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Abstract— Due to the huge volume of point cloud data,
storing and transmitting it is currently difficult and expensive
in autonomous driving. Learning from the high-efficiency video
coding (HEVC) framework, we propose a novel compression
scheme for large-scale point cloud sequences, in which several
techniques have been developed to remove the spatial and
temporal redundancy. The proposed strategy consists mainly of
three parts: intracoding, intercoding, and residual data coding.
For intracoding, inspired by the depth modeling modes (DMMs),
in 3-D HEVC (3-D-HEVC), a cluster-based prediction method
is proposed to remove the spatial redundancy. For intercoding,
a point cloud registration algorithm is utilized to transform two
adjacent point clouds into the same coordinate system. By cal-
culating the residual map of their corresponding depth image,
the temporal redundancy can be removed. Finally, the residual
data are compressed either by lossless or lossy methods. Our
approach can deal with multiple types of point cloud data, from
simple to more complex. The lossless method can compress the
point cloud data to 3.63% of its original size by intracoding and
2.99% by intercoding without distance distortion. Experiments
on the KITTI dataset also demonstrate that our method yields
better performance compared with recent well-known methods.

Note to Practitioners—This article deals with the problem of
efficient compression of point cloud sequences that come from
light detection and ranging (LiDARs) mounted on autonomous
mobile robots. The vast amount of point cloud data could be an
important bottleneck for transmission and storage. Inspired by
the HEVC algorithm, we develop a novel coding architecture for
the point cloud sequence. The scans are divided into intraframe
and interframe, which are encoded separately using different
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techniques. Our method can be used for the compression of
LiDAR point cloud sequences or dense LiDAR point cloud map
and will significantly reduce the transmission bandwidth and
storage spaces. We have to admit that although our method is
less effective for real-time solutions, it can be highly efficient for
off-line applications. Future studies will concentrate on further
optimizing the coding algorithm to reduce the computational
complexity and trying to find a balance between them.

Index Terms— Cluster-based prediction, compression, depth
modeling mode (DMM), point cloud sequence, registration.

I. INTRODUCTION

A. Motivation

ADVANCES in autonomous driving technology have
widened the use of 3-D data acquisition techniques.

Light detection and ranging (LiDAR) or a 3-D camera is
almost indispensable for mobile robots. A number of critical
techniques are performed based on point cloud data, such
as simultaneous localization and mapping (SLAM) [1], path
planning [2], [3], obstacle avoidance [4], and navigation [5],
[6]. Point cloud data usually consist of a large number of
points, including the location information of spatial objects
and one or more attributes such as color and normal. For
example, the Velodyne HDL64 LiDAR can measure more than
120 000 points per frame of the point cloud data. Such data
require a large amount of space to store it and is difficult
to share in real time with current technology. Therefore,
the compression of point cloud data has become an urgent
problem for autonomous driving.

LiDAR data have the characteristics of being large scale,
and having an uneven distribution, and huge volume. It is
difficult to remove the temporal and spatial redundancies.
As the point cloud data of a vehicle-mounted LiDAR are
orderly, it can be converted into a range image. A range image
is a grayscale image recording of the distance information
of objects from the LiDAR. However, it is hardly optimal to
compress the point cloud data directly using image coding
technology. Because traditional image or video coding algo-
rithms, such as JPEG2000 [7], JPEG-LS, and high-efficiency
video coding (HEVC) [8], can only encode 8-, 10-, or 12-bit
integer pixel values, this is unsuitable for floating-point LiDAR
data. The measurement range of a Velodyne HDL64 LiDAR
can reach 120 m with an accuracy of 2 cm. If the range
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value is represented by 8 bits, the measurement accuracy is
merely 0.5 m, which will bring safety risks to the pilotless
vehicle. On the other hand, different from a texture image,
a range image rarely contains any texture and is characterized
by sharp object edges and large homogeneous regions with
nearly constant values. Using the image-based coding method
is inefficient to remove the redundancy for LiDAR depth map.

The octree method has been widely researched for point
cloud compression [9]. As the method is lossy, it is unsuitable
for vehicle-borne LiDAR point cloud data. Because path plan-
ning and obstacle avoidance algorithms require high accuracy
of point cloud data in unmanned aerial vehicles, even a small
amount of information loss may cause traffic accidents.

In contrast to the aforementioned methods, in this article,
we make full use of the structural characteristics of point
clouds to remove the spatial redundancy. In addition, we utilize
the registration method to remove the time redundancy of a
point cloud sequence. Compared with image- and octree-based
point cloud compression techniques, the proposed method
shows better performance.

B. Contributions

In this article, we propose a novel compression architecture
for large-scale point cloud sequences for mobile robots. The
major contributions are as follows.

1) Learning from the HEVC algorithm, we propose a novel
compression architecture for a point cloud sequence,
in which the data are divided into I frames and P
frames, and several techniques are exploited to remove
the temporal and spatial redundancies.

2) Inspired by the depth modeling mode (DMM) technique
in 3-D-HEVC, an efficient intraframe prediction method
is proposed based on point cloud clustering.

3) Considering the structure characteristics of the point
cloud, an interframe prediction technique is developed
using point cloud registration.

4) To promote the algorithm performance, several neater
methods, such as contour map coding, snake-like pre-
diction, and recurrent data coding, are exploited.

C. Organization

The rest of this article is structured as follows. In Section II,
we discuss related works. In Section III, we give an
overview of the point cloud coding framework. The intra-
coding method and the intercoding method are presented
in Sections IV and V, respectively. Experimental results are
shown in Section VI. Finally, this article is concluded with
the discussion and possible future research directions in
Section VII.

