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DiTNet: End-to-End 3D Object Detection and Track ID Assignment
in Spatio-temporal World

Sukai Wang, Peide Cai, Lujia Wang, Ming Liu

Abstract—End-to-end 3D object detection and tracking based
on point clouds is receiving more and more attention in many
robotics applications, such as autonomous driving. Compared
with 2D images, 3D point clouds do not have enough texture
information for data association. Thus, we propose an end-to-
end point cloud-based network, DiTNet, to directly assign a
track ID to each object across the whole sequence, without
the data association step. DiTNet is made location-invariant by
using relative location and embeddings to learn each object’s
spatial and temporal features in the Spatio-temporal world. The
features from the detection module helps to improve the tracking
performance, and the tracking module with final trajectories
also helps to refine the detection results. We train and evaluate
our network on the CARLA simulation environment and KITTI
dataset. Our approach achieves competitive performance over
the state-of-the-art methods on the KITTI benchmark.

I. INTRODUCTION

3D multiple object detection and tracking is gradually
receiving more and more attention in autonomous driving. For
driving in a dynamic environment, the current state-of-the-
art approaches have achieved competitive results to precisely
detect moving objects and their past trajectories. However,
most of them consider the detection and tracking as two
separate problems, or weakly use the detection features in
data association while tracking. The data association step is
always classified out of the network because it is hard to be
differentiable. This raises a question: Can we give unmanned
vehicles the ability to efficiently detect moving objects with
their track identity directly?

For the 3D object detection task, the state-of-the-art detec-
tion techniques which focus on 3D or 2D object detection
obtain impressive results on various benchmarks. This is
fundamental to high performance for all tracking-by-detection
algorithms. However, the balance between false-negatives and
false-positives remains crucial in tracking tasks. The detec-
tion score threshold (DST) setting for choosing the object
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Fig. 1: Three paradigms for 3D object detection and tracking.
Traditional approaches: (a) uses the detection boxes in data
association by the Hungarian algorithm or IoU tracker; (b)
predicts movement of each object in adjacent frames, which
is helpful for distance association. Ours: (c) directly predicts
the unordered track IDs from ROIs without data association.

bounding boxes at the final stage of a detector controls the
detector’s performance. A higher DST means more false-
negative detections, and a lower DST means more false-
positives. Too many false-positive detections could lead to
a dramatic decrease in performance on the data association
task due to the interference of redundant error information;
however, more false-positives are more acceptable than more
false-negatives because of the autopilot safety. This is the
reason that the performance of the detection networks is the
critical factor for tracking-by-detection trackers. In this paper,
we propose a tracking-with-detection method that can examine
all possible regions of proposal (ROIs) after detection and then
directly assigns a unique track identity to them. The detection
score threshold is discarded and replaced by the track identity
score threshold.

Compared with 2D images, 3D point clouds data can
provide explicit geometry information for generating accurate
3D locations and bounding box shapes. However, there are
still differences between 2D and 3D input which lead to
crucial problems in detection and tracking. One is that the
texture information in a 3D point cloud is much less than
in a 2D image because of the sparse points form. The other
is that the object features of the same object at different
times in a 3D point cloud are not location-invariant as in a
2D image. For example, the same car in adjacent 2D image
frames will have the same color, shape, and paint patterns
on the car body. But in the LiDAR view, all of the cars in
the same relative position have almost the same type of point
cloud shape and similar reflectivity, though the number of
points will change significantly when the LiDAR’s distance
or perspective changes. This is the reason why it is hard to
learn the appearance features from point clouds as well as
from image-based methods. The solution to this problem of
most existing 3D point cloud based-trackers [1] [2] is to use
the distance matrix or intersection over union (IoU) matrix to
associate the same object in adjacent frames. In this paper,
we propose a novel feature grouping method to learn the
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association relationship of the proposals in a batch of point
clouds as input, to replace the appearance features by merging
the neighbor location and detection embeddings.

For multiple object tracking (MOT) tasks, data association,
which is the process of associating the same object in different
frames, is one of the key technologies. In contrast to the
methods described in Fig. 1(a) [3], [4], [1], and (b) [2], we
want to propose an end-to-end network (Fig. 1(c)), which can
get straight to the track ID of each object without the data
association step.

