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In Defense of Knowledge Distillation for Task Incremental Learning
and its Application in 3D Object Detection

Peng YUN1 Yuxuan LIU1 and Ming LIU1

Abstract—Making robots learn skills incrementally is an effi-
cient way to design real intelligent agents. To achieve this, re-
searchers adopt knowledge distillation to transfer old-task knowl-
edge from old models to new ones. However, when the length
of the task sequence increases, the effectiveness of knowledge
distillation to prevent models from forgetting old-task knowledge
degrades, which we call the long-sequence effectiveness degrada-
tion (LED) problem. In this paper, we analyze the LED problem
in the task-incremental-learning setting, and attribute it to the
inevitable data distribution differences among tasks. To address
this problem, we propose to correct the knowledge distillation
for task incremental learning with a Bayesian approach. It addi-
tionally maximizes the posterior probability related to the data
distributions of all seen tasks. To demonstrate its effectiveness,
we further apply our proposed corrected knowledge distillation
to 3D object detection. The comparison between the results of
increment-at-once and increment-in-sequence experiments shows
that our proposed method solves the LED problem. Besides, it
reaches the upper-bound performance in the task-incremental-
learning experiments on the KITTI dataset. The code and supple-
mentary materials are available at https://sites.google.com/view/c-
kd/.

Index Terms—Probability and Statistical Methods; Incremen-
tal Learning; Computer Vision for Transportation.

I. INTRODUCTION

LEARNING skills on top of previous knowledge is a
marked feature of intelligent agents. When human be-

ings acquire new knowledge, old skills get preserved, which
intensifies our adapting ability to survive in the changing
world. Robots run in the same changing world where the
data distributions exhibit the long-tail property (Figure 1 (a))
[1]. The massive edge-case data points, lying at the tail of
the data distribution, are always unexpected in advance. Take
autonomous driving as an instance. Researchers have access
to common data in driving scenes through public datasets, but
must spend huge effort to enumerate and collect edge-case
data points, like different types of trucks and various animals.
Many tragic autonomous car accidents can be attributed to
unexpected edge cases.

Designing optimal incremental learning algorithms to make
robots learn skills incrementally is challenging. It has been
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Fig. 1: (a) Histogram of a long-tail distribution. (b) Perfor-
mance curve of task-0 when the length of the task sequence
increases. The fine-tune curve illustrates the catastrophic
forgetting. The KD curve illustrates the LED problem of
knowledge distillation. (c) Our proposed method solves the
LED problem with a Bayesian approach by adding constraints
between the new task and all seen tasks.

recently proved that the optimal incremental learning al-
gorithm is theoretically NP-HARD and requires the perfect
memory condition [2]. Researchers have made efforts to pre-
vent parametric models from forgetting old knowledge when
learning new tasks, i.e., to overcome catastrophic forgetting.
Knowledge distillation [3] is one of the methods to prevent
parametric models from the catastrophic forgetting. By adding
a regularization penalty, it transfers the knowledge from the
old model to the new model recursively. It has shown great
success in the image classification [4], [5] and image-based
2D object detection tasks [6]–[8].

Knowledge distillation takes effect in reducing forgetting,
however, transferring knowledge in the recursion way accumu-
lates to build-up errors. When the length of the task sequence
increases, the effectiveness of knowledge distillation drops
significantly (Figure 1 (b)), which we call the long-sequence
effectiveness degradation (LED) problem. Since the unex-
pected data haunts and frequently appears, researchers have
to improve the models on hand repeatedly. In consequence,
the LED problem hinders the practical usage of knowledge
distillation in incremental learning.