II. RELATED WORK

Over the past decade, scholarly works on point cloud
compression have been extensive. Taking the characteristics
of the point cloud as a major consideration, the methods
can be roughly classified into two categories: structured and
unstructured point cloud compression. For each category, there
are various kinds of point clouds.

A. Structured Point Cloud Compression
Structured point clouds can be converted into a 2-D

panorama range image; therefore, image or video coding
methods have been studied compressing the point clouds.

1) LiDAR Data From Mobile Robots: Vehicle-borne LiDAR
point cloud data require high real-time performance; however,
compared with the point cloud data in the survey and draw
field, these data are relatively sparse. Tu et al. [10] proposed
a method of compressing raw point cloud data using image
compression methods. They convert the raw point cloud data
into range images and use various image/video compression
algorithms to reduce the volume of the data. Liu et al. [11]
exploited a distance predictor to predict the forthcoming point
using the information of previous points. In addition, they use
the JPEG2000 standard to compress the color information.
As image-based methods do not fully utilize the 3-D char-
acteristics of point cloud data, Tu et al. [12] proposed a new
compression method using location and orientation informa-
tion from SLAM. Experimental results demonstrate that the
SLAM-based method outperforms image compression-based
methods.

2) LiDAR Data From the Survey and Draw Field: Houshiar
and Nüchter [13] used conventional image-based coding
methods to compress 3-D point clouds. By converting the
point cloud into panorama images, they encode the range,
reflectance, and color value for each point. Ahn et al. [14] pro-
posed an adaptive range image coding algorithm for the geom-
etry compression of large-scale 3-D point clouds by predicting
the radial distance of each pixel using previously encoded
neighbors. Experimental results show that their method obtains
better compression performance compared with traditional
image or video coding techniques.

3) RGB-D Data From Kinect Sensor: Wang et al. [15]
designed a 3-D image warping-based depth video compres-
sion (IW-DVC) method to compress the depth image cap-
tured by RGB-D sensors. The proposed method combines
ego-motion estimation with 3-D image warping techniques.
Experiment results show that their method attains a high
compression ratio without sacrificing depth image quality.
By exploiting spatial and temporal redundancy within the point
data, Kammerl et al. [16] proposed a novel lossy compression
approach for point cloud streams. They compare the octree
data structures of consecutive point clouds and encode their
structural differences. Experimental results show that their
method achieves a strong compression performance of a ratio,
with 14 at 1-mm coordinate precision.

B. Unstructured Point Cloud Compression
1) Point Cloud Map Built by LiDAR: Elseberg et al. [9]

proposed a novel structure of octree to store and compress
3-D data without loss of precision. Fan et al. [17] proposed a
point cloud compression method based on hierarchical point
clustering. Their method consists of two stages: level of detail
(LOD) hierarchy construction and LOD hierarchy encod-
ing. Experimental results show that their algorithm achieves
not only generic topology applicability but also good rate–
distortion performance at low bit rates. Motivated by image
and video coding techniques, Cohen et al. [18] used the 3-D
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block-based prediction and transform coding to compress the
point cloud. They explore both modified shape-adaptive DCT
and 3-D graph transform methods to code the residual data.
Experimental results show that their method achieves good
compression performance.

2) Point Cloud Map Built by RGB-D Sensor: Morell et al.
[19] proposed a 3-D lossy compression system based on plane
extraction. They represent the points of each scene plane as a
Delaunay triangulation and a set of points/area information.
Their method can be customized to achieve different data
compression or accuracy ratios. Navarrete et al. [20] proposed
a 3-D compression and decompression method, which allows
the use of the compressed data for a registration process.
Experimental results show that their method obtains signifi-
cantly better compression rates with negligible errors for most
applications.

3) Immersive 3-D Human Body: Mekuria et al. [21] pro-
posed a hybrid point cloud compression architecture for 3-D
tele-immersive and virtual reality applications. They com-
bine typical octree-based point cloud compression schemes
with hybrid schemes common in video coding. Compared to
available point cloud codecs, their method achieves a higher
rate–distortion performance. Thanou et al. [22] proposed a
graph-based compression scheme of dynamic 3-D point cloud
sequences. In their method, the time-varying geometry of these
sequences is represented by a set of graphs. They use motion
estimation to remove the temporal redundancy. Queiroz and
Chou [23] proposed a transform coding method for point
clouds using a Gaussian process model. They explore four
models to represent the covariance function of the Gaussian
process. Experimental results demonstrate that their method
outperforms both the ID-GFT and AR-GFT methods.

C. Summary and Analysis
Generally, the aforementioned algorithms can significantly

reduce the point cloud data size and are used for various
applications, such as virtual reality, scanning of historical
artifacts, and 3-D printing. However, few researchers have
studied the coding method for a point cloud sequence captured
by LiDAR mounted on mobile robots. As LiDAR data have the
characteristics of being large scale, with uneven distribution
and a long detection range, using the aforementioned methods
to compress the LiDAR data is inefficient; there are both
temporal and spatial redundancies in point cloud sequences.
Fortunately, we can learn from their coding techniques, such
as prediction [18], clustering [17], and registration [15]. In this
article, we propose an efficient coding scheme for LiDAR
point cloud data based on clustering and registration.

III. OVERVIEW OF THE POINT CLOUD

CODING FRAMWORK

We address the problem of compression of large-scale
structured point cloud sequences from 3-D LiDARs mounted
on mobile robots. The proposed compression method exploits
both temporal and spatial redundancies in the point cloud
sequence. A point cloud sequence is divided into intraframe
and interframe. Learning from Mekuria’s method [21] and
the HEVC coding architecture [24], we propose a novel

compression architecture, especially for a LiDAR point cloud
sequence, as shown in Fig. 1.