In this paper, we propose an end-to-end tracking with
detection neural network, DiTNet, which directly outputs the
3D bounding box with the track ID of each object in the
Spatio-temporal world. DiTNet takes as input the raw point
cloud batch (numbers of adjacent point cloud frames), and
outputs each object’s detection bounding box in the frames
and track ID in the batch. There are two critical issues in the
network. One is that the number of trajectories is not constant,
which means we could have 0 to L trajectories. The other is
that the order of trajectories is not required to be fixed, which
means the track identity is unordered. The same object only
needs to be classified into one trajectory, no matter what the
track ID is. These two issues are especially prominent during
network training. In our approach, we set a max number of
trajectories to solve the first issue, and apply the Hungarian
algorithm [5] to efficiently assign the predicted trajectories
with label trajectories for the second. Note that the Hungarian
algorithm is only used while training, and it is not necessary
in the inference processing. The contributions of this work are
listed as follows:
• We propose a novel detection arrangement method in the

Spatio-temporal map to learn the correlation relationship
of objects in a batch of frames as input.

• We propose an instance-based network, which uses novel
grouping and feature extraction layers to learn the cor-
relation location information and instance features in the
spatial and temporal feature modules.

• We propose a real end-to-end detection network to out-
put the objects’ boxes and track IDs directly, without
the usage of non-maximum suppression (NMS) and the
Hungarian algorithm.

• The sequence of the point cloud input can be used
to improve the performance of detection and tracking.
Our approach achieves competitive performance over the
state-of-the-art methods on the KITTI benchmark.

The remainder of this letter is organized as follows. Sec-
tion II reviews the related work. Section III describes the
framework and components of DiTNet in detail. Section IV
presents the experimental results and discussions. Conclusions
and future work are given in the last section.

II. RELATED WORK

A. Time-Related Networks

In time series-related tasks, different kinds of network
architectures focus on the importance of temporal relations in
a batch of data, such as Recently Recurrent Neural Networks
(RNN) and Long Short Term Memory (LSTM). Time-related

networks are used widely in forecasting tasks like trajectory
prediction [6] [7].

Social LSTM [7] was proposed to learn the movements of
the general human and predict the trajectories of multiple
pedestrians, and sequential data are used to provide short-
term and long-term information. ReSeg [8] was proposed for
semantic segmentation in different scenarios as an RNN-based
network. This kind of usage is more like an alternative to
Convolutional Neural Networks (CNNs), which shows that
RNN models have the ability to learn the dependencies
between time connection data. Wang et al. [9] proposed a
Bayesian and conditional random field-based framework in
the Spatio-temporal map to solve the data association problem
between frames. A Spatio-temporal LSTM [10] which uses
sequential data as input was introduced to save the long-term
context information. Structural-RNN [11] combines the high-
level Spatio-temporal graphs with RNNs, which reconstructs
the factors in Spatio-temporal graph to achieve a rich RNN
mixture.

Though the features of the same object are always changing
over time in 3D point clouds, the related location information
over the whole sequence can also help to rearrange the track
IDs of the detections. Thus, in our network, the long-term
temporal and spatial features are consolidated to finish the
data association end-to-end.

B. 3D Object Detection and Tracking

In existing 3D object detection solutions, 3D point cloud-
based networks can predict more accurate locations and the
bounding boxes of objects compared to 2D images. Networks
like those in [12] and [13] use PointNet++ [14] as the 3D
backbone to learn the 3D features from dense to sparse. And
other networks [15] still preserve the image-based 2D CNN
to compose the large-scale features by scattering the learned
features from pillars or voxels to the Bird’s-eye-view map.

