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Abstract—Moving-obstacle segmentation is an essential capa-
bility for autonomous driving. For example, it can serve as a
fundamental component for motion planning in dynamic traffic
environments. Most of the current 3-D Lidar-based methods use
road segmentation to find obstacles, and then employ ego-motion
compensation to distinguish the static or moving states of the
obstacles. However, when there is a slope on a road, the widely-
used flat-road assumption for road segmentation may be violated.
Moreover, due to the signal attenuation, GPS-based ego-motion
compensation is often unreliable in urban environments. To provide
a solution to these issues, this letter proposes an end-to-end sparse
tensor-based deep neural network for moving-obstacle segmenta-
tion without using GPS or the planar-road assumption. The input
to our network are merely two consecutive (previous and current)
point clouds, and the output is directly the point-wise mask for
moving obstacles on the current frame. We train and evaluate our
network on the public nuScenes dataset. The experimental results
confirm the effectiveness of our network and the superiority over
the baselines.

Index Terms—3-D Lidar, autonomous driving, end-to-end,
moving obstacle, point cloud, sparse tensor.

I. INTRODUCTION

IN DYNAMIC traffic environments, especially in urban cities,
moving obstacles, such as walking pedestrians and moving

vehicles, are usually everywhere and unavoidable. On-line seg-
mentation of moving obstacles in 3-D is an essential capability
for autonomous driving. For example, it can be integrated with
trajectory planning to find collision-free trajectories on-line
when other road users bypass the ego-vehicle [1]. Moreover,
it can also be used to improve simultaneous localization and
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mapping (SLAM) in dynamic traffic environments. Virtually
all the current SLAM systems are built on the static-world
assumption, moving objects could disturb the data associations
in SLAM, and hence degrade the performance. Removing mov-
ing objects with motion segmentation has been validated as an
effective solution to address this problem [2]–[5].

Most of the current 3-D Lidar-based moving-obstacle seg-
mentation methods generally contain two steps [6]–[8]. The first
step is to find obstacles, which is usually based on road segmen-
tation, since it is intuitive to assume that the objects standing
upright from the ground are obstacles. The second step is to
distinguish whether an obstacle is moving or static. Note that we
only consider on-line distinguishing here, which means that only
the sensor measurements on or before the current time are used.
This is important for causal systems (e.g., robots and self-driving
cars), because it is often difficult to use future information for
current decisions. Note that background subtraction methods can
also detect motions on-line [9]. However, they are developed to
work on static platforms (e.g., for video surveillance), while this
work targets on moving platforms.

For the first step, based on the flat-road assumption, many
methods use plane fitting algorithms to segment a road. However,
the real road environments may be complex with potholes,
uphill/downhill slopes and undulated surfaces, making these
methods less generalizable. For the second step, most methods
distinguish static or moving states using ego-motion compensa-
tion. Considering that if an ego-vehicle is static, the differences
between two or more consecutive sensor measurements would
be only caused by object motions. Moving objects could be
easily identified through frame differencing with correct object
correspondences (object tracking). However, if the ego-vehicle
is moving, the differences would be caused by both the ego-
vehicle motion and object motion. Compensating for the motion
of the ego-vehicle allows adjacent frames to be captured as if
from a static platform, so that moving objects can be identified.
In autonomous driving, the motion of the ego-vehicle is usually
obtained from GPS, or obtained from SLAM algorithms with
camera, IMU, Lidar or sensor fusion. However, due to signal
attenuation and multipath effects, the GPS performance may
be degraded in urban environments, especially in downtown
areas, and the SLAM performance could be degraded by moving
objects as aforementioned.