Fig. 2 shows an example of the order arrangement of the
frames, including time priority form and compress rate priority
form. A point cloud sequence is divided into intraframes
(I ) and interpredict frames (P). An I -frame is compressed
by exploiting the spatial redundancies, whereas a P-frame
is compressed by removing the temporal redundancies. The
compression of an interframe requires referencing its former
encoded/decoded intraframe, which will be used to exploit
the temporal redundancies. The very first frame is encoded
using intraframe encoding as it does not have any frame as
a reference. The I -frame is followed by a P-frame, as the
P-frame has the ability to make use of its front I -frame.

A. Outlier Removal Filter

In practice, LiDAR sensors produce a large number of out-
liers during the range measurement. The outlier will decrease
the algorithm efficiency with a large computational cost.
In order to reduce the influence of outliers, a filter named
RadiusOutlierRemoval is utilized [25]. RadiusOutlierRemoval
filter is performed by removing outliers in its input cloud that
does not have at least n number of neighbors within a certain
range d . d is calculated by the following:

d = 2π × rmax × Hresolution

360◦ (1)

where rmax represents the maximal measurement range
of 120 m and Hresolution denotes the horizontal angular resolu-
tion 0.18◦. In our experiment, we set n to 2 and d to 0.38 m.

B. Convert to Range Image

We choose the KITTI dataset to perform our experi-
ments [26]. The KITTI dataset is captured by a Velodyne
HDL-64E rotating 3-D laser scanner covering 26.8◦ verti-
cal and 360◦ horizontal fields of view with 64 beams and
0.18◦ angular resolution. The data are structured and can
be converted to a range image through coordinate system
transformation.

C. Clustering

In a frame of the point cloud, there are many spatial redun-
dancies of points belonging to the same object. To remove the
redundancies, a clustering method is utilized, preparing for
intraprediction.

D. Intraprediction

Inspired by DMMs in 3-D-HEVC, we develop an efficient
intraprediction method according to the clustering results.
The prediction method can make full use of the spatial
structure characteristics of point clouds and remove the spatial
redundancy.

E. Contour Map Coding

The segmentation is partly stored as a contour map. In this
article, we use sliding windows to code the contour informa-
tion with integers [27].
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Fig. 1. Architecture of the proposed point cloud sequence compression scheme.

Fig. 2. Order of the intraframe and interframe. (a) Time priority.
(b) Compress rate priority.

F. Interprediction

Temporally successive point cloud sequences share a wide
range of similar structures. Motion estimation is a key to
remove the temporal redundancies. An interprediction method
is proposed based on point cloud registration.

G. Residual Data Coding Method
In order to obtain optimal coding performance, both the

lossless and lossy schemes are explored to code the intraresid-
ual and interresidual data.

H. Coder Controller
The coder uses a prespecified codec setting, which includes

the parameter configuration for 1) and 3), the resolution ratio
setting for 2), the registration technique for 6), and the coding
method for 7).

I. Header Formatting and Parameter Information
The parameter information and intraencoded and interen-

coded data are organized in a predefined order and form the
coded bitstream.

Fig. 3. Overall workflow of the intracoding method, best viewed in color.
(a) Input point cloud from Velodyne HDL-64E. (b) We convert the point
cloud to a range image. (c) Segmentation result is shown in the range image.
(d) Segmentation result is shown in the point cloud, where each object is
surrounded by a bounding box. (e) Prediction result is shown in the range
image, where the object clusters are predicted using the average value and
the ground is predicted using a plane. (f) We extract the contour map using the
cluster result. (g) Difference between the real range image and the prediction
result is calculated as the residual data.

IV. INTRACODING METHOD

Inspired by the depth coding method in 3-D-HEVC, we pro-
pose an intraprediction technique for the point cloud. The
intrapoint cloud compression method includes four main
techniques: range image conversion, point cloud clustering,
prediction, and residual data coding. Each technique will be
detailed in this section. Fig. 3 shows the overall workflow
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Fig. 4. Rotating LiDAR sensor, a Velodyne HDL-64E.

Fig. 5. Converting points from a spherical coordinate to a range image. Each
point in the spherical coordinate system corresponds to a pixel in the range
image.

of the proposed intracoding methodology. The first step is to
covert the point cloud data into range images. In the second
step, a clustering process is executed based on the range image
to segment the point cloud into ground and main objects. The
next step is the prediction of the range image based on the
segmentation result. Finally, the contour map and residuals
between the prediction and the real range image are computed
and coded by either lossless or lossy coding methods.

A. Range Image Conversion

We use the publicly available KITTI dataset to evaluate the
performance of our proposed algorithm. The KITTI dataset is
captured by a Velodyne HDL-64E rotating 3-D laser scanner,
as shown in Fig. 4. At each roll angle, the system emits laser
pulses to measure the radial distances from the scanner center
to objects. The 3-D geometry of points is represented using the
spherical coordinate system. As shown in Fig. 5, a detected
point P can be expressed by P(r, θ, φ), where θ , φ, and r
represent the polar angle, azimuthal angle, and radial dis-
tance, respectively. The corresponding Cartesian coordinates
converted from the spherical coordinates can be calculated
using Formula (2). The scanner covers 26.9◦ vertical and 360◦
horizontal fields of view with 64 beams and a 0.18◦ azimuthal
angular resolution. We losslessly project the 3-D point cloud
onto a spherical image by calculating the Euclidean distance
per point. The results are shown in Fig. 3(a) and (b)

x = r · cos φ · cos θ

y = r · cos φ · sin θ

z = r · sin φ. (2)

B. Point Cloud Clustering

Due to the requirement for segmentation accuracy and real
time, we use Bogoslavskyi’s method to perform the point

Fig. 6. Schematic of the ground extraction algorithm.

cloud clustering [28]. The clustering method utilizes the spatial
geometric relations of objects, consisting of ground removing
and object clustering [29].