For multi-object tracking problems, most of the current
approaches focus on the data association problem. The Kalman
Filter [3] [4] and Gaussian [16] processes are all famous as the
conventional methods for position prediction and association
matrix generation, and convolutional Siamese networks [17]
[18] are also used widely for association similarity compu-
tation. Once the cost matrix of all objects is obtained, the
data association problem can also be seen as an optimization
problem. Thus, the Hungarian algorithm [3] can be applied to
solve it. Matching Net [19] [20] can find the corresponding
pairs in adjacent frames and generate the trajectories. Multi-
scan methods, which take as input a sequence of data rather
than two single adjacent frames, have proposed to use a
neural network to learn the optimization solutions to find the
optimal trajectory assignment [21] [19]. Meanwhile single-
scan methods only take as input two adjacent frames and
associate the objects in these two frames [22] [2], by predicting
the association matrix or the movement of each object to find
the best association relationship. AB3DMOT [1] and DEEP
SORT [4], which are two baseline tracking-by-detection ap-
proaches, use rich texture features of each object as attributes
of the objects and the Kalman Filter and Hungarian algorithm
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Fig. 2: The overall network architecture. The detection module takes the continuous point cloud batch as input and generates
the ROIs with high-level features. Then the tracking module uses them to get the refined boxes with the track ID. The training
loss module only works during the training to calculate the ground-truth ID assignment matrix and the training loss.

as post-process association methods to finish the real-time
tracking.

III. OUR APPROACH
A. The Overall Architecture

The overall architecture of our DiTNet is shown in Fig.
2. The network is composed of three main parts: the detec-
tion module, Spatio-temporal tracking module, and training
loss module. The detection module outputs the positions
and bounding boxes of the ROIs from the raw point cloud
data batch. The embeddings of the ROIs and the boxes are
combined as the detections and passed to the tracking module
(Sec III-B). The tracking module can output the unique track
ID of each object in a batch of adjacent frames, and then
an easy post-processing algorithm is used to connect the track
ID in the whole sequence. The architecture of Spatio-temporal
tracking module is inspired by the arrangement of detections
in the Spatio-temporal world (Sec III-C). The training loss
module in the blue block in Fig. 2 is time-consuming but only
works while training, which means that, although the network
needs a longer time for training, it is efficient enough for real-
time inference (Sec III-D).

B. Detection Module

The detection module is proposed to generate the 3D
ROIs of each possible object with its learnable features. As
introduced in [23], there are four main modules in current
state-of-the-art detectors: the 3D backbone, 2D backbone, ROI
head, and dense detection head. Our detection module makes
reference to PointPillars [15], which consists of three submod-
ules: a 3D pillar feature net, 2D encoder-decoder backbone,
and RPN detection head. Firstly, we discretize the raw 3D
points into evenly spaced grids in the ground plane, which
are called pillars. Each pillar is fed separately into the voxel
feature encoding (VFE) network to extract the 3D embeddings
inside every pillar, which can be scattered back to the 2D BEV
pseudo-image using their position index. A 2D CNN backbone
is then applied to generate multi-scale high-level features from
the pseudo-image. We use C to denote the output features,
which is concatenated from different upsampling layers in the

2D multi-scale backbone. Finally, the detection head uses two
convolutional layers which have a 1×1 kernel to predicts the
3D bounding boxes with their class for objects in each pillar
position. Axis-aligned NMS is performed at inference time.

The detection module can be replaced by any other 3D
object detector, as long as its output includes the detection
results with their high-level features. The critical consideration
in choosing the best detector backbone is to balance speed
and detection performance. Whether the input of the detector
is a 3D point cloud or 2D image is not the key factor in our
tracking task, because if the input is raw point clouds which
have minor texture information of the objects, the Spatio-
temporal module will learn the relative position information
of all neighboring objects to find the correct corresponding
relationship. How to choose the detection score threshold of
NMS is one of the crucial problems of most tracking-by-
detection methods, because the tracking task is more sensitive
to false-positive detections than the detection task. Other
methods choose to use a higher score threshold to filter the
unreliable detections, but our proposed detection module uses
a small threshold to ensure as many detections as possible
will be included for the next tracking process. The high-level
features of the detections then contribute to the following
tracking module.