The above issues motivate us to propose a deep-learning
solution for 3-D moving-obstacle segmentation. So in this letter,

2377-3766 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 26,2021 at 03:58:55 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-7704-0559
https://orcid.org/0000-0001-7251-0841
https://orcid.org/0000-0002-8754-972X
https://orcid.org/0000-0002-9759-2991
https://orcid.org/0000-0002-4500-238X
mailto:yx.sun@polyu.edu.hk, ignorespaces sun.yuxiang@outlook.com
mailto:zuoweixun@gmail.com
mailto:hhuangat@connect.ust.hk
mailto:pcaiaa@connect.ust.hk
mailto:eelium@ust.hk


SUN et al.: POINTMOSEG: SPARSE TENSOR-BASED END-TO-END MOVING-OBSTACLE SEGMENTATION 511

we develop an end-to-end point-cloud segmentation network,
named PointMoSeg, to point-wisely label moving obstacles in
3-D point clouds. The input to our network are two consecutive
point clouds (previous and current) from a 3-D Lidar, and the
output is the point-wise moving-obstacle mask for the current
frame. As we only use the sensor measurements on or before the
current time during inference, our method is on-line.

Different from previous works, our method does not need road
segmentation or ego-motion compensation, thereby alleviating
the previous issues from the flat-road assumption and ego-
motion estimation (e.g., the GPS issue). Note that although the
road segmentation in previous works can be replaced with recent
deep learning-based methods [10], which could also alleviate the
flat-road assumption, the methods adopting the two-step pipeline
could be bounded by the accuracy of the intermediate step of
road segmentation. For example, misclassification of obstacles
as part of the road could finally reduce the moving-obstacle
segmentation accuracy, while our end-to-end paradigm could
avoid such error propagation. To the best of our knowledge, this
is the first end-to-end solution that segments moving obstacles
on-line solely using 3-D point-cloud data information.

As 3-D Lidar point clouds are unstructured, they cannot be
directly processed by convolutional neural networks (CNNs)
that are designed for grid-like data, such as images or voxel grids.
So one type of methods does not use CNNs, like PointNet [11],
which processes point clouds mainly using fully-connected lay-
ers. To use CNNs, an intuitive idea is to impose structures on
point clouds, such as projecting point clouds into front-view
or bird-eye-view 2-D images. However, this could lead to the
3-D spatial information lost. Another idea is to voxelize point
clouds into 3-D voxel grids, and then apply 3-D CNNs on the
grids. As this method takes all the voxels including empty values
into computation, it suffers from high-memory consumption
and slow-speed computation. To alleviate this issue, sparse
convolution based on sparse tensors [12] is proposed by taking
the sparsity of voxel grids into consideration. Compared to 3-D
CNNs, the sparse convolution is more efficient because sparse
tensors are more compact and the convolutional output is only
computed on pre-defined coordinates. In this letter, we build
our network using the sparse convolution [13] based on sparse
tensor. The contributions are summarized as follows:

1) We propose a novel sparse tensor-based moving-obstacle
segmentation network merely using two frames of con-
secutive point clouds.

2) We develop a novel temporal module and a spatial module
in our network to infer moving obstacles from the two-
frame sequential information.

II. RELATED WORK

A. Semantic Segmentation

Semantic segmentation aims to densely label each pixel or
voxel/point in an image or point cloud into individual categories.
Shelhamer et al. [14] proposed the first end-to-end image seman-
tic segmentation network, Fully Convolutional Networks (FCN),
by replacing the fully connected layers in image classification
networks with convolution layers. Badrinarayanan et al. [15]
proposed SegNet, in which the Encoder-Decoder architecture
was firstly introduced. Chen et al. [16] developed Deeplab v3+,
in which an atrous spatial pyramid pooling (ASPP) module

was designed to capture the contextual information at multiple
scales. For semantic point-cloud segmentation, Aijazi et al. [17]
proposed a traditional pipeline that first clusters voxels into
different objects, then semantically labels each object according
to their properties. Wu et al. [18] proposed a deep learning-based
method. They projected point clouds into range images, and
then used CNN to segment the range images to get point-wise
segmentation results. There also exist many object-detection
networks, such as [19]–[21], from which the point-cloud pro-
cessing methods and encoders can be borrowed for semantic
segmentation.