In this paper, we aim to solve the LED problem of knowl-
edge distillation for task incremental learning (TIL), which
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is the incremental learning scenario to overcome the long-tail
distributions in the real world. We first analyze the reason for
LED problem and attribute it to the inevitable data distribution
differences in TIL. To address this problem, we propose
to correct knowledge distillation for TIL with a Bayesian
approach. Compared with the original knowledge distillation,
our proposed method additionally maximizes the posterior
probability related to the data distribution of all seen tasks
(Figure 1 (c)). Finally, we demonstrate the effectiveness of the
proposed corrected knowledge distillation with an application
of 3D object detection. We consider two incremental learning
settings: incrementing tasks at once and incrementing tasks in
sequence. The experimental results demonstrate the manifes-
tation of LED problem and the effectiveness of our proposed
method.

II. RELATED WORK

In this section, we first review the regularization-based
incremental learning methods and describe the relationship
between our proposed method and the existing works, and then
review the literature of LiDAR-based 3D object detection.

A. Regularization-based incremental learning

The regularization-based methods alleviate old-task forget-
ting by adding regularization terms in the objective function.
Researchers resolve the catastrophic forgetting with this idea in
two general ways: knowledge distillation and reserving priors.

a) Knowledge distillation: Knowledge-distillation-based
methods [4]–[8] retain the knowledge of previous tasks by
restricting the conditional distribution computed with the up-
dated parameters p(Ŷ|X ,θ) close to that computed with the
optimal parameter of previous tasks p(Ŷ|X ,θ0). A regular-
ization term, proportional to the distance between these two
conditional distributions, is added to the original loss function.

In classification, the distance is commonly measured by the
Kullback-Leibler (KL) divergence [4], [5]. It can be seamlessly
extended from classification to regression tasks by replacing
the KL divergence with a smoothed-L1-norm or L2-norm.
Shmelkov et al. [6] first proposed an incremental learning
object detector, called ILOD, and extended the knowledge
distillation to the image-based 2D object detection problem. In
recent years, there are follow-up works of ILOD [6], including
RILOD [7] and Faster-ILOD [8].

Rannen et al. [5] first reported the shortcomings of the
knowledge-distillation-based incremental learning methods,
and designed EBLL to deal with the data distribution dif-
ferences for image classification tasks. They proposed to
project features on a low dimensional manifold with an under-
complete auto-encoder and impeded the new feature devi-
ating from previous task optimal ones. However, it requires
additional computation in auto-encoder training and needs to
collect low-dimensional features in each optimization step. In
contrast, we deal with the inevitable data distribution differ-
ences in TIL from a probability perspective by maximizing
the posterior probability related to the data distributions of all
seen tasks. Our proposed method does not cause an additional
computational burden when learning new tasks.

b) Reserving priors: Kirkpatrick et al. [9] formulated
the statistical risk in incremental learning with the posterior
probability p(θ|D) to find the most probable weights given the
data D = DA ∪ DB , where DA and DB denote old-task data
and new-task data respectively. They optimized the parameters
θ by maximizing the logarithm posterior probability:

log p(θ|D) = log p(DB |θ) + log p(θ|DA)− log p(DB |DA),
(1)

where the term log p(θ|DA) was modeled with Laplacian
approximation with the mean given by the optimal parameters
θ∗A and the covariance matrix approximated by a diagonal
Fisher information matrix (FIM). The FIM was computed
and stored right after training the old task and worked as the
prior information of the old tasks. There are multiple follow-
up research on the computation of the weight importance
measurements [10]–[14]. Zenke et al. [10] proposed an online
method for estimating the weight importance. Instead of
computing the FIM in a separate stage after training, they
estimate the importance of each parameter calculated with
gradients and parameter changes when training the neural
network. Aljundi et al. [11] redefined the importance weights
to an unsupervised setting. Instead of calculating the gradients
of the loss function, they adopt the gradients of the squared
L2-Norm of the network output, which can be considered as
a heuristic approximation of the FIM. We adopt the method
of evaluating the posterior probability on the seen task data
distributions in EWC [9] and also consider its alternative MAS
[11] in our experiments.