C. Tracking Module
From the detection module, we can get: the object detec-

tions’ absolute global location {Lt
i = (xt

i ,y
t
i,z

t
i)}

Nt
i=1, where x,

y, and z are the 3D global position of the objects at time t,
and Nt means there are at most Nt objects at each time; the
objects’ detection score {St

i}
Nt
i=1, where S ∈ [0,1], S ∈ R; and

the middle embeddings of each object from the 2D backbone
in the detection module {Ct

i}
Nt
i=1, where each feature has K-

dim channels. We use a multi-scan point cloud batch as input,
which is obtained by using a sliding window to crop batches
of data. Let T denote the window size, and we can obtain the
object detections in this time window: {Dt

i}i∈[1,Nt ],t∈[1,T ]. The
detections are rearranged in the Spatio-temporal world with
their global xyz location in a single frame, and also with their
moment of appearance. A t axis is proposed in Spatio-temporal
world to store the time information.
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The detections from the detection module have four main
properties: (1) The detections are unordered, which means
they can be arranged in different orders by their positions
and features. In other words, our network should be able to
learn the order-invariant features of all detections. (2) All of
the various detections in a single frame must have their own
unique track IDs. (3) The detections are not isolated within
the environment; in other words, the neighborhoods of each
detection can provide feature information while learning. (4)
The tracking results should have invariance under trajectory
transformation. For example, theoretically, the tracking results
should be the same when the trajectories appear in different
places, without considering the environment’s influence, as
long as all detections have the same relative position of all
pairs in the whole sequence. Another example is that the
time interval ∆t in a sequence is not the key factor because
vt

i =
|Lt

i−Lt+1
i |

∆t , where Lt
i and Lt+1

i ∈ R3 are the absolute
location, is the speed of objects. And the speed of different
objects or the same objects at different times is not a constant
in a real environment.

To fit these special properties in the tracking task, we discard
all absolute global locations or features in the Spatio-temporal
feature module, while using the relative location information
and relative features to represent the relative relationship of
objects to objects. dk in Fig. 3 means the relative features: for
target detection D ∈ RK , grouped neighbor detections Dg =
{Dgi},Dg ∈ RK , i ∈ [1,Nn], dk = D−Dg = {D−Dgi}, and i ∈
[1,Nn].

The tracking module consists of three main parts: a spatial
feature extraction module, temporal feature extraction module,
and track head module.

1) Spatial feature extraction module: The spatial feature
extraction module consists of a local feature extraction module
and a frame global feature extraction module, as shown in Fig.
3 (c). The local feature module learns the relative features from
the nearest S neighbor detections, and the frame global module
learns the relative features from all detections in the same time
frame.

Take Dt0
i0

as the target detection for example. In the local
feature extraction module, the grouping layer chooses the
nearest objects G= {Dt0

i }, where i 6= i0, the number of grouped
objects is less than the maximum grouping number Ns, and
||Lt0

i −Lt0
i0
||2 ≤ dLmax.

Given an unordered detection set {D1,D2, ...,DNt} with their
locations and embeddings Di = (Li,Ci), where Li ∈ Rd ,Ci ∈
RK , the local feature module defines a set function f : X →R:

f ({D1,D2, ...,DNt}) = MAX
i=1,...,Nt

(γ(W · (G−Di))), (1)

where γ is multi-layer perceptron (MLP) networks, and W is
the weight of each relative embeddings. W is calculated by
the distance between each grouped detection and the target
detection and the detection score of the target detection. For
normalization, the distance weight is calculated by:

Wi j =Ws ·WdL = Si j · exp(−α · ||Li−G j||),

where α is a parameter which is set to 10 in our experiment.

In the global feature module, only the grouping method
is different from the local feature module. It will choose all
detections in the same time frame, except the target detection
itself, as the grouped detections, and the MLPs are used for
the weighted relative embeddings learning.

2) Temporal feature extraction module: Compared with the
spatial feature extraction module, the temporal feature module
mainly learns the relative spatial features in the different time
frames.

Take Fig. 3 (a) as an example. The object with track ID 1
is the most leftward detection in all time frames, object 2 is
in the middle, and object 3 is the most rightward detection.
Thus the spatial features from the spatial feature extraction
module will be clustered into three groups, for objects 1, 2,
and 3 respectively. We can use the temporal feature module
to find the objects in different frames with the most similar
embeddings. And in Fig. 3 (b), we can find that there are two
false-positive detections in time frame 2 and time frame 3.
The temporal feature module is proposed to learn the relative
location displacement of each object from others in different
time frames. Thus object 4 will be tracked successfully due
to the smooth trajectory.

