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ABSTRACT

Stereo matching is a key component of autonomous driv-
ing perception. Recent unsupervised stereo matching ap-
proaches have received adequate attention due to their ad-
vantage of not requiring disparity ground truth. These ap-
proaches, however, perform poorly near occlusions. To
overcome this drawback, in this paper, we propose CoT-
Stereo, a novel unsupervised stereo matching approach.
Specifically, we adopt a co-teaching framework where two
networks interactively teach each other about the occlu-
sions in an unsupervised fashion, which greatly improves
the robustness of unsupervised stereo matching. Exten-
sive experiments on the KITTI Stereo benchmarks demon-
strate the superior performance of CoT-Stereo over all other
state-of-the-art unsupervised stereo matching approaches in
terms of both accuracy and speed. Our project webpage is
https://sites.google.com/view/cot-stereo.

Index Terms— stereo matching, unsupervised learning,
co-teaching strategy.

1. INTRODUCTION

Stereo matching is a fundamental problem in computer vi-
sion and robotics. This important technique has been widely
employed in many tasks, such as robot vision [1, 2, 3] and
autonomous driving [4, 5]. The goal of stereo matching is
to estimate dense correspondences between a pair of stereo
images and further generate a dense disparity image [6].

Traditional and data-driven approaches are two major
types of stereo matching algorithms [6, 7]. Traditional al-
gorithms formulate stereo matching as either a local block
matching problem or a global energy minimization problem
[6]. Data-driven approaches [8, 9, 10] utilize convolutional
neural networks (CNNs) to extract informative visual fea-
tures and create a 3D cost volume, by analyzing which a
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Fig. 1. Evaluation results on the KITTI Stereo 2015 bench-
mark [11], where “F1-All” denotes the percentage of erro-
neous pixels measured over all regions. Our CoT-Stereo out-
performs all other state-of-the-art unsupervised stereo match-
ing approaches in terms of both accuracy and speed.

dense disparity image can be estimated. Among data-driven
approaches, PSMNet [8] adopts 3D CNNs to regularize cost
volumes for disparity estimation, while GwcNet [9] further
utilizes group-wise correlation to provide efficient representa-
tions for visual feature similarity measurement. Meanwhile,
LEAStereo [10] uses a neural architecture search framework
to search an effective and efficient network for stereo match-
ing. However, such supervised stereo matching approaches
typically require a large amount of training data with disparity
ground truth, often making them difficult to apply in practice.

With the limitation of the supervised approaches in mind,
many researchers [12, 13, 14, 15] have resorted to unsu-
pervised techniques, which do not require disparity ground
truth to realize stereo matching. These approaches generally
train networks by minimizing a hybrid loss, e.g., combining
a photometric loss and a smoothness loss [12, 13]. Some
approaches also incorporate occlusion reasoning into the
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Fig. 2. An overview of our CoT-Stereo architecture, where two LEAStereo [10] networks with different initializations teach
each other about the occlusions interactively.

training paradigm to further improve the stereo matching per-
formance [14, 15]. However, such unsupervised approaches
still perform unstably in some regions, especially near occlu-
sions, because a single network can be sensitive to outliers
when the disparity ground truth is inaccessible.

To address the instability problem, we propose CoT-
Stereo, an unsupervised stereo matching approach. It outper-
forms all other state-of-the-art unsupervised stereo matching
approaches in terms of both accuracy and speed on the KITTI
Stereo benchmarks [16, 11], as illustrated in Fig. 1. Our
CoT-Stereo employs a co-teaching framework, as shown in
Fig. 2, where two networks (LEAStereo [10] is used as the
backbone network) with different initializations interactively
teach each other about the occlusions. Our previous work has
adopted this co-teaching framework for unsupervised optical
flow estimation [17], and in this paper, we employ this frame-
work for unsupervised stereo matching. This framework
can significantly improve model’s robustness against outliers
and further enhance the overall performance of unsupervised
stereo matching.

2. METHODOLOGY

2.1. Preliminaries and Loss Functions

Given a pair of stereo images Il and Ir, the objective of stereo
matching is to produce a dense disparity image D. This can
be achieved by an off-the-shelf stereo matching network, e.g.,
LEAStereo [10]. An occlusion map O indicating each pixel’s
probability of belonging to the occluded regions can also be
computed using the technique proposed in [18]. Now the
problem becomes how to train the network without direct
supervision from the disparity ground truth. Following the
paradigm of unsupervised stereo matching, we employ a hy-

brid loss, which combines (a) a photometric loss Lph, (b) a
smoothness loss Lsm, and (c) a data-augmentation loss Lda,
to train our CoT-Stereo, as illustrated in Fig. 2. The photomet-
ric loss Lph can be formulated as a combination of an SSIM
term [19] and an L1 norm term:

Lph(Il, Ir,D,O) =
1

N
∑
p

(
α

1− SSIM
(
Il(p), Îl(p)