In recent days, Liu et al. [15] reported that EWC failed in
the image-based 2D object detection problem, and proposed
IncDet to facilitate the use of EWC in incremental 2D object
detection by utilizing pseudo bounding box annotations. Their
proposed pseudo-annotation technique exploits the old-task
optimal model to generate fake labels offline in order to
remedy the lack of old-task class annotations in the new-
task data. However, this is a suboptimal solution for the
parametric models which require online data augmentation,
like randomly translating or rotating objects in LiDAR-based
3D object detection. The incorrect pseudo annotations induce
a mass of noise in the training process. We compare our
proposed method with IncDet [15] in Section V.

B. LiDAR-based 3D object detection

The geometry information captured by LiDARs can be
used for perception, and the accurate spatial information is
helpful for precise 3D object detection. The challenge for
LiDAR-based 3D object detection is that the point clouds
captured from LiDARs suffer from the sparsity and are rep-
resented as unordered vector lists, which is not suitable for
convolution operations. Researchers who intend to percept key
objects from LiDAR scans have to deal with the problem:
How to extract features from point clouds of LiDARs? The
current solution can be categorized into two general cate-
gories: Quantization+Convolution NeuralNetwork (Q+CNN)
based methods, which convert the input point clouds into
convolution-friendly representations and then apply CNNs to
extract features [16]–[23], and PointNet-based methods, which
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directly extract features from the input point clouds based on
PointNet [24] and its variants [25]–[27].

In this paper, we focus on the 3D region proposal networks
(RPNs) within the Q+CNN-based methods. The quantization
process, which converting input point clouds into convolution-
friendly representations, include projecting the point cloud
into bird’s-eye-view images [16]–[19] or voxelizing the point
cloud into a grid [20]–[23]. In quantization, the 3D spatial
information is encoded into bird’s-eye-view images or grids
with hand-crafted features, like point density, distance, occu-
pancy, etc. Li et al. [20] encoded the 3D spatial information of
point clouds into grids by hand-crafted features and proposed
an encoder-decoder network with 3D dense convolutions by
extending a 2D fully convolutional network. Zhou et al. [21]
proposed an end-to-end network for 3D object detection, called
VoxelNet, where the voxel-wise features are learned from raw
point clouds instead of hand-crafted by researchers. After
quantization, high-level features can be extracted with CNNs
and further used for 3D bounding box estimation.

The RPN was first proposed in [28] for image-based 2D
object detection task. In [28], an RPN takes an image as input
and outputs a set of rectangular object proposals, each with
an objectness score. The similar idea of RPN is extended
to LiDAR-based 3D object detection tasks in [18]–[22]. In
3D object detection tasks, the RPN finally estimates a clas-
sification map and a regression map based on a predefined
anchor map. In specific terms, the anchor map contains a set
of anchors locating on each discrete location in the 3D space.
The classification map predicts the semantic class of each
anchor, and the regression map estimates the refined shape
and location of 3D bounding box for each anchor.

In recent years, Yan et al. [22] proposed SECOND based on
VoxelNet [21] and adopted spatially sparse convolution to deal
with the sparsity of point clouds. As a result, the running-time
performance of SECOND was improved by 4× (230 ms to 50
ms per frame). We adopt SECOND as the basic 3D object
detector for the use case in 3D object detection. For more
details about the the network architecture, please refer to the
original paper [22].

III. METHODOLOGY
In this section, we first provide the formal definition of TIL

and then analyze the reason for the LED problem. Based on
the analysis, we further describe our Bayesian approach to
correct knowledge distillation for TIL.