1) Ground Removing: The aforementioned range image is
utilized to perform the point cloud clustering. First, we cal-
culate the angle between two adjacent points in the vertical
direction with the xoy plane, represented by α. Fig. 6 shows an
illustration of the angle. Points A and B are derived from two
neighboring rows r − 1 and r of the range image, represented
by Rr−1,c and Rr,c, respectively. With a priori angle knowledge
of vertically consecutive individual laser beams, the angle α
can be calculated using trigonometric rules as follows:

α = arctan(|BC|, |ac|) = arctan(�z,�x)

�z = |Rr−1,csinζα − Rr,c sin ζβ |
�x = |Rr−1,ccosζα − Rr,c cos ζβ | (3)

where ζα and ζβ denote the vertical angles of the laser beams
corresponding to rows r − 1 and r , respectively.

As shown in Fig. 6, if points A and B belong to the ground,
the angle α is very small. If points A and B do not belong
to the ground, the angle α is particularly large. We define
a threshold in advance to extract points belonging to the
ground by comparing the α value with it. In the experiment,
the threshold is set to 10◦.

2) Object Clustering: After removing the ground points
from the depth map, the remaining data are used for clustering.
The key of the point cloud clustering algorithm is to determine
which points come from the same object. The schematic of
the clustering algorithm is shown in Fig. 7. Points A and B
represent two random points in space, measured by the OA
and OB laser beams emitted by the LiDAR. The angle between
the laser beam OA and AB is indicated by β. As can be seen
from the diagram, if two points, A and B, belong to the same
object, then A and B are close, and the angle β is close to 90◦.
If two points, A and B, come from different objects, then A
and B are farther away and the angle β is close to 0◦ or 180◦.
We can judge whether the two points belong to the same object
according to the β value. β is defined as follows:

β = arctan
|BH|
|HA| = arctan

d2 sin α

d1 − d2 cos α
(4)

where d1 and d2 represent the distance between OA and OB,
respectively. Angle α is the angle between two beams and
can be obtained by LiDAR sensor parameters. We define a
threshold interval for angle β and determine whether points
A and B belong to the same object by calculating. In the
experiment, the threshold is set to 75◦.

Through the above steps, we can get the clustering result,
as shown in Fig. 3(c) and (d). The clustering method can
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Fig. 7. Schematic of the clustering method. Left: example scene with two
objects, a pedestrian and a car. Right: suppose that the LiDAR sensor is
located at point O. Lines OA and OB represent two laser beams. Points A
and B generate a line to estimate the surface of an object. Point H is the
intersection point of the vertical line from point B to OA and OA. We judge
whether points A and B belong to the same object according to the β angle.
If β > θ , where θ is a predefined threshold, we consider that the two points
belong to the same object.

Fig. 8. DMMs. (a) Wedgelet partitioning. (b) Contour partitioning.

segment the ground and objects in the range image, which
paves the way for the following intraprediction.

C. Intraprediction

1) Region Prediction Inspired by DMM: The proposed
intraprediction method is inspired by the DMM technique
adopted in 3-D-HEVC [30]. The 3-D-HEVC is designed for
encoding multiview video and depth data that are captured by
RGB-D sensors [31]. The range image of the LiDAR is similar
to the depth image in the 3-D video; however, each point in
the range image needs more bits to represent the distance.

The DMM consists of two partitioning techniques: wedgelet
partitioning and contour partitioning. In a wedgelet partition,
a straight line divides the depth block, resulting in two regions
entirely connected, represented by P1 and P2, as shown
in Fig. 8(a). In contrast, for a contour partition, the two
regions can be shaped arbitrarily and may consist of multiple
disconnected parts, as demonstrated by regions P1 and P2

in Fig. 8(b).
Each partition method divides a coding unit into two

regions, P1 and P2, and uses a constant partition value (CPV)
to predict each region. With the aim of obtaining the optimal
partition mode, each possible segmentation pattern is evaluated
using a rate–distortion optimization (RDO) metric [30]. The
rate–distortion cost is expressed as follows:

RDcost = SSE + λ × Bit (5)

where SSE denotes the sum of the error between the origi-
nal block and the reconstruction block, λ is the Lagrangian
multiplier, and Bit represents the coding bit rate. The optimal
partition mode and its corresponding index are stored on both
sides of the encoder and the decoder.

Algorithm 1 Plane Fitting Algorithm With RANSAC
Require:

The 3-D point cloud: point_li st;
The tolerance threshold of distance t between the chosen
plane and the other points;
The maximum probable number of points belonging to the
same plane: f orseeable_support ;

Ensure:
The best plane parameter: best Plane.