B. 3-D Obstacle Segmentation

Many previous 3-D Lidar-based methods were proposed un-
der the flat-road assumption. For example, the distance between
two consecutive laser rings should be around a fixed value for
a flat road. Based on this observation, Hata et al. [22] detected
obstacles by thresholding the distance value. Asvadi et al. [6]
represented the 3-D world in 2.5-D grids, and distinguished the
ground and obstacles by thresholding the elevation variances of
the 2.5-D grids. Since the assumption of flat roads is difficult
to generalize to uneven roads, Asvadi et al. [7] alleviated this
assumption by assuming that roads are piecewise planar, and
used a plane fitting algorithm based on RANSAC to detect
small road patches. Deep learning-based methods have become
popular recently. They do not rely on the flat-road assumption.
For example, Caltagirone et al. [10] projected a 3-D point cloud
onto a front-view image, and then applied the upsampling pro-
cedure to produce a dense depth image. They developed a road
segmentation network by cross-fusing the front-view image and
the dense depth image. Yang et al. [23] designed a multi-view
and multi-modal road segmentation network by taking as input
the front-view image and Lidar depth image.

C. On-Line Distinguishing Static or Moving States

As aforementioned, ego-motion compensation was usually
adopted for distinguishing moving/static states on-line. It can be
generally divided into two categories: frame-to-map and frame-
to-frame. For the first category, Azim et al. [24] built local maps
by accumulating Lidar scans based on a sensor fusion-based
odometry algorithm. They performed ego-motion compensation
by registering a new scan to the local map. So moving objects
could be detected from the inconsistencies between the new scan
and the local map. With the similar idea, Asvadi et al. [7] built lo-
cal maps in voxel grids using GPS and the iterative closest point
(ICP) algorithm, then registered a new scan to the local map.
Instead of on-line building local maps, Kiran et al. [8] registered
a new scan to a pre-built map to perform the ego-motion com-
pensation. For the second category, Sun et al. [4] compensated
the camera ego-motion by warping the last frame to the current
frame using the estimated 2-D homography, and then subtracted
the warped frame with the current frame to find moving objects.
There also exist some deep learning-based methods. Dewan et
al. [25] used a semantic segmentation network to classify points
to non-movable or movable, then used a Bayesian filter together
with ego-motion to further infer the moving objects. Siam et
al. [26] developed an end-to-end moving-object segmentation
network by taking as input the current front-view image and an
optical flow map.
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Fig. 1. Overall architecture of our network. The four blue rectangles constitute the encoder. The three green rectangles constitute the decoder. The kernel size, the
numbers of input and output channels of the sparse convolutional and transposed convolutional layers (excluding the residual blocks) are respectively displayed on
the rectangles. For the sparse convolutional layers in the residual blocks, the kernel size is 3× 3× 3, and the number of input channels is equal to that of the output
channels. The orange rectangle represents the output layer, in which the two sparse convolutional layers share the same kernel size 1× 1× 1. C0, F0 and C1,
F1 are the coordinate matrices and associated feature matrices for the two sparse tensors. N0 and N1 in the matrices represent the numbers of points after sparse
quantization. Temp, Spatial, Conv, TransConv, BN, Res and Context represent the temporal module, the spatial module, convolution, transposed convolution, batch
normalization, residual block and context block, respectively. The structure for the residual block can be found in Fig. 2. The red and green colors in the output
represent moving vehicles and moving pedestrians, respectively. The figure is best viewed in color.

III. PROPOSED APPROACH

A. Sparse Tensor and Sparse Convolution

As we use the sparse tensor-based point-cloud processing
method, our first task is to convert input point clouds into sparse
tensors. A sparse tensor consists of a voxel coordinate matrix
C and an associated feature matrix F (the sparse point cloud).
The first step is to get C, which is realized by voxelizing a point
cloud with a pre-defined voxel size. The second step is to find
F , which is realized by removing redundant points in a same
voxel (one voxel can only contain one point):

C =

⎡
⎢⎣
b1 c1x c1y c1z
...

...
...

...
bN cNx cNy cNz

⎤
⎥⎦ , F =

⎡
⎢⎣
f1
x f1

y f1
z

...
...

...
fN
x fN

y fN
z

⎤
⎥⎦ , (1)

where bi is the batch index for point i, {cix, ciy, ciz} ∈ Z3 is the
voxel-quantized integer-type coordinate, {f i

x, f
i
y, f

i
z} ∈ R3 is

the float-type coordinate generated by a 3-D Lidar, i ∈ [1, N ],
N is the number of points after quantization, which is determined
by the voxel size, N ≤ No, where No is the original number of
points before quantization.