A. Problem definition of TIL
We define the TIL following the definition in [29] and

consider training a parametric model on a sequence of tasks.
Each task task-t consists of a task-specific class set C(t) and
a task-specific data distribution (X (t),Y(t)) ∼ P (t). Different
tasks have different class sets and data distributions, i.e.,
C(i) 6= C(j) and P (i) 6= P (j), if i 6= j. The goal of TIL
is to control the statistical risk of all seen tasks given limited
or no access to data (X (t),Y(t)) from previous tasks t ≤ T :

T∑
t=1

E(X (t),Y(t))∼P (t) [`(ft(X (t),θ),Y(t))], (2)

where ft(·,θ) is the parametric model of task t, ` is the loss
function, and T is the number of tasks seen so far. For the
current task task-T , the statistical risk can be approximated
by the empirical risk:

L(θ, DT ) = 1

NT

NT∑
i=1

`(ft(X (t)
i ,θ),Y(t)

i ), (3)

where the dataset of task-t is sampled from its task-specific
data distribution, {(X (t)

i ,Y(t)
i )} = D(t) ∼ P (t), and NT is

the capacity of D(t).
The major challenge of TIL is that the data is no longer

available for previous tasks when training on new tasks, which
hinders the evaluation of statistical risk for the new parameter
values on previous tasks.

B. Analysis of the LED problem

Knowledge-distillation-based methods prevent parametric
models from forgetting old-task knowledge by restricting the
conditional distribution p(Ŷ|X ,θ) close to p(Ŷ|X ,θ∗1..T −1)
with the objective function:

LKD(θ,θ∗1..T −1, D
T ) = L(θ, DT )

+ λEXT
i ∼DT KL(p(Ŷ|X Ti ,θ)||p(Ŷ|X Ti ,θ

∗
1..T −1)),

(4)

where task-T is the current task, the θ∗1..T −1 is the optimal
parameters of the old tasks, and the KL denotes the Kullback-
Leibler divergence, λ is the weighting factor of the regular-
ization term.

To find the reason for the LED problem, we first consider
a two-task case where the task sequence contains task-A and
task-B. The statistical risk of TIL is

L(θ,DA) + L(θ,DB)

=E(XA,YA)∼PA [`(ft(XA,θ),YA)]

+ E(XB ,YB)∼PB [`(ft(XB ,θ),YB)].
(5)

The objective function of knowledge distillation is

LKD(θ,θ∗A,DB)

=EXB
i ∼DBKL(p(Ŷ|XB

i ,θ)||p(Ŷ|XB
i ,θ

∗
A))

+ E(XB ,YB)∼PB [`(ft(XB ,θ),YB)],
(6)

where we drop the hyperparameter λ for a better comparison.
It requires two conditions to make optimizing equation (6)
equivalent to optimizing equation (5): (1) θ∗A is optimal
for ` conditioned on the data distribution PA; (2) the data
distribution PA is highly related to PB . In practice, when
incrementally training a parametric model on the task-B, we
always start with the parameters having converged on the task-
A, which is good enough for ` conditioned on PA.

The second condition does not hold in TIL. According to the
problem definition of TIL, different tasks have different data
distribution P (i) 6= P (j), and the data distributions can be
significantly different among tasks in practice. The tasks can
be composed of data points sampled from different generative
distributions, as shown in Figure 2 (left). Moreover, data points
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Fig. 2: Top left: an indoor scene from the SUN-RGBD dataset
[30]. Bottom left: an outdoor scene from the KITTI dataset
[31]. Right: histograms of the data points sampled from one
joint generative distribution in a class-biased way. The task-
specific classes are highlighted in red.

of different tasks can also be generated from a joint generative
distribution but with different sampling strategies. This is the
situation where the parametric model progressively learns the
tail classes on a given dataset. To illustrate this point, we
simulate this situation based on the KITTI 3D detection dataset
[31], and plot the histograms of each separate tasks (task-1 to
task-5) and that of the whole dataset (task-1..5) in Figure 2
(right).

The inevitable data distribution differences in TIL make
optimizing the knowledge-distillation loss not equivalent to
optimizing the statistic risk for all seen tasks. It results in
degradation of old-task performance when adding a new task,
and the degradation is relative to the extend of the data dis-
tribution differences between the new task and the previously
seen tasks. Indeed, it has been shown empirically in [5], [32]
that the use of significantly different data distributions leads
to a significant decrease in performance for the knowledge-
distillation-based method LwF [4].