As shown in Fig. 3 (d), we predict the temporal features
frame by frame. All detections learn the embeddings from
the detections in different time frames. For each object in
time t0, {Dt0

i }, i ∈ [1,Nt ], the objects G
t j
i , t j 6= t0, i ∈ [1,Nt ]

will be grouped. For grouped objects in each time frames
({t j = 1,2, ...,T, t j 6= t0}), the learning function is the same
as the frame global feature extraction module in Eq. 1. And
after obtaining each set ofgrouped features, the mean pooling
method is used to merge all features in this batch of data. The
temporal feature network can be described by:

ft(D,G) = MEAN
t=1,...,T

( f (W · (pDt ,Gt))). (2)

The MaxPool can be explained as finding the most similar
object, and the MeanPool helps to merge all information of
each trajectory in the whole time batch.

3) Track Head: As shown in Fig. 3 (e), the track head
module consists of two heads: a track ID head and box
refinement head. Two separate conv. layers with 1×1 kernels
are used in these two heads for the predicted track ID and
the refined box detection. The problem is how to assign the
predicted bounding boxes to the ground-truth, and how to
assign the unordered track IDs to the ground-truth IDs. The
solution to these problems is described in the training and
testing section as follows.

D. Training and Testing

The one-hot track ID generator is proposed to generate the
one-hot track IDs, and in the training process of DiTNet,
an ID assignment layer is used to reorder the predicted one-
hot track IDs with the ground-truth IDs, for subsequent loss
computation. In the process of testing, DiTNet takes as input
the raw point cloud batch and directly outputs the track ID
with the detection bounding box of each object without the
Hungarian algorithm or other data association methods.
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Fig. 3: Two schematics of the common detection distribution and details of the tracking module in DiTNet. (a) An example of
spatial feature-based object detection distribution. (b) An example of temporal feature-based object detection distribution. (c)
Spatial feature extraction module, which is concatenated by frame global feature extraction module and local feature extraction
module. (d) Temporal feature extraction module. (e) Tracking head, which outputs the refined bounding boxes with their track
ID. The dots in (a-b) are detections, and red dashed lines are ground-truth trajectories. The red blocks in (c–e) are MLPs with
1×1 kernels, and the number means the number of kernels.

One-hot track identity generator: Firstly, a softmax func-
tion is applied for each object’s track ID. Then we find the
largest track ID probabilities one by one, and make sure each
object only has one track ID and each chosen ID is unique in
a single time frame.

ID Assignment Layer: Due to the randomness of the track
ID assigned to each trajectory, we cannot directly calculate the
loss between the predicted tracking trajectory and the ground-
truth trajectory. Therefore, for the training process, we design
a track ID assignment layer to find the matchings between
the predicted trajectories and the ground-truth trajectories.
This layer takes as input the predicted trajectories as well as
the ground-truth trajectories, and assigns the most matched
ground-truth track ID to the predicted one.

We employ the IoU as the cost metric to measure how well
a pair of trajectories matches. It calculates the ratio of the
number of overlapping points to the total number of points in
a pair. Since the number of predicted trajectories varies, it is
reasonable to set L ≥ L̄, where L is the number of predicted
trajectories and L̄ is the number of ground-truth trajectories.
The size of the output of the track ID module is T ×Nt ×
(L+1), where Nt is the maximum number of detections and
1 is the dustbin for the false track ID. Let {Tri,Tr j} denote a
pair of trajectories, and I ∈RL×L̄ denote the reordering matrix.
After discarding the dustbin of the false track ID channel, we
can get Ci, j ∈ RL×L̄ as the cost for the matching, where L
is the predicted track ID and L̄ is the ground-truth ID. The
assignment problem can be formulated as a bipartite matching
problem:

argmin
I

L

∑
i=1

L̄

∑
j=1

Ii, jCi, j

subject to: 0≤ i≤ L,0≤ j ≤ L̄,

Ii, j ∈ {0,1},
L

∑
i=1

Ii, j = 1, for ∀ j.

(3)

In this paper, we use the Hungarian algorithm [5] to solve
this problem. With the matching matrix I, we can associate

the predicted unordered trajectories with the ground-truth
trajectory to get the ordered trajectories. Then the network loss
can be calculated. Note again that the Hungarian algorithm is
only proposed to assign the predicted track identity with the
ground-truth identity for network training. This step does not
exist in the inference process.