)
2

+ (1− α)
∥∥∥Il(p)− Îl(p)

∥∥∥
1

)
· S
(
O(p)

)
, (1)

where Îl = ω(Ir,D) denotes the warped image from Ir based
on D; O(p) = 1 − O(p); ‖·‖1 denotes the L1 norm; S(·)
denotes the stop-gradient; and N =

∑
p S
(
O(p)

)
is a nor-

malizer. Equation (1) shows that Lph is an occlusion-aware
loss used to penalize the photometric error. Following [14],
we also adopt a smoothness loss Lsm to smooth the disparity
estimations:

Lsm(Il,D) =
1

Np

∑
p

∑
d∈{x,y}

|∇dD(p)| e−‖∇dIl(p)‖1 , (2)

where Np denotes the number of pixels. Moreover, inspired
by [20], we adopt a data-augmentation scheme to enable net-
works to better handle occlusions. Specifically, we first per-
form transformations Timg

θ , Tdisp
θ and Tocc

θ (e.g., spatial, oc-
clusion and appearance transformations [20]) on (Il, Ir), D
and O respectively to obtain the augmented samples Ĩl, Ĩr, D̃
and Õ. Please note that, different from O, a higher value in
Õ indicates that the pixel is less likely to be occluded in D̃

but more likely to be occluded in D̃∗. Given Ĩl and Ĩr, we
can also use LEAStereo [10] to get a disparity estimation D̃∗.



Algorithm 1: Co-Teaching Strategy

Input: ΩA and ΩB, learning rate η, constant threshold τ , epoch Tk and Tmax, iteration Nmax.
Output: ΩA and ΩB.

1 for T = 1→ Tmax do
2 Shuffle training set D
3 for N = 1→ Nmax do
4 Forward individually to get Di, Oi, D̃i, D̃i∗ and Õi, i ∈ {A,B}
5 Set Oi

(
Oi > R(T )

)
= 1, i ∈ {A,B} . Omit the pixels with high probability to be occluded

6 Compute LA = LA
ph(Il, Ir,D

A,OB) + λ1 · LA
sm(Il,D

A) + λ2 · LA
da(D̃A, D̃A∗, ÕB)

7 Compute LB = LB
ph(Il, Ir,D

B,OA) + λ1 · LB
sm(Il,D

B) + λ2 · LB
da(D̃B, D̃B∗, ÕA)

8 Update Ωi = Ωi − η∇Li, i ∈ {A,B}
9 end

10 UpdateR(T ) = 1− τ ·min
{
T
Tk
, 1
}

11 end

Our data-augmentation loss Lda is then defined as follows:

Lda(D̃, D̃∗, Õ) =

∑
p l
(
|S
(
D̃(p)

)
− D̃∗(p)|

)
· S
(
Õ(p)

)
∑

p S
(
Õ(p)

) ,

l(x) =

{
x− 0.5, x ≥ 1
x2/2, x < 1

, (3)

where l(·) denotes the smooth L1 loss.

2.2. Co-Teaching Strategy

Fig. 2 and Algorithm 1 present the overview of our introduced
co-teaching framework, where we simultaneously train two
LEAStereo networks: (a) network A (with parameter ΩA)
and (b) network B (with parameter ΩB). In each mini-batch,
the two networks first forward individually to get several
outputs (Line 4). Then, we use a dynamic threshold R(T )
to omit the pixels with high occlusion probability (Line 5).
R(T ) is designed based on the network memorization mech-
anism. Specifically, during training, the networks will first
learn stereo matching from clear patterns, and then will be
gradually affected by outliers [21]. Therefore, R(T ) is ini-
tialized as 1 and it decreases gradually as the epochs increase.
This helps the networks avoid memorizing outliers (possible
inaccurate occlusion estimations) and further improves the
performance of unsupervised stereo matching.

Afterwards, we let the two networks swap their estimated
occlusion maps and compute their loss functions (Line 6 and
7). Since different networks can learn different types of oc-
clusion and disparity estimations, swapping the occlusion es-
timations enables the two networks to adaptively correct the
inaccurate occlusion estimations, which can further improve
the performance of unsupervised stereo matching. Please note
that since deep neural networks are highly non-convex, we
use two LEAStereo [10] networks with different initializa-
tions in our CoT-Stereo. Finally, we update both the param-

eters of these two networks as well as the dynamic threshold
R(T ) (Line 8 and 10).

3. EXPERIMENTAL RESULTS

3.1. Datasets and Implementation Details

For the implementation, we set α = 0.85 in Equation (1). In
addition, we set Tk = 0.2 · Tmax and τ = 0.7 in Algorithm 1.
Moreover, we adopt the Adam optimizer and use a learning
rate η = 10−4 with an exponential decay scheme. Since the
two networks present similar performance after convergence,
we simply adopt network A for performance evaluation.