1: i = 0; best Support = 0; best Std =∝
2: ε = 1 − f orseeable_support/ length(point_li st)
3: N = round(log(1 − α)/ log(1 − (1 − ε)3))
4: while i ≤ N do
5: j = pick 3 points randomly among (point_li st)
6: pl = pts2 plane( j)
7: dis = dis2 plane(pl, point_li st)
8: s = f ind(abs(dis) ≤ t)
9: st = Standard_deviation(s)

10: if length(s) > best Support or (length(s) = best Support
and st < best Std) then

11: best Support = length(s)
12: best Plane = pl
13: best Std = st
14: end if
15: i = i + 1
16: end while

Inspired by the DMM adopted in 3-D-HEVC, we develop
a similar prediction technique for point cloud depth data.
According to the clustering result, the range image is split
into various segmentations, as shown in Fig. 3(d). Except for
the ground points, each segment is predicted using the average
value of all points belonging to the cluster. Therefore, we can
obtain the predicted map for the object regions.

2) Ground Prediction With the RANSAC Method: For the
ground points, we use random sample consensus (RANSAC)
to fit an ideal plane [32]. In Cartesian coordinates, a plane can
be expressed as follows:

d = ax + by + cz (6)

where (a, b, c) denotes the normal vector n and d represents
the distance from the origin to the plane. RANSAC randomly
selects three points from the dataset, calculates the parameters
of the corresponding plane, and then tries to enlarge the plane
according to the given threshold. The plane fitting algorithm
with RANSAC is described in Algorithm 1.

According to the fitting plane and LiDAR parameters,
the virtual ground points can be obtained. The difference
between the real ground points and the virtual ground points
will be calculated as the residual data

Rresidual_ground = Rreal_ground − Ppredict_ground (7)

where Rresidual_ground represents the residual data and Rreal_ground

and Ppredict_ground represent the real and virtual ground points,
respectively. The residual data and plane parameters will be
encoded. The residual data value is nearly zero, and therefore,
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we can use very few bits to encode them. During the decoding
process, the ground points will be recovered.

3) Prediction Result: Through the above steps, we obtained
the predict data for both the object regions and the ground
regions. The difference between the true range data and
predict data is calculated to obtain the residual data, as shown
in Fig. 3(g). The pixel value of the residual data is nearly zero.
Compared with the original image, the entropy of the residual
image is smaller and needs fewer bits to encode. In this way,
the spatial redundancy within a frame of the point cloud is
removed.

D. Coding Method
1) Contour Map Encoding: As shown in Fig. 3(f) and (g),

in order to reconstruct the depth image, we also need to encode
the contour map. The contour map includes two important
pieces of information: the contour shape and the value of each
region. In order to encode the contour map, we extract the
boundary pixels of it. The proposed compression scheme for
the segment map works as follows.

a) Boundary Extraction and Coding: The boundary map
is extracted first where a pixel (x, y) is 1 if the pixels in
(x + 1, y) or (x, y + 1) belong to a different segment and
0 otherwise. After this, we divide the contour map into 4 × 4
pixel macroblocks. Each block is assigned an integer within a
certain interval [0, 2n).

b) Per-Region Value Encoding: So far, we have concen-
trated on transforming the boundary of the segment image.
In addition, each region’s value is equally important. The
average depth value ak for each segmented region Rk is
computed and stored in laser scanning order. The predicted
value of each of the regions is then sorted on a 1-D array and
an index is associated with each mask (denoted by i ).

c) Exceptions: The entire contour map can be recon-
structed by the information provided in the boundary encoding
part. However, there are some single pixels between two
borders, which will be treated as a border at the first step.
Therefore, an array is built individually to store the location
of each of these pixels and their respective value.

d) Coding Method: All of the intermediate value is loss-
less compressed using the arithmetic coder. Lossless coding is
needed since the amount of data is not large and the masks
contain the key information about edge positions.

e) Reconstruction: Reconstruction is the inverse process
of coding. First, the boundary map is reconstructed according
to the encoding data. Then, we fill the data for each segment.

2) Residual Data Compression Method: Several lossless
encoding schemes are considered to compress the intrapre-
dict residual data, which includes BZip2 [33], Brotli [34],
LZMA [35], PPMd [36], LZ4 [37], Zstandard [38], LZ5 [39],
Lizard [40], and Deflate [41]. In addition, we also explore
the traditional lossy image coding methods to compress the
residual data, such as JPEG [42] and JPEG2000 [7].

V. INTERFRAME CODING METHOD

A schematic of the LiDAR coordinate system changing with
time in the point cloud sequence is shown in Fig. 9. Each
frame of the point cloud has its own coordinate system, and

Fig. 9. Schematic of the LiDAR coordinate system changing with time.

Fig. 10. Intercoding method. (a) Point cloud at t − 1. (b) Point cloud at t .
(c) Point clouds at the same coordinate. (d) Point cloud after registration.
(e) Residual map without snake prediction. (f) Residual map after snake
prediction.

the LiDAR center is used as the origin of the coordinates. The
time interval between the two adjacent point clouds is very
short. In this period, the LiDAR moves only a small distance.
As shown in Fig. 10(a) and (b), the adjacent frames in the
point cloud sequence have a large range of similar structures.
A lot of redundancies exist in the temporal dimensions. It is
desirable to develop an interprediction method to remove the
time redundancies within the point cloud sequence.

A. Limitations of Using the Video Interprediction Method
The interframe prediction method makes use of temporal

redundancy by finding the motion vectors of different contents
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Fig. 11. Interprediction method in HEVC.

between frames. The motion vector is usually estimated per
block, through a search of best matching between the source
block Bs in current frame P and the reference block Br in
reference frame Pr , as shown in Fig. 11. The coordinates of
B∗ and Bs are the same locations in each frame image. The
coordinates of Br and Bs are (Xr , Yr ) and (X , Y ), respectively.
The motion vector (MV) is defined as (X−Xr , Y −Yr ). Motion
compensation is the process of obtaining the estimated value
of the current frame according to the MV. We only need to
encode residual values and MVs during the coding procedure.