Post-processing: During the inference process, the network
predicts the track IDs in each batch. And by moving the afore-
mentioned sliding window step by step, for each predicted
track ID, the algorithm will check whether the objects with
this ID have existed in the past trajectories. If yes, then the
fresh detection will be added to the existing trajectory, and if
the brand new track ID has not appeared before, then a new
trajectory will be added to the full trajectory list.

Loss Function: Our loss consists of detection loss and
tracking loss, and tracking loss consists of a binary cross
entropy loss Lmask, a softmax IoU (SIoU) loss LSIoU , a
softmax cross entropy loss for each trajectory Luniqe for track
uniqueness, and a triplet loss Ltri:

L = Ldet +Ltra +Lre f ine (4)

Ltra = Lmask +α ·LsIoU +β ·Luniqe + γ ·Ltri, (5)

where α,β , and γ are weighting parameters, which are set to
0.1,1, and 1.

The detection ROI loss Ldet and the box refinement loss
Lre f ine are calculated the same as in the setting in [15]. Lmask
is computed from the score tracking score of each point:

Lmask =−s · log(ŝ)− (1− s) · log(1− ŝ), (6)

where s ∈ {0,1} is the ground-truth, 1 represents that the
object detection is negative and 0 otherwise, and ŝ is the
predicted dustbin score of each object detection. With the
associated tracking trajectories, we calculate the SIoU with:

LSIoU = 1− 1
L

L

∑
l=1

∑
N
n=1 f l

n ·gl
n

∑
N
n=1 f l

n +∑
N
n=1 gl

n−∑
N
n=1 f l

n ·gl
n
, (7)
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ST-Map with trajectories Time = 30 frame Time = 60 frame Time = 90 frame 

Fig. 4: The qualitative results. Top row is the visualization of tracking results of sequence 0 in the KITTI test dataset, and
bottom row is tracking results of sequence 1. The leftmost column is the detection results and trajectories in Spatio-temporal
world, the detections are green points and trajectories are blue lines. The three rightmost columns are the trajectories on the
BEV of the LiDAR data at different time stamps.

where f l
n ∈ [0,1] is the probability for point n to have the

trajectory l, which is obtained by applying a softmax function
on the trajectory class prediction for point n, gl

n ∈ {0,1}
represents the ground-truth, and N is the number of points.
Focal loss [24] is applied in the trajectories’ uniqueness loss:

Lunique = mask · (−α(1− p)γ log(p)), (8)

where p is the object’s positive probability in each trajectory,
mask ∈ {0,1} is the ground-truth of each trajectory, and α =
0.25, γ = 2. The mask will be 0 if the trajectory does not exist
in this point cloud batch. This loss only considers the positive
trajectories, and it helps that each trajectory will only appear
once in each time frame. As our task resembles the instance
segmentation and re-ID, we borrow the triplet loss [25] for our
task. It encourages the embeddings from the same track to stay
as close as possible, while different tracks are separated as far
as possible. Specifically, we choose the batch hard triplet loss
in [25].

IV. EXPERIMENTS

A. Dataset and Evaluation Metrics

We train and evaluate our model on two datasets. One is
the object tracking benchmark dataset from KITTI [34]. The
other is the simulation dataset generated from CARLA [35].

Our approach is trained on the CARLA dataset and the
first half of 21 sequences from KITTI which have ground-
truth labels, and is evaluated on CARLA and the last half of
the 21 sequences from the KITTI dataset. We uploaded our
test results of the 29 test sequences on KITTI that need to be
evaluated online. Since the KITTI dataset mainly uses vehicles
as the validation type, we track the Car and Van categories
only in that dataset. And in the CARLA dataset, we set the
number of pedestrians to 30 and the number of vehicles to
20. Considering misdetections like false-positives, we set the

number of detections in each time frame to Nt = 90 to include
all detection ROIs in the detection module of DiTNet. We
set the maximum number of trajectories in each time stamp
to Mmax = 60. The size of the track ID label of each point is
N×(Mmax+1). Its first channel belongs to negative detections
and redundancies. The window size is set to 4 and the step
size is set to 1 in our experiments for on-line inference.