The sparse convolution [13] takes as input a sparse tensor
and also outputs a sparse tensor. Specifically, it first generates
the coordinate matrix C out for the output sparse tensor from
the given input coordinate matrix (details are described in [13]).
Then, it calculates the feature vector f out

c for an output coordinate
c with the formula:

f out
c =

∑
s∈N (c,K)

Wsf
in
c+s, f out

c ∈ F out, c ∈ C out, (2)

where s represents the offset to find the corresponding input
coordinates, they are within the c-centred neighbourhood cov-
ered by the kernel size K, which is denoted as N (c,K), f in

c+s

represents the input feature vector at the input coordinate c+ s,
Ws represents the coefficient, which is to be learned through the
training process. With the coordinate matrix C out and feature
matrix F out, the output sparse tensor can be produced. Note that
in the following text the feature matrix is also called feature
vectors. The dimension of feature vectors is 3 for input sparse
tensors, and changes with the convolutional operations.

B. Network Overview

Fig. 1 shows the overall architecture of our proposed sparse
tensor-based network PointMoSeg. As we can see, we first
convert the previous and current point clouds into sparse tensors.
Then, we feed the sparse tensors into PointMoSeg to find the
point-wise mask for moving obstacles on the current frame. The
network mainly consists of an encoder, a temporal module, a
spatial module, a decoder and an output layer. All of them are
built with the sparse convolution [13]. The Encoder-Decoder
architecture has been proven successful in CNN-based semantic
segmentation. We adapt the encoder and decoder from Re-
sUNet [27] into our network. The encoder is designed to extract
features from the sparse tensors. During the encoding process,
the number of feature vectors is gradually reduced, and the
number of channels (dimension) is gradually increased. The
shared memory in Fig. 1 means that we only have one encoder,
which is shared by the two frames. The decoder is designed to
reduce the number of channels and restore the number of feature
vectors. After the output layer, the shape of the feature vector
is N1 × 3, in which 3 means three classes: static background,
moving vehicle and moving pedestrian. We finally convert the
output sparse tensor to normal dense tensor by extracting the
feature matrix F from the sparse tensor.

Between the encoder and decoder, we develop a temporal
module and a spatial module. The former is designed to infer
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Fig. 2. Architectures for the proposed temporal and spatial modules. The
inputs to the temporal module are the current (upper) and previous (lower)
feature vectors. The dash line means passing the coordinate key and manager
to construct the sparse tensor. S.T. represents sparse tensor. MAX means the
maximum operation. The dash box shows the structure of the residual block.
In the temporal module, the kernel sizes of the two sparse convolutional layers
in the embedding block are set to 7× 7× 7 and 3× 3× 3, respectively. The
temporal head is a 1-D normal dense convolutional layer, in which the kernel size
is set to 3. The input and output channels for all the three convolutional layers is
256. In the spatial module, the kernel size for the first sparse convolutional layer
is 3× 3× 3, and the number of the input and output channels are both 512. The
figure is best viewed in color.

the temporal information from the two frames and hence extract
the features of moving obstacles. The latter is designed to restore
the spatial information of the moving obstacles.

C. Temporal and Spatial Module

Fig. 2 shows the architectures for our temporal and spatial
modules. In the temporal module, the sparse tensors from the
current and previous frames are first fed into an embedding block
to generate embedding vectors. The embedding block sequen-
tially consists of two Conv-BN-ReLu blocks, which are shared by
the two frames. Secondly, the embedding vectors are converted
to normal dense tensors. They are with the shape of M0 × CH
and M1 × CH , where M0 and M1 are the numbers of the
embedding vectors,CH is the number of channels. In this work,
CH = 256. Generally, there exists M0 �= M1 because the num-
bers of points for the two frames are different. We concatenate
the two embedding vectors at the first dimension, so the concate-
nated embedding vector has the shape of (M0 +M1)× CH .
It is then sent to a temporal head (i.e., one-layer 1-D normal
dense convolution) to compare the two vectors to produce the
temporal feature. Thirdly, we apply the maximum operation on
the first dimension of the temporal feature to extract the most
prominent features in each channel. The prominent feature is
with the shape of 1× CH . Finally, we repeat the prominent
feature to the shape of the current embedding vectorsM1 × CH ,
and concatenate the current embedding vectors with the repeated
prominent feature at the second dimension, so the final output is
with the shape of M1 × 2CH . The output is converted to sparse
tensor using the coordinate key and manager from the current
embedding vector.