Theoretically, the interframe prediction technology of video
can be used for the depth map sequence. However, this
method is performed based on the assumption that the color
information of each pixel on the same object surface is close
to that of others even though the object or camera is in
motion. Therefore, this 2-D block-based motion estimation
method is obviously unsuitable for the depth map converted
from the point cloud as the pixel in the depth map represents
the distance from the LiDAR to objects in the scene when
the LiDAR or object is moving. It is inefficient to apply the
color-based prediction method to the depth map representing
distance information. The interprediction method for the point
cloud sequence should utilize the spatial structure characteris-
tics of point clouds.

B. Proposed Interprediction Method
Learning from the prediction concept designed for video,

we propose a registration-based interprediction method for a
point cloud sequence. Registration of two point clouds is to
find the rotation and the translation that maximizes the overlap
between the two clouds [43]. For instance, suppose that Pr and
Pc are two sets of points. We aim to find the transformation
T ∗ that minimizes the distances between the corresponding
points in the two scenes

T ∗ = argmin
∑

C

(
pc

i − T +©pr
j

)T
Ωij

(
pc

i − T +©pr
j

)
(8)

where T represents the current estimate of the transformation
that maps Pr in the reference frame of Pc, c and Ωij are
information matrix that consider the noise statistics of the
sensor, C is a set of correspondences between points in the
two clouds, and +© is the standard composition operator that
applies the transformation T to the point Pc.

In this article, two adjacent point clouds are matched by
using the iterative closest point (ICP) algorithm. Thus, the rota-
tion and translation matrix can be obtained. The two frames

Fig. 12. Snake prediction for the residual data.

of the point cloud are transformed into the same coordinate
system using (8)

⎡
⎣

xg

yg

zg

⎤
⎦ = Ryaw × Rpitch × Rroll ×

⎡
⎣

xt

yt

zt

⎤
⎦ +

⎡
⎣

Cx

Cy

Cz

⎤
⎦ (9)

where (x, y, z) represents the coordinates after transformation,
(x, y, z) denotes current coordinates, Cx , Cy , and Cz denote
the translation matrix of the coordinates, and Ryaw, Rpitch, and
Rroll represent the rotation matrix of the yaw, pitch, and roll
angle, repsectively.

When the two coordinates of the point cloud data are
unified, the difference between the real point cloud Ptrue and
the predicted one Ppredict is calculated as residual data Presidual

Presidual = Ptrue − Ppredict. (10)

As the predicted data are very close to the real data,
the residual data value is nearly zero, as shown in Fig. 10(e).
We only need to encode the residual data with very few bits.
As a result, the temporal redundancy is removed.

C. Snake-Like Prediction for Interresidual Data
In order to further remove the redundancy of the residual

data, a snake-like prediction scheme is performed, which
is operated by comparing the current depth pixel with its
reference pixel, as shown in Fig. 12. If a pixel is at the end
of a row, it is regarded as the reference pixel of the pixel in
the same column in the following. The difference between the
value of the pixel and its reference pixel is obtained for further
encoding, as shown in Fig. 10(f).

In the coding process, we only need to encode the rotation
matrix, translation matrix, and residual data of two point
clouds. Similar to the processing for intraresidual data, we per-
form both lossless and loss compression schemes for the
interresidual data.

VI. EXPERIMENTAL RESULTS

A. Experimental Conditions and Evaluation Metrics
To verify the performance of the proposed algorithm,

we implement it in C++ with some operations in the point
cloud library (PCL). The experiments are performed on a
desktop computer with an i5-6300HQ 2.3 GHz CPU with
a 4-GB memory. Four representative point cloud sequences
provided by the KITTI dataset are chosen for testing. The
four sequences consist of four scenes: campus, city, road,
and residential. The experiments test 100 frames for each
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Fig. 13. Compression ratios of different lossless compression methods. (a) Campus. (b) City. (c) Road. (d) Residential.

sequence. In particular, in the intercoding process, we use the
former frame of the current point cloud as the reference frame.

Coding efficiency is measured by compression rate and root-
mean-square error (RMSE). Compression rate presents the
ratio between the compressed data size and the original size.
The lower the value, the better the performance

Ratio = Compressedsize

Originalsize
× 100% (11)

where Ratio represents the compression rate and Originalsize
and Compressedsize denote the sizes of the point cloud data
before compression and after compression, respectively.

RMSE represents the root-mean-squared error between the
original 3-D points and the reconstructed ones, which reflects
the quality of reconstruction. RMSE is only used to evaluate
the lossy coding performance. If the reconstruction point cloud
is closer to the original point cloud, the value of the RMSE
will be smaller. Given a m × n range image corresponding to
a point cloud, the RMSE is defined as follows:

RMSE =
√√√√ 1

m × n

m−1∑
i=0

n−1∑
j=0

[I (i, j) − K (i, j)]2 (12)

where I and K represent the original range image and recon-
struction range image, respectively.

B. Lossless Compression Results

1) Comparison With Lossless Compression Methods: To
verify the efficiency of the intraprediction and interprediction
techniques on eliminating the time and space redundancy,
we use several lossless coding schemes to encode the intrapre-
diction and interprediction residual data, including BZip2 [33],
Brotli [34], LZMA [35], PPMd [36], LZ4 [37], Zstandard
[38], LZ5 [39], Lizard [40], and Deflate [41]. For comparison,
the range image converted from the LiDAR point clouds is also
directly encoded with these lossless coding schemes without
performing intraprediction or interprediction. A compression
rate is utilized to evaluate the coding performance. Experi-
mental results are shown in Fig. 13. It can be observed that
compared with stand-alone lossless methods, the combination
of the proposed prediction methods with lossless coding
schemes achieves a smaller compression ratio. In our method,
the smaller the compression ratio, the better the performance.