Multiple Object Tracking Accuracy (MOTA), Multiple Ob-
ject Tracking Precision (MOTP), Mostly Tracked (MT), Most-
ly Lost (ML), ID Switches (IDS) and fragmentation (FRAG)
from the CLEAR MOT metrics[46] are used for evaluating the
detection and tracking accuracy.

B. Ablation Study and Comparative Results

We conduct ablation studies on two key factors: the length
of the input point cloud batch, and the score threshold of the
detection module for tracking. We also present two compara-
tive experiments in this section. First of all, we compare our
DiTNet to AB3DMOT [1], RANSAC200, RANSAC1000, and
PointTrackNet [2]. RANSAC [26], which can be seen as one
of the tracking-by-detection methods, is used here to generate
the trajectories in the Spatio-temporal map. It connects the
detections as a conventional trajectory fitting method. In our
comparative experiments, we split our pre-trained end-to-end
network into a detection module and a tracking module. Only
the detection results are fed into RANSAC as the input. Thus
it makes sense to compare the tracking-by-detection RANSAC
with our end-to-end DiTNet when the detection results are the
same. RANSAC200 means it iterates 200 times in the fitting
process in each Spatio-temporal map, while RANSAC1000
means it iterates 1000 times. In our experiments, the trajec-
tories are all assumed to be conics in the x-t, y-t, and z-t
planes. When we have an estimated conic trajectory, "inliers"
mean the objects which have less than the threshold distance
from the trajectory at that time. The inlier threshold is set
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TABLE I: COMPARATIVE RESULTS OF EVALUATION METRICS WITH DIFFERENT DETECTION SCORE THRESHOLDS FOR
DIFFERENT TRACKERS IN THE KITTI VALIDATION DATASET. THE BOLD FONT HIGHLIGHTS THE BEST RESULTS.

Car

Method Det Score Threshold = 0.2 Det Score Threshold = 0.6

MOTA↑ MOTP↑ MT↑ ML↓ IDS↓ FRAG↓ MOTA↑ MOTP↑ MT↑ ML↓ IDS↓ FRAG↓
RANSAC200 [26] 0.5077 0.867 0.2836 0.3085 78 441 0.578 0.8714 0.3351 0.2251 121 436

RANSAC1000 [26] 0.7404 0.8677 0.6099 0.0762 212 626 0.7806 0.8712 0.6667 0.062 287 647
AB3DMOT [1] 0.6977 0.8653 0.7553 0.0319 8 168 0.7431 0.8678 0.7322 0.0319 6 264

DiTNet (length=2) 0.6743 0.8682 0.7438 0.0306 82 134 0.7203 0.8762 0.732 0.0502 47 131
DiTNet (length=3) 0.7855 0.8654 0.7942 0.0354 57 153 0.7928 0.877 0.7462 0.0543 34 142
DiTNet (length=4) 0.7865 0.8680 0.8103 0.0393 22 105 0.8108 0.8783 0.7935 0.0421 20 120
DiTNet (length=5) 0.786 0.8683 0.8081 0.0397 23 112 0.8012 0.8791 0.7813 0.0421 20 123

Pedestrian

Method Det Score Threshold = 0.2 Det Score Threshold = 0.6

MOTA↑ MOTP↑ MT↑ ML↓ IDS↓ FRAG↓ MOTA↑ MOTP↑ MT↑ ML↓ IDS↓ FRAG↓
RANSAC200 [26] 0.4101 0.6709 0.2178 0.1188 551 1041 0.4521 0.67 0.2375 0.099 631 1087

RANSAC1000 [26] 0.4155 0.6713 0.3168 0.099 659 1134 0.4833 0.6705 0.3168 0.0891 637 1114
AB3DMOT [1] 0.4799 0.6699 0.4356 0.0693 83 435 0.5446 0.6699 0.4059 0.0693 72 451

DiTNet (length=2) 0.4236 0.6823 0.4105 0.0553 153 403 0.5674 0.6834 0.4246 0.0653 124 587
DiTNet (length=3) 0.4879 0.6822 0.4253 0.0521 148 412 0.5982 0.6823 0.4272 0.0615 122 564
DiTNet (length=4) 0.5841 0.6823 0.4554 0.0495 104 384 0.6104 0.6836 0.4455 0.0594 102 401
DiTNet (length=5) 0.5786 0.6816 0.4521 0.0495 102 386 0.6124 0.6842 0.4416 0.0594 97 412

TABLE II: COMPARATIVE RESULTS OF EVALUATION METRICS ON THE KITTI TEST DATASET.