The degradation will be accumulated to build-up errors, so
that it will eventually cause the LED problem when the length
of the task sequence increases. In Figure 3 (a), the intersection
of the low error regions of task-A and task-B denotes the
low error region of TIL. It overlaps with the low error region
of LKD (white circle), but they do not completely coincide.
When applying knowledge distillation to the third task, the low
error region of LKD will drift towards the task-C (Figure 3
(b)). In practice, it can be observed that the parametric model
tends to over-fit the new task and the performance on task-A
and task-B degrades.

C. A Bayesian solution to correct knowledge distillation

Since the data distribution differences among tasks lead to
the LED problem in TIL, we intend to correct the objective
function of knowledge-distillation (equation (4)) by adding a
constraint related to the data distributions of all previously seen
tasks. It can be achieved by maximizing the logarithm poste-
rior probability log p(θ| ∪T −1t=1 D(t)). Therefore, the corrected
objective function of knowledge distillation is

θ∗ = argmin
θ
LKD(θ,θ∗1..T −1,DT )− β log p(θ| ∪T −1t=1 Dt),

(7)
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Fig. 3: Schematic illustration of knowledge distillation and
our proposed corrected knowledge distillation (best viewed
in color). (a) knowledge distillation preserves the task-A
knowledge by constructing an alternative objective goal which
restricts p(Ŷ|X ;θ) close to p(Y|X ;θ0); the low error region
of LKD is illustrated with a white circle. (b) When recursively
applying LKD to the third task, the constructed alternative
objective function will drift towards the new task. (c) LC−KD

optimizes the parameters to the direction maximizing the
posterior probability related to all seen tasks, which prevents
the optimization process from over-fitting the new task.

where β is the weighting factor of the logarithm posterior
term.

The evaluation of the term log p(θ| ∪T −1t=1 D(t)) is challeng-
ing, since the data of previous tasks is intractable when training
the task-T . Here we adopt the Laplacian approximation in
EWC [9] to evaluate this term. Its mechanism is to restore the
prior information of old tasks, like FIM or its alternatives, and
then use the priors to evaluate this logarithm posterior term
for correcting the drift towards the new task. It can be written
as

− log p(θ| ∪T −1t=1 D(t)) ≈ 1

2

T −1∑
t=1

∑
i

βtFt
i||θi − θ

∗
1..T −1,i||22,

Ft =
1

|S|
∑
D̃t∼Dt

[
∂

∂θ
L(θ,Dt)T

∂

∂θ
L(θ,Dt)],

(8)

where βt is the hyperparameter balancing the weight of each
task-t, Ft

i is value of the i-th parameter in the diagonal of the
FIM computed on task-t, and |S| denotes the number of times
D̃t is sampled from Dt. We provide an integrated derivation
in our Supplementary Materials.

As a result, the corrected objective function of knowledge
distillation for TIL is

LC−KD = LKD +
1

2

T −1∑
t=1

∑
i

βtFt
i||θi − θ

∗
1..T −1,i||22. (9)

Figure 3 (c) illustrates the effects of the corrected objective
function. Optimizing the corrected objective function LC−KD

will lead the parameters to the direction maximizing posterior
distribution related to all seen tasks, and prevent the optimiza-
tion process from over-fitting the new task.
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Fig. 4: Overview of the dual network learning framework.
RPNA is the well-trained optimal parametric model fA(·,θ∗A)
for previous tasks, the parameters of which are frozen. RPNB

is the new-task parametric model fB(·,θB), the parameters of
which are initialized from θ∗A. The blue arrows represent the
backward propagation paths of optimization.