For intracoding results, the smallest compression ratio is
3.16%, achieved by the combination of the proposed method
with the LZMA scheme for the point cloud of the city scene.
The worst compression ratio is 10.56% with the combination
of the proposed method with the Lizard scheme. The structure
of the point cloud data in city scenes is single, which contains
a large number of ground points. The structure of the contour
map is simple. As a result, we can use a few bits to code
the contour map. On the contrary, the point cloud of the
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TABLE I

COMPRESSION RATE RESULTS COMPARED WITH THE OCTREE METHOD

residential scene is complex and the compression ratio is much
higher. Lossless coding methods are designed by removing the
coding redundancies of data without considering the character-
istics of the point cloud structure; therefore, the compression
rates for the point clouds of different scenes show very
little difference. The above experimental results indicate that
the clustering-based intraprediction algorithm can effectively
remove the spatial redundancy of the point cloud data.

For intercoding results, it can be seen that the combination
of the interprediction method with the PPMd algorithm has the
smallest compression ratio of 2.41%. The worst compression
ratio is 8.84% for the residential scene achieved by the
combination of the proposed method with the Lizard scheme.
Experiment results indicate that the interprediction method
based on point cloud registration can effectively remove the
time redundancy within the point cloud sequence. Compared
with the intraframe coding algorithm, the interframe coding
algorithm achieves better performance for the campus, person,
and residential scene point clouds. As the point cloud data
of two adjacent frames are similar, the residual data after
interprediction are smaller. As a result, we can use fewer bits
to encode the residual data. A special case is that for the
city scene point cloud data, the compression ratio is higher
compared to the intracoding method. The reason is that in
city scenarios, cars equipped with LiDAR travel faster, and
the structural differences between adjacent frames of the point
cloud are larger, which results in a decrease in compression
performance.

2) Comparion With Octree Methods: Table I shows the
compression ratio results of the proposed lossless compression
method compared with the octree method [21]. The encoding
precision of the octree method is set to 1 mm3, 5 mm3, and
1 cm3. For the proposed method, we choose the LZMA algo-
rithm as a representative of the lossless compression algorithm.
It can be observed that both the proposed intracoding and
intercoding methods obtain a smaller compression rate than
the octree method. Using the intracoding method, the size of
the point cloud is compressed to 3.63% of its original size,
whereas the intercoding method can reduce the size of the
point cloud to 2.99% of its original size, on average. More
importantly, the proposed method is lossless.

C. Lossy Coding Method
1) Recurrent Data Coding Method: Besides the lossless

compression methods, traditional lossy image compression
methods, such as JPEG and JPEG2000, are also explored to
compress the residual data. As residual data are recorded in
floating-point numbers, the traditional techniques can encode
only integer pixel values. In order to decrease the distance

Fig. 14. Recurrent coding method.

error, we try to use a recurrent data coding method that treats
the error after each step as the new input and applies the
JPEG or JPEG2000 coding method again to compress the
error. This idea is shown in Fig. 14. This approach introduces
a tradeoff between distance error and compression efficiency.
In our scheme, the data are encoded twice.

2) Comparison With Other Methods: For comparison,
the original point cloud data are also compressed directly
with the lossy methods without any processing. In addition,
we also compare our experimental results with image- [7]
and SLAM-based [9] point cloud compression methods. The
two methods are also designed for vehicle point cloud com-
pression. The experimental results are given in terms of
RMSE–Bitrate curves of two scenarios of point cloud data.
RMSE–Bitrate curves reflect the relationships between bit rate
and RMSE. The smaller the bitrate and RMSE, the better
the coding performance as it achieves a lower RMSE with
a smaller bandwidth simultaneously.

Fig. 15 shows the results of our algorithm compared with
other methods. It can be observed that both the intraprediction
and interprediction methods have outstanding advantages in
bitrate and RMSE compared to the curves without any process-
ing. In addition, the proposed intracoding and intercoding
methods also show better performance compared with Tu’s
methods [10], [12]. This is Tu’s methods seldom perform
preprocessing for the point cloud data, and there are still
redundancies with the point cloud. Our proposed method needs
a much lower bitrate in a small RMSE situation. Because
JPEG2000 works better than JPEG, the combination of the
proposed method with JPEG2000 has a better performance
compared with the JPEG method.

In order to make an intuitionistic performance comparison
with the lossless method, we also plot the best lossless
compression result in Fig. 15, shown with an asterisk. As the
RMSE of the lossless method is zero, the cure of the lossless
method is only a point. As we can see, compared with the
JPEG2000 method, the lossless method also shows strong
competitiveness. The above experimental results indicate that
the proposed prediction method can largely remove spatial and
temporal data redundancy within the point cloud sequence,
achieving a high compression efficiency either by a loss-
less or lossy coding method.

D. Contribution of Each Step for Compression Efficiency
With the aim of evaluating the contribution of each step

in the intracoding and intercoding process, we record the
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Fig. 15. Comparison of RMSE–Bitrate curves of two scenarios with Tu’s
methods. (a) City scene. (b) Residential scene.

average changes of the data volumes of a frame of the point
cloud during the compression. LZMA and JPEG2000 are
selected as the representatives to encode the residual data. For
JPEG2000, we set the parameter compression ratio as 2, which
means that the size of the compressed data will be half of
its original size. The average changes of frame data volumes
during the intracoding and intercoding process are shown in
Tables II and III, respectively.