The output of the temporal module is fed into the spatial
module, which sequentially consists of a Conv-BN-Res-ReLu
block and a context block. We borrow the ASPP module (with the
global average pooling branch removed) from Deeplab v3+ [28]
as the context block and implement it using sparse convolution.
The context block is expected to capture the context information
of moving obstacles at multiple scales. It mainly consists of
four parallel branches. Each branch consists of a Conv-BN-ReLu
block. The dilation rates for the sparse convolutional layers in

the four branches are set to 1, 6, 12, 18, respectively. We refer
readers to [28] for more details.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Dataset

We use the nuScene dataset [29] in this work, because it
provides hand-labelled ground-truth of 3-D bounding boxes for
moving obstacles (i.e., moving vehicle and moving pedestrian)
in traffic environments. We derive our point-wise mask from the
bounding boxes. Various sensors have been used to record the
nuScene dataset, including one 32-beam mechanical spinning
Lidar, 6×cameras, 5×radars and 1×IMU. In the dataset, a
total of 1000 driving sequences were recorded in Boston and
Singapore, where dense traffic and challenging driving situations
are common. Each sequence lasts around 20 seconds. Ground
truth is annotated at 2 Hz, so there are around 40 frames with
ground truth in each sequence. Among the 1000 sequences, 850
sequences are publicly provided with ground truth. We randomly
split the 850 sequences into train (425 sequences), validation
(213 sequences) and testing (212 sequences), which account for
around 50.00%, 25.06% and 24.94%. Note that we use an entire
sequence for training, validation and testing. In other words, all
the Lidar point clouds in a same sequence are used either for
training or validation or testing. So the point clouds used for
validation and testing are ensured not from the training set.

B. Training Details

We implement our PointMoSeg using PyTorch with the
MinkowskiEngine sparse-tensor library (v0.4) [13], and train
the network using the stochastic gradient descent optimizer. The
initial learning rate, momentum and weight decay are set to
0.01, 0.9, and 0.001, respectively. The learning rate is exponen-
tially decayed during training. The network is trained until the
validation loss converges. The input sequences for training are
randomly shuffled before each epoch. As we perform the shuffle
operation on a whole set of two consecutive frames, the order of
the two frames are ensured not being influenced.

For the loss functions, we adopt the cross entropy loss Lce

that is widely used in semantic segmentation for our point-wise
segmentation. Since the number of points for the background
and foreground are imbalanced (i.e., 98.03% for background,
1.83% for moving vehicle, 0.14% for moving pedestrian), we
use the dice loss Ldice to tackle the imbalance problem [30]. So
the total loss is:

L = Lce + Ldice. (3)

For the dice loss, we employ the multi-class dice loss implemen-
tation from PyTorch Toolbelt [31].

C. Parameter Tuning

As aforementioned, we need to voxelize a point cloud to
get a sparse tensor. The voxel size is a key parameter in the
voxelization, which influences the granularity of a sparse ten-
sor, and then influences the efficiency and performance of a
network. A smaller voxel size is expected to provide better
performance, but the efficiency would be reduced. We train and
test our network with the voxel sizes of 0.1 m, 0.3 m, 0.5 m,
0.7 m and 0.9 m. The widely-used per-class accuracy (Acc) and
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Fig. 3. Results for different voxel sizes. We use both the cross entropy loss
and dice loss for all the experiments. We can see that the performance decreases
as the voxel size increases. The figure is best viewed in color.