IV. AN APPLICATION IN 3D OBJECT DETECTION

In this section, we demonstrate a use case of our corrected
knowledge distillation by applying it to a 3D object detection
Region Proposal Network (RPN) under the TIL setting. We
have reviewed the background of 3D object detection RPNs
in Section II, and now we will state it in a more formal
way. A 3D object detection RPN is a parametric model
fθ = hϕ ◦ gφ, where gφ represents the feature extraction
submodel, projecting the input into the embedding space RF ,
where F is the dimension of the embedding space, and hϕ
represents the header of RPN. The hϕ consists of two parts:
hϕcls

: RF → RM×A×C and hϕreg
: RF → RM×A×S

conditioned on the anchor map a ∈ RM×A×S where M is
the total number of locations, A is number of anchors on
each location, C is the total number of classes, and S is the
dimension of the parameterized anchor vector 1. For simplicity,
we denote fcls = hϕcls

◦ gφ and freg = hϕreg
◦ gφ in the rest

of the paper.
In 3D object detection, we write the corrected objective

function (equation (9)) into the following form:

LC−KD = Ldet(θ,DT ) + Ldist(θ,θ
∗
1..T −1,DT )

+LMAP (θ,F1, ...,FT −1,θ∗1..T −1,DT ),
(10)

where Ldet(θ|DT ) denotes the likelihood of DT conditional
on θ, Ldist(θ|θ∗1..T −1,DT ) denotes the knowledge-distillation
regularizer, and the last term denotes the logarithm posterior
term.

To evaluate the three terms in equation (10), we adopt
the dual network learning framework in [6]. We consider
the step of incrementally training the task-T , T > 1, and
denote the well-trained optimal parametric model for the
previous tasks task-t, t < T as fA(·;θ∗A), while represent
the current task-T as task-B and its parametric model as
fB(·;θB). Figure 4 demonstrates the dual network learning
framework. We forward point clouds X T to fB(·;θB) and
evaluate the detection loss Ldet. In the RPNA branch, we

1For instance, if we discretize the 3D spaces into a 3D grid with the shape
[200, 200, 8], and put ten anchors on each location with representing each
anchor with a vector of length seven, then a ∈ R200×200×8×10×7, where
M = 200× 200× 8, A = 10, S = 7.

trainable
param.

initial
lr

training steps
per task

anno. loss

fine-tuning φ ∪ϕ\ϕA 0.1γ 50 epochs new Ldet
joint

training
θ γ 50 epochs all Ldet

kd θ γ 50 epochs new Ldet + Ldist
ewc/mas θ γ 50 epochs new Ldet + LMAP

incdet θ γ 50 epochs
new &
pseudo

Ldet + LMAP

c-kd θ γ 50 epochs new
Ldet + Ldist

+ LMAP

TABLE I: Comparison among different TIL schemes in our
experiments.

forward point clouds X T to fA(·;θ∗A), which is the optimal
model for task-t, t < T . We sample a foreground subset
ỹA
c , ỹ

A
r from the RPNA outputs yA

c ,y
A
r with a biased sampling

strategy yA
c = fA,cls(X T ,θ∗A),yA

r = fA,reg(X T ,θ∗A), and
then find their corresponding estimations ỹB

c , ỹ
B
r from the

RPNB outputs. As in ILOD [6], we compute the knowledge-
distillation regularization term Ldist with

Ldist = `c(ỹ
A
c , ỹ

B
c ) + α`r(ỹ

A
r , ỹ

B
r ), (11)

where `c and `r represent the distance measurement function
for classification and bounding box regression, and α balances
the weights of these two terms. The logarithm posterior term
is evaluated with θ∗A and θB as well as the data prior FIMs:

LMAP =
1

2

T −1∑
t=1

∑
i

βtFi
t||θ
∗
A,i − θB,i||22. (12)

We can compute the FIM with equation (8) in a supervised
method. There is also a heuristic computation method MAS
[11], which provides an unsupervised way to approximate the
FIM with

Ft =
1

|S|
∑
D̃t∼Dt

[(
∂

∂θ
||f1..t(X T ,θ∗1..t)||22)T

× ∂

∂θ
||f1..t(X T ,θ∗1..t)||22],

(13)

where the notation is the same as before. We consider both of
these two computation methods in our experiments.

