student network with the minimal cost of f , respectively;
T̂ denotes the trajectory of human drivers; and LP (·) is
shown in (6). LDP encourages the student to be close to or
better than the teacher, but does not push the student once it
reaches the teacher’s performance.

Since Fb of the teacher contains the explicit motion
information provided by the optical flow while Fb of the
student does not, we further develop LDF based on HT [33]:

LDF = ||FT
b −FS

b ||1, (9)

where FT
b and FS

b denote the BEV feature map Fb of the
teacher and student network, respectively. LDF encourages
the student network to mimic Fb of the teacher network.

D. Training Phase
In the training phase, we first utilize the following teacher

training loss LT to train the teacher network:

LT = λMLT
M + λPLT

P , (10)

where LT
M = LM (M̂,MT ); LT

P = LP (T̂ , T T ); and λM
and λP are hyperparameters that scale the loss terms.

Afterwards, we use the following student training loss LS

to train the student network based on the trained teacher
network:

LS = λMLS
M + λPLS

P + λDLD, (11)

where LS
M = LM (M̂,MS); LT

P = LP (T̂ , T S); and λM ,
λP and λD are hyperparameters that scale the loss terms.

TABLE I: IoU (%) results of BEV semantic maps on the
nuScenes dataset [15], where “D”, “L”, “V”, “P” and “M”
denote the drivable area, lane, vehicle, pedestrian and mean
value, respectively. Best results are bolded.

Approach D L V P M

VED [26] 60.82 16.74 23.28 11.93 28.19
VPN [27] 65.97 17.05 28.17 10.26 30.36
PON [28] 63.05 17.19 27.91 13.93 30.52
Lift-Splat [29] 72.23 19.98 31.22 15.02 34.61

IVMP-S-ND 71.76 18.27 33.12 16.15 34.83
IVMP-S (Adopted) 74.70 20.94 34.03 17.38 36.76
IVMP-T 75.82 21.22 34.58 17.29 37.23

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Datasets and Implementation Details

In our experiments, we first use the nuScenes dataset
[15] to evaluate the performance of our approach for BEV
semantic map prediction and motion planning. We split
the dataset into a training, a validation and a testing set
that consist of 18072, 8019 and 8033 samples, respectively.
Networks are first trained on the training set, then selected
on the validation set and finally evaluated on the testing
set. We also conduct closed-loop evaluation in the Carla
simulation environment [16]. Specifically, we first construct
a large-scale driving dataset in different scenes, weather
and illumination conditions. The dataset is then split into a
training set with 200K samples and a validation set with 50K
samples. Moreover, the closed-loop evaluation is performed
in six scenes, including two unseen scenes. Each network is
evaluated thoroughly with 1800 episodes (around 1000 km).

In the implementation, we adopt EfficientNet-B0 [39] as
the backbone. The time interval between two consecutive
frames is 0.5s, which means that our IVMP takes the
information of the past 2s as input and generates planned
trajectories for the future 5s. We use the Adam optimizer
[40] with an initial learning rate of 10−4 to train our IVMP-T
and IVMP-S on two NVIDIA GeForce RTX 2080 Ti GPUs.
Moreover, we also train the student network without the
proposed optical flow distillation paradigm, which is referred
to as IVMP-S-ND, for better performance comparison.

B. BEV Semantic Map Results on the nuScenes Dataset

We adopt the intersection over union (IoU) as the eval-
uation metric, and the evaluation results of Mt0 are pre-
sented in Table I. We can see that the three variants of
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Fig. 4: Motion planning results of IL, VTP [3], P3 [9],
NMP [24] and our IVMP on the nuScenes dataset [15].

our IVMP all outperform the state-of-the-art approaches,
which demonstrates the effectiveness of our architecture that
utilizes the past information. Moreover, IVMP-T achieves
the best performance due to the explicit motion information
provided by the optical flow. Furthermore, IVMP-S presents
a much better performance than IVMP-S-ND and a similar
performance to IVMP-T, which verifies the effectiveness of
our optical flow distillation paradigm. The qualitative results
in Fig. 3 also confirm the above-mentioned conclusions.
Please note that we adopt IVMP-S in practice due to its real-
time performance. The analysis of inference time is presented
in Section IV-C.

C. Motion Planning Results on the nuScenes Dataset

Following [9], we use the `2 distance between the planned
trajectory and human trajectory at t = 5s for performance
comparison. In addition, we also record the inference time
of each approach. Fig. 4 presents the evaluation results,
where IL refers to an imitation learning baseline that pre-
dicts trajectories directly from M. Please note that IL is
also an end-to-end approach. From Fig. 4, we can clearly
observe that the conclusions in Section IV-B also hold for
motion planning. Our IVMP-T achieves the most accurate
performance due to the explicit motion information provided
by the optical flow. Moreover, our IVMP-S can run in
real time with a similar performance to IVMP-T thanks to
the adopted optical flow distillation paradigm. In addition,
one exciting fact is that our IVMP-S and IVMP-T can
achieve competitive performance when compared to existing
LiDAR-based approaches, which strongly demonstrates the
effectiveness of our IVMP architecture with interpretable
representations.

D. Closed-loop Evaluation Results in the Carla Simulator

Following [41], we adopt the success rate (SR) and right
lane rate (RL) for evaluation. RL is defined as the proportion
of the period in the given high-level route to the total driving
time. We utilize a PID controller to transform the planned
trajectories of our IVMP-S into control commands, and

TABLE II: Closed-loop evaluation results in the Carla sim-
ulator [16]. Best results are bolded.

Intention-Net [7] CIL [8] IVMP (Ours)

SR (%) 75.28 60.72 88.67
RL (%) 89.28 82.97 93.16
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Backward-rightBackwardBackward-left

𝑡𝑡 = 0𝑠𝑠 𝑡𝑡 = 1.5𝑠𝑠 𝑡𝑡 = 3𝑠𝑠
Drivable Area Lane Vehicle PedestrianSDV

Input Images at 𝑡𝑡 = 0𝑠𝑠 BEV Perspective at 𝑡𝑡 = 0𝑠𝑠

Planned Trajectory

Fig. 5: An example of the closed-loop evaluation in the Carla
simulator [16]. The SDV is marked with an orange dashed
box in the BEV perspective.

denote it as IVMP. We then compare the online performance
of IVMP with Intention-Net [7] and CIL [8], as presented in
Table II. We can observe that our IVMP achieves the best
results in terms of both SR and RL. We analyze that the
predicted semantic maps allow our motion planning module
to handle objects with low probability, thus improving the
safety of autonomous driving. Fig. 5 presents a driving
scenario at intersections. Our IVMP can manuever the SDV
to pass through the intersection safely and efficiently.

V. CONCLUSIONS

In this paper, we proposed IVMP, an interpretable end-to-
end vision-based motion planning approach for autonomous
driving. Our IVMP first employs a semantic map forecasting
module to predict future egocentric semantic maps in BEV
space, which are then processed by a motion planning
module to generate trajectories for SDVs. The predicted
semantic maps not only provide useful interpretable informa-
tion, but also allow our motion planning module to handle
objects with low probability, thus improving the safety of
autonomous driving. Moreover, we also develop an optical
flow distillation paradigm, which can effectively enhance the
network while still maintaining its real-time performance.
Extensive experiments on the nuScenes dataset and closed-
loop simulation have demonstrated the superiority of our
IVMP over state-of-the-art approaches in BEV semantic map
segmentation and imitating human drivers. We believe that
our optical flow distillation paradigm can also be employed
in other tasks related to spatio-temporal information analysis
for performance improvement.
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