TABLE I
THE INFERENCE TIME FOR DIFFERENT VOXEL SIZES. MS MEANS MILLISECOND

TABLE II
THE EXPERIMENTAL RESULTS USING DIFFERENT LOSS FUNCTIONS. BEST

RESULTS ARE HIGHLIGHTED IN BOLD FONT

intersection-over-union (IoU) metrics [32] are employed in this
work to measure the segmentation performance. A larger value
corresponds to better performance for both metrics. Fig. 3 and
Table I display the segmentation results and the inference time
tested on an NVIDIA RTX 2080 Ti card, respectively. We can see
that, as the voxel size increases, the segmentation performance
is degraded but the efficiency is increased, which is expected.
By pair-wisely comparing the results from 0.1 m to 0.3 m, as
well as those from 0.3 m to 0.5 m, we find that the performance
degradation of the former is less than that of the latter. Since the
training time cost for 0.1 m is much longer than that for 0.3 m, to
trade-off the performance and efficiency, we use the voxel size
of 0.3 m in the following experiments.

D. Loss Function Analysis

As aforementioned, we have two loss functions, one is the
cross entropy loss Lce, and the other is the dice loss Ldice. We
respectively train our network using only Lce, only Ldice, and
both of them. The results are displayed in Table II. As we can
see, using both the two loss functions generally gives the best
performance, which shows that combining the two loss functions
is a benefit here. So in the following experiments, we use both
the two loss functions. Comparing the results of using only
Lce and only Ldice, we find that using only Ldice gives better
performance, especially for the IoU of the moving-pedestrian
class. This demonstrates that using dice loss can effectively boost
the performance for the class with very few points, and the dice
loss is a useful solution to tackle the imbalance problem.

TABLE III
THE EXPERIMENTAL RESULTS FOR THE ABLATION STUDY. BEST RESULTS

ARE HIGHLIGHTED IN BOLD FONT

E. Ablation Study

In this section, we compare our network with several variants
to check whether the proposed temporal and spatial modules are
beneficial to our network. The descriptions for the variants are
listed as follows:
� No-Temporal: This variant has no the temporal module.

The feature vectors from the encoder are simply concate-
nated at the first dimension, and then fed to the spatial
module.

� No-Spatial: This variant has no the spatial module. The
output from the temporal module is directly fed into the
decoder.

� No-TempSpat: Based on the No-Temporal variant, this
variant also deletes the spatial module. It can be seen as a
combination of the above two variants.

The experimental results are displayed in Table III. Com-
paring the No-TempSpat results with ours, we find that our
network is significantly better than No-TempSpat. In addition,
the No-TempSpat variant generally presents the worst results
among all the variants, especially for the moving-vehicle class.
This shows that the proposed temporal and spatial modules are
effective and beneficial to our network. We also find that the
results of No-Temporal and No-Spatial are similar to each other,
and none of them could give close results to ours. This indicates
that only using one module is not enough. Combining the two
modules together is necessary here.

To validate the effectiveness of our design for the temporal
and spatial modules, we also create several variants:
� One-CBR: This variant modifies the embedding block in

the temporal module to contain only one Conv-BN-ReLu
block.

� Minimum: This variant replaces the maximum operation
in the temporal module with the minimum operation.

� Only-Context: This variants deletes the Conv-BN-Res-
ReLu block in the spatial module. So the spatial module
only contains the context block.

� No-Context: This variants deletes the context block in the
spatial module. So the spatial module only contains the
Conv-BN-Res-ReLu block.

As we can see from Table III, our network generally presents
the best performance among all the variants, which confirms the
effectiveness of our design for the two modules. Comparing the
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Minimum results with ours, we find that using the minimum
operation causes performance degradation. So using the maxi-
mum operation would be more suitable to extract the prominent
features here, especially for the moving-pedestrian class. For
the One-CBR variant, we believe that its inferior performance
is due to the insufficient embedding features, because there is
only one Conv-BN-ReLu block in the embedding block of the
temporal module. Comparing the results of Only-Context and
No-Context, we believe that the context module plays a more
important role in the spatial block, because the Only-Context
generally presents better performance than No-Context.

F. Comparative Study

1) Baseline Methods: We create three baseline methods for
the comparative study. The first two baselines are modified from
our network, and the third one is built on PointNet [11]:
� Two-Enc Baseline: This baseline does not share the mem-

ory for the encoder in our network. In other words, the
baseline has two identical encoders for the two consecutive
point clouds. We name this baseline as Two-Enc, where Enc
is the abbreviation for Encoder.