V. EXPERIMENTS

In this section, we report the experimental results to demon-
strate the effectiveness of our proposed corrected knowledge
distillation for TIL. We first describe our implementation
details and then demonstrate the performance of our proposed
method in overcoming the catastrophic forgetting. Finally, we
show its ability to solve the LED problem by comparing the
results in the increment-at-once and the increment-in-sequence
experiments.

A. Implementation details

We adopt SECOND2 as our basic 3D object detector. It is
an RPN for LiDAR-based 3D object detection. To simplify the

2https://github.com/traveller59/second.pytorch
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description, we continue to use the notation in Section IV and
denote the old task(s) as task-A and the new task(s) as task-B.
We train task-A from scratch and consider the following TIL
training schemes:

• fine-tuning: We freeze the old-task part of the header
parameters ϕA ⊆ ϕ. The parameters of feature extractor
φ and the new-task part ϕ\ϕA of the header are trainable
with the detection loss Ldet. We set the initial learning
rate to 0.1γ to avoid drifting greatly from θ∗A.

• joint training: We merge all the training data of seen
tasks and use the annotations of all classes in training.
Theoretically, this provides the upper-bound performance
for old-task performance in TIL.

• kd: It is the implementation of knowledge distillation
as ILOD [6]. We additionally consider its two variants:
kd (unbiased) with the unbiased sampling strategy and
kd (threshold) with the threshold sampling strategy as
Faster-ILOD [8]. For more details about the sampling
strategies, please refer to our Supplementary Materials.

• ewc/mas: It is the implementation of the data-prior-based
methods EWC [9] and MAS [11].

• incdet: It is the implementation of IncDet [15].
• c-kd: It is the implementation of our proposed corrected

knowledge distillation. We consider two cases: c-kd (ewc)
and c-kd (mas). c-kd (ewc) computes the FIM with
equation (8), while c-kd (mas) approximates the FIM with
equation (13).

We also list the differences among the TIL schemes in Table I.
For more details about our implementation and hyperparame-
ters, please refer to our Supplementary Materials.

Data: We use the dataset of KITTI 3D object detection
benchmark [31], and consider two more classes ”Van” and
”Truck” to construct five tasks: task-1(Car), task-2(Pedestrian),
task-3(Cyclist), task-4(Van), and task-5(Truck). The class
within the brackets is the task-specific class. Each task is
composed of its training set D(t)

train = {(X (t)
train,i,Y

(t)
train,i)}

and a testing set D(t)
test = {X

(t)
test,i}. Every X (t)

train,i and X (t)
test,i

contains at least one instance of the task-specific class. In
consequence, all the tasks have different data distributions,
annotation distributions and different classes, which coincides
with the TIL definition. The statistical information about these
tasks is available in our Supplementary Materials. In our
experiments, the task-(1..K) represents the merged tasks from
task-1 to task-K. We merge tasks by gathering their training
datasets and testing datasets. The task-specific class set of task-
(1..K) is the union of the tasks from task-1 to task-K, i.e.,
C(1..K) = ∪i=1...KC

(i).

Evaluation metrics: We use the 3D average precision (AP)
to evaluate the detection results. The intersection-over-union
(IoU) thresholds are 0.5 for Car, Van and Truck, and 0.25 for
Pedestrian and Cyclist. There are three difficulty levels: easy
(≤ 20 m), moderate (≤ 35 m) and hard (≤ 50 m) according to
the distances between the object and the ego vehicle as well
as the occlusion, as in [31]. We compute the mean 3D average

method old(+) forget(-) new(+) all(+)