We use three public datasets, (a) the Scene Flow [22], (b)
the KITTI Stereo 2012 [16], and (c) the KITTI Stereo 2015
[11] datasets, to validate the effectiveness of our CoT-Stereo.
The Scene Flow dataset [22] is collected in three different
synthetic scenes, while the two KITTI Stereo datasets [16, 11]
are collected in real-world driving scenarios and have public
benchmarks. Two evaluation metrics, (a) the average end-
point error (AEPE) that measures the difference between the
disparity estimations and ground-truth labels and (b) the per-
centage of bad pixels (tolerance: 3 pixels) (F1) [16, 11], are
adopted for accuracy comparison.

In our experiments, we first conduct ablation studies on
the Scene Flow dataset [22] to demonstrate the effectiveness
of our adopted loss functions and proposed co-teaching strat-
egy, as illustrated in Section 3.2. Then, we evaluate our CoT-
Stereo on the two KITTI Stereo benchmarks [16, 11], as pre-
sented in Section 3.3.

3.2. Ablation Study

Table 1 presents the evaluation results of our CoT-Stereo with
different setups on the Scene Flow dataset [22]. For our pro-
posed co-teaching strategy, (a)–(c) and (g) of Table 1 demon-
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Table 1. Evaluation results of our CoT-Stereo with different
setups on the Scene Flow dataset [22]. “Swap” and “DT” de-
note the occlusion estimation swapping operation and the dy-
namic threshold selection scheme, respectively. The adopted
setup (the best result) is shown in bold type.

No. Swap DT Lph Lsm Lda AEPE (px)

(a) – – 3 3 3 3.68
(b) 3 – 3 3 3 2.35
(c) – 3 3 3 3 3.10

(d) 3 3 3 – – 4.72
(e) 3 3 3 3 – 3.97
(f) 3 3 3 – 3 1.86

(g) 3 3 3 3 3 1.31

strate the effectiveness of the occlusion estimation swapping
operation and the dynamic threshold selection scheme, which
can effectively improve unsupervised stereo matching. Addi-
tionally, we can clearly observe that the combination of the
three loss functions can effectively improve the performance,
as shown in (d)–(g) of Table 1. Moreover, (g) in Table 1 de-
notes the adopted setup, which validates the effectiveness of
our adopted loss functions and proposed co-teaching strategy.

3.3. Evaluations on the Public Benchmarks

Table 2 shows the online leaderboards of the KITTI Stereo
2012 [16] and Stereo 2015 [11] benchmarks, and Fig. 1 visu-
alizes the results on the KITTI Stereo 2015 benchmark. We
can observe that our CoT-Stereo outperforms all other state-
of-the-art unsupervised stereo matching approaches in terms
of both accuracy and speed, which demonstrates the effective-
ness of the occlusion estimation swapping operation and the
dynamic threshold selection scheme for unsupervised stereo
matching. Excitingly, our CoT-Stereo can even present com-
petitive performance compared with the state-of-the-art su-
pervised approaches. Examples on the KITTI Stereo bench-
marks are shown in Fig. 3, where it is evident that our CoT-
Stereo can generate more robust and accurate disparity esti-

Table 2. Evaluation results (%) on the KITTI Stereo
20121 [16] and Stereo 20152 [11] benchmarks. “S” denotes
supervised approaches. “Noc” and “All” represent the F1 for
non-occluded pixels and all pixels, respectively [16, 11]. Best
results for supervised and unsupervised approaches are both
shown in bold type.

Approach S KITTI 2012 KITTI 2015

Noc All Noc All

PSMNet [8] 3 1.49 1.89 2.14 2.32
GwcNet-gc [9] 3 1.32 1.70 1.92 2.11
LEAStereo [10] 3 1.13 1.45 1.51 1.65

OASM-Net [14] – 6.39 8.60 7.39 8.98
Flow2Stereo [15] – 4.58 5.11 6.29 6.61
MC-CNN-WS [13] – 3.02 4.45 4.11 4.97
SsSMnet [12] – 2.30 3.00 3.06 3.40
CoT-Stereo (Ours) – 1.82 2.32 2.43 2.68

mations. All the analysis proves the excellent performance of
our CoT-Stereo for unsupervised stereo matching.

4. CONCLUSION AND FUTURE WORK

This paper proposed a novel co-teaching strategy for unsuper-
vised stereo matching, which consists of a dynamic thresh-
old selection scheme and an occlusion estimation swapping
operation. The former ensures that the networks do not
memorize possible outliers, while the latter enables the two
networks to adaptively correct the inaccurate occlusion esti-
mations and further improve the performance of unsupervised
stereo matching. Extensive experimental results on the KITTI
Stereo benchmarks showed that our approach, CoT-Stereo,
outperforms all other state-of-the-art unsupervised stereo
matching approaches in terms of both accuracy and speed.

1http://www.cvlibs.net/datasets/kitti/eval_
stereo_flow.php?benchmark=stereo

2http://www.cvlibs.net/datasets/kitti/eval_
scene_flow.php?benchmark=stereo

http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo
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http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
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