� No-Seq Baseline: This baseline does not take as input the
point-cloud sequence (i.e., the two consecutive frames). It
takes as input only the current frame, so there is no temporal
information, and hence we remove the temporal module in
our network. The features from the encoder are directly fed
into the spatial module. We name this baseline as No-Seq,
where Seq is the abbreviation for sequence.

� PointNet Baseline: This baseline is built on the Point-
Net re-implemented with the Minkowski sparse-tensor li-
brary [13], in which the fully-connected layers in PointNet
are realized using 1× 1× 1 sparse convolutions since
there is no implementation for fully-connected layer in the
library. Note that a convolution with kernel size of 1 is
equivalent to fully connection [33]. We choose PointNet
to build a baseline, because it is a typical point-cloud
processing method that does not use CNNs. So this can be
a representative contrast to our method. The architecture of
the baseline is shown in Fig. 4. Similar to our method, the
input point clouds are first converted to sparse tensors, and
then the PointNet (with the last layer removed) is employed
to extract features and generate predictions. The weights of
the PointNet are shared between the two frames. To ensure
fair comparison, we also integrate the proposed temporal
and spatial modules in this baseline. At the end of the
baseline, we employ a 1× 1× 1 sparse convolutional layer
to output the segmentation results. Since we have three
classes and the prediction is made on the current frame,
the output shape is N1 × 3.

We have also tried using 3-D CNN to realize our network, but
it is not feasible. As 3-D CNN requires grid-like input data,
the Lidar scan must be cropped. For example, cropping the
x and y directions within −60 m ∼ 60 m and the z direction
within −2 m ∼ 4 m leads to 400× 400× 20 voxel grids given
the 0.3 m voxel size. However, feeding such voxel grids into
the 3-D CNN-based network causes the out of memory error
(our GPU card has only 11 GB memory), thus making the
network unable to train. Even we reduce the size of voxel grids,

Fig. 4. Architecture for the PointNet baseline. To keep the figure concise,
the process of converting input point clouds to sparse tensors is omitted. The
yellow and green rectangles represent the sparse tensor and normal dense tensor,
respectively. The shapes of them are indicated on the rectangles. N0 and N1

represent the number of points after sparse quantization for the two consecutive
point clouds. The weight of PointNet is shared between the two frames. Temp
and Spatial mean the proposed temporal and spatial modules, respectively. The
figure is best viewed in color.

TABLE IV
THE QUANTITATIVE COMPARATIVE RESULTS WITH THE BASELINES. BEST

RESULTS ARE HIGHLIGHTED IN BOLD FONT

the training process costs much longer time than using sparse
convolution, making it not feasible in practice. Moreover, the
cropping operation may lose useful information. Compared to
3-D CNN, sparse convolution does not require grid-like data, so
it could well utilize the sensory information without cropping. In
addition, the computing efficiency is much higher, and the GPU
memory cost is much lower, making the sparse convolution a
promising solution for point-cloud processing.

2) Quantitative Results: The quantitative results for the com-
parison are shown in Table IV. As we can see, our network
outperforms the three baselines in terms of both the Acc and
IoU metrics. We find that the PointNet baseline gives the worst
performance, especially for the moving vehicle, which is signif-
icantly lower than the other methods. Comparing the Two-Enc
baseline results with ours, we find that using shared memory for
the encoder can provide better performance. The reason could
be that the use of shared memory actually trains the encoder
almost twice in each iteration, because there is usually a lot of
overlap between two consecutive frames. More training leads
to better features, and hence better performance. Comparing the
No-Seq baseline to the Two-Enc baseline and our network, we
find that the No-Seq baseline gives the worst performance. This
is to be expected, because it is difficult to infer whether an object
is moving or not with just one observation. In such a case, the
No-Seq baseline simply treats our task as semantic point-cloud
segmentation. Table IV also displays the inference time for each
method tested on an NVIDIA RTX 2080 Ti card with the voxel
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Fig. 5. Sample comparative demonstrations. The figures from the top row to the bottom row are front-view RGB images, ground truths, our PointMoSeg results,
the No-Seq baseline results, the Two-Enc baseline results, the PointNet baseline results. Please zoom in for details. Note that the front-view RGB images are just
for visualization. They are not used as input for the networks. The red and green colors in the results denote moving vehicle and moving pedestrian, respectively.
The cyan boxes are just used for highlighting. The figure is best viewed in color.