As we can see, in the intracoding process, after the con-
version, the data size is reduced to nearly a quarter of its
original size. The intraprediction efficiency is related to the
complexity of the point cloud. The data volume can be reduced
to half of the point cloud with simple structural complexity,
such as with the city, and campus scenes. The last contribution
comes from the coding part.

In the intercoding process, after interprediction, the scenes
of the campus and person point clouds get less data volume,
with 276 and 279 kB, respectively. On the contrary, the data
volume for the city and residential point clouds is 376 and
362 kB, on average, respectively, after interprediction. This is
because of the slow driving speed in the campus and people
scenes when recording the point cloud data. Thus, we get
less data after interprediction. The point cloud data for city
scenarios are just the opposite. A fast driving speed reduces
the structural similarity of adjacent point clouds, which results
in the volume of data being large after interprediction.

TABLE II

AVERAGE CHANGES IN DATA VOLUMES DURING INTRACODING (KB)

TABLE III

AVERAGE CHANGES IN DATA VOLUMES DURING INTERCODING (KB)

TABLE IV

AVERAGE CODING TIME OF INTRACODING METHOD (S)

TABLE V

AVERAGE CODING TIME OF INTERCODING METHOD (S)

It is noteworthy that, compared with the lossless method,
the lossy JPEG2000 method shows few advantages or per-
forms worse. This is because JPEG2000 is specially designed
for image compression by removing the redundancies of the
color information. However, the residual data are based on
distance information. Moreover, the proposed prediction step
has already removed the redundancy of the point cloud.

The steps of conversion, intraprediction or interprediction,
and coding are all important techniques of the proposed
intracoding or intercoding methods. Their contributions are
not simply added together, rather their effects are multiplied.
Thus, even a small improvement in a single step can make a
big difference.

E. Speed Performance

The proposed intracoding method consists of four steps,
namely, range image conversion, point cloud segmentation,
intraprediction, and coding. The intercoding method includes
point cloud registration, interprediction, and coding steps.
We test the average speed performance of the proposed
method with 100 frames. The average coding time of each
step for the intracoding and intercoding process is presented
in Tables IV and V, respectively. As we can see, the total
intracoding time is 0.57 s for the lossless method (LZMA)
and 0.38 s for the lossy method (JPEG2000). With hardware
acceleration, the intracoding algorithm is expected to be used
for real-time point cloud compression. Compared to intracod-
ing, intercoding requires a lot of coding time, which is caused
by the high complexity of the ICP algorithm.
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TABLE VI

ENCODING AND DECODING TIME OF THE PROPOSED METHOD VERSUS
OCTREE, TU-MPEG, AND TU-SLAM (S)

Table VI shows the average encoding and decoding
time of the proposed method compared with the octree,
Tu-MPEG [10], and Tu-SLAM [12] methods. It can be seen
that the octree and have low complexity. Compared with
the Tu-MPEG algorithm, our intracoding method has similar
algorithm complexity. The high complexity of the intercoding
method is caused by the ICP point cloud registration method,
which needs to be further optimized to reduce the complexity.

Currently, the algorithm cannot be run in real time, but the
algorithm framework can be used offline. After the LiDAR
data have collected, we can use this algorithm to encode
the data to reduce the storage space. After compression,
when transmitting these data to others through the Internet,
the bandwidth will also be reduced. In future work, we will
continue to optimize the point cloud coding architecture to
improve the coding efficiency and reduce the complexity.
We aim to find a balance between the algorithm complexity
and the compression rate.

VII. CONCLUSION AND DISCUSSION

The huge and the increasing volume of point cloud data
could prove an important bottleneck for transmission and
storage, especially in tasks such as autonomous driving. In this
article, we extended some of the concepts used in HEVC and
3-D-HEVC and introduced a novel coding scheme to com-
press point cloud sequences. The coding framework consists
of intraprediction, interprediction, and residual data coding.
Because the point cloud data of vehicle-mounted LiDAR are
orderly, we transformed the point cloud data into a depth
map. Different from texture video, a depth map is mainly
characterized by sharp object edges and large homogeneous
regions with nearly constant values. Inspired by DMM in
3-D-HEVC, we exploited a clustering-based intraprediction
method to remove the spatial redundancy of the point cloud
data. In the intercoding, the ICP algorithm is utilized to
perform point cloud registration and obtain the rotation matrix
and the translation matrix. By transforming two point clouds
into the same coordinate system, this method can largely elim-
inate the temporal redundancy of the point cloud sequence.
Moreover, both lossless and lossy methods were explored to
encode the intraresidual and interresidual data. Experimental
results demonstrated that the proposed method outperforms
the other methods. Using the intracoding method, the size of
the point cloud is compressed to 3.63% of its original size,
whereas the intercoding method can reduce the size of the
point cloud to 2.99% of its original, on average. It owes its per-
formance to several novel techniques, such as clustering-based
intraprediciton, registration-based interprediction, and snake
prediction. More importantly, the improvements of a single
technique for the compression performance in the intracoding

or intercoding process are not simply added together, they
are instead multiplied. To the best of our knowledge, our
method is the first to extend the DMM technique in 3-D-HEVC
and HEVC coding architecture to point cloud sequence com-
pression. It utilizes both the advantages of the video coding
algorithm and geometrical characteristics of the point clouds.
Future study will concentrate on dense 3-D point cloud maps
compression.
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