Methods MOTA↑ MOTP↑ MT↑ ML↓ IDS↓ FRAG↓ Runtime↓ Environment

SRK-ODESA [27] 90.03% 84.32% 82.62% 2.31% 90 501 0.4s GPU
JRMOT [28] 85.70% 85.48% 71.85% 4.00% 98 372 0.07s 4 cores @ 2.5 Ghz

MOTSFusion [29] 84.83% 85.21% 73.08% 2.77% 275 759 0.44s GPU
mmMOT [30] 84.77% 85.21% 73.23% 2.77% 284 753 0.02s GPU @ 2.5 Ghz
mono3DT [31] 84.52% 85.64% 73.38% 2.77% 377 847 0.03s GPU @ 2.5 Ghz
AB3DMOT [1] 83.84% 85.24% 66.92% 11.38% 9 224 0.0047s 1 core @ 2.5 Ghz

3D-CNN/PMBM [32] 80.39% 81.26% 62.77% 6.15% 121 613 0.01s 1 core @ 3.0 Ghz
FANTrack [19] 77.72% 82.33% 62.62% 8.77% 150 812 0.04s 8 cores @ >3.5 Ghz

Complexer-YOLO [22] 75.70% 78.46% 58.00% 5.08% 1186 2092 0.01s GPU @ 3.5 Ghz
mbodSSP* [33] 72.69% 78.75% 48.77% 8.77% 114 858 0.01s 1 core @ 2.7 Ghz

Point3DT [2] 68.24% 76.57% 60.62% 12.31% 111 725 0.05s 1 core @ >3.5 Ghz
DP-MCF [21] 38.33% 78.41% 18.00% 36.15% 2716 3225 0.01s 1 core @ 2.5 Ghz
DiTNet (Ours) 84.62% 84.18% 74.15% 12.92% 19 196 0.01s 1 core @ >3.5 Ghz

to 1 meter, considering the detection error. The window size
and step size in the Spatio-temporal map generation process
are also set to be same as our method. The number of
iterations depends on the complexity of the detection result.
More iterations are needed to find the suitable trajectories in
much denser environments. In the KITTI validation dataset,
when the number of iterations is larger than 1000, the tracking
results show very limited changes. The ablation studies’ results
are also compared with these methods.

Tab. I shows the comparative results and ablation studies
of the evaluation metrics with a different detection score
threshold for different trackers. The length means the length
of the point cloud batch. We can find that our proposed DitNet
outperforms others on MOTA by remarkable margins, which
means the overall tracking performance is much better than
that of the others. Besides this, we choose the ROI detection
results as the detection for other tracking-by-detection meth-
ods, and our DiTNet can refine the detections, which makes
the performance on MOTP better than that of other methods.

Next we compare our tracking results with the publicly
available state-of-the-art approaches from the KITTI tracking
benchmark. Tab. II shows the comparative results of the

evaluation metrics on the KITTI test dataset. It reveals DiT-
Net’s competitive performance over the other state-of-the-art
methods. The running time of 0.01 seconds makes it possible
for real-time tracking tasks.

C. Qualitative Results

Fig. 4 shows the qualitative results on the KITTI test dataset.
This part of the dataset has no publicly available labels and
our network still has good results. We choose to visualize the
tracking results of sequence 0 and 1. The trajectories on the
BEV of the LiDAR data at three different time stamps are
shown in the three rightmost columns in the figure. We find
only one ID switch, which is circled in red in sequence 0. In
the 29 sequences of the KITTI test dataset, our network only
has 19 ID switches and 196 trajectory fragmentations in total.

V. CONCLUSIONS

We proposed here a real end-to-end tracking with detection
network, which can directly output the detection box and
track identity of each object without data association. Our
approach outperforms others on the KITTI benchmark on both
the MOTP and IDS. In the future, we will try to fuse the
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camera with LiDAR to achieve more complex textures of each
object to improve the tracking performance.
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