size of 0.3 m. The No-Seq baseline achieves the fastest speed.
This is because it deals with only one point-cloud frame at each
inference, while the others deal with two frames. The time cost
for the Two-Enc baseline is close to ours. This is because they
both run the same encoder two times at each inference.

We also compare our method with the previous traditional
method proposed by Asvadi et al. [7], which is also the most
close work to ours. As [7] only provides binary segmentation
results (i.e., static background and moving obstacle), we map
the two moving classes to the one moving-obstacle class to
generate the binary results for our network. In addition, as [7]
uses ego-motion compensation to discriminate the motion states
of obstacles, we feed the ground-truth Lidar pose provided
by nuScenes to [7] as the ego-motion. Moreover, since [7]
requires voxel grids as input, we crop the point cloud into the
400× 400× 20voxel grids with the voxel size of 0.3 m. We have
also verified through a few experiments that increasing the size
of the voxel grids could not further increase the performance, so
we finally choose 400× 400× 20 with a consideration on the
running speed. We test the speed for [7] on a PC with a 3.60 GHz
Intel i7-7820X CPU. Table V displays the comparative results.

TABLE V
THE QUANTITATIVE COMPARATIVE RESULTS WITH THE CLOSE-RELATED

WORK [7]. BEST RESULTS ARE HIGHLIGHTED IN BOLD FONT

As we can see, our method significantly outperforms [7] in terms
of both the accuracy and inference speed, which demonstrates
the powerful capability of deep learning. Moreover, we find that
good ego-motion could not ensure good results for the traditional
method. The performance may also be subject to the ego-motion
compensation strategy, road segmentation accuracy and data
association algorithm (object tracking), etc.

3) Qualitative Demonstrations: Fig. 5 demonstrates sample
comparative results. As we can see, our PointMoSeg generally
gives the best results among all the methods. Specifically, in
the first column, the Two-Enc baseline and PointNet baseline
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totally fail to detect the walking pedestrians highlighted in the
box. The No-Seq baseline produces ambiguous decisions. But
our network gives correct and acceptable results. The second
column shows a rainy daytime environment. We can see that the
lens of the RGB camera is blurred. The truck in the box is waiting
for the traffic light to go. The No-Seq baseline and Two-Enc
baseline wrongly classify the truck as moving. Although the
PointNet baseline correctly classifies it as static, it misses the
moving vehicle on the left of the truck. The third column shows
a nightime environment. We can see that, except our network,
all the baselines fail to detect the on-coming moving vehicle.
Moreover, the PointNet baseline also incorrectly labels the static
vehicles behind the ego-vehicle as moving. The last column
shows a rainy nightime environment. Severe glares caused by
raindrops appear on the RGB image. Except our network, we can
see that all the baselines fail to detect the front moving vehicle.
Moreover, the PointNet baseline also wrongly labels the moving
vehicle behind the ego-vehicle as static.

V. CONCLUSION

We proposed here a novel end-to-end solution for moving-
obstacle segmentation. We solely use point-cloud information,
no intermediate steps such as road segmentation and ego-motion
compensation are needed, so limitations from previous meth-
ods could be alleviated. We adopted the sparse tensor-based
point-cloud processing method, and built our network using the
Minkowski sparse convolutional networks. Our network takes
as input only two consecutive point clouds, and directly outputs
the point-wise mask for the current frame. We train and test our
network on the public nuScenes dataset. The ablation study and
comparative experimental results demonstrate the effectiveness
of our design and the superiority over the baselines. However,
our network costs around 126 ms for each inference on an
NVIDIA RTX 2080 Ti card with the voxel size of 0.3 m, making
it not suitable for real-time applications. We consider this as a
major limitation. In the future, we would use model pruning
techniques to improve the efficiency.
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