A(1..2) 81.9 - - -
+B(3..5) fine-tuning 0.0 81.9 40.3 10.7
+B(3..5) ewc 0.0 81.9 39.8 10.5
+B(3..5) mas 0.0 81.9 39.1 10.7
+B(3..5) kd (unbiased) 0.0 81.9 34.7 9.2
+B(3..5) kd (threshold) 77.6 4.3 37.7 63.2
+B(3..5) kd 81.1 0.8 40.1 67.1
+B(3..5) incdet 80.8 1.1 30.3 64.0
+B(3..5) c-kd (ewc) 81.1 0.8 39.3 65.2
+B(3..5) c-kd (mas) 81.9 0.0 40.6 67.6

+B(3..5) joint training 81.5 0.4 24.1 63.1
A(1..5) 81.5 0.4 28.8 64.8

TABLE II: Evaluation results on testing set of the increment-
at-once TIL experiment based on the KITTI dataset. The
positive metrics ”old”, ”new” and ”all” columns represent the
mAP computed on task-(1..2), task-(3..5) and task-(1..5); the
negative metric ”forget” column represents the performance
degradation relative to A(1..2).

precision (mAP) to compare different cases:

mAP(t) =
∑

c∈C(t)

N
(t)
c

N (t)
{1
3
[AP(t)

c,easy + AP(t)
c,mod. + AP(t)

c,hard]},

(14)
where C(t) denotes the class set of task-t, and the mAP is the
weighted average of the APs in the three difficulty levels of
task-t.

B. Increment at once

In this experiment, we explore the TIL scenario to increment
multiple tasks at once. We first train the 3D detector on task-
(1..2) from scratch, an then incrementally train it on task-(3..5).
The evaluation results are shown in Table II.

For old tasks, fine-tuning forgets all the old-task knowl-
edge, which shows the manifestation of the catastrophic
forgetting. The prior-based methods ewc and mas cannot
prevent the detector from forgetting the old-task knowledge
in detection tasks, which coincides with the findings in
[15]. The knowledge-distillation-based method kd prevents
the 3D detector from forgetting and performs better than
its unbiased-sampling and threshold-sampling variants. Our
corrected knowledge distillation methods c-kd(ewc) and c-
kd(mas) perform better or comparable than the original case
kd. It shows the effectiveness of knowledge-distillation-based
methods in overcoming the the catastrophic forgetting.

For new tasks, all the TIL schemes trained with only new
annotations (fine-tuning, kd, ewc/mas, and c-kd) result in much
better performance than the cases trained with all or pseudo
annotations (joint training, and incdet). We attribute this to the
class imbalance of the dataset. In Figure 2, we compare the
class histogram of the task-(3..5) and that of the task-(1..5).
It demonstrates that the class imbalance is worse in the task-
(1..5), which is used in joint training in this experiment. The
class-imbalance situation of incdet is similar to the task-(1..5)
according to the mechanism of pseudo annotations in IncDet
[15].
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Fig. 5: Histograms of the training sets of task-(3..5) and task-
(1..5). The y-axis represents the number of data samples. In
the x-axis, ”Ped.” is for ”Pedestrian”. We highlight the task-
specific classes of task-(3..5) with red to demonstrate that the
class imbalance is worse in task-(1..5).

method old(+) forget(-) new(+) all(+)

A(1..2) 81.9 - - -
+B(3)(4)(5) fine-tuning 0.0 81.9 0.0 0.0
+B(3)(4)(5) ewc 0.0 81.9 0.9 0.2
+B(3)(4)(5) mas 0.0 81.9 0.8 0.1
+B(3)(4)(5) kd (unbiased) 0.0 81.9 0.3 0.1
+B(3)(4)(5) kd (threshold) 66.8 15.1 27.9 53.3
+B(3)(4)(5) kd 67.8 14.1 33.5 55.4
+B(3)(4)(5) incdet 75.3 6.6 25.9 58.7
+B(3)(4)(5) c-kd (ewc) 79.3 2.6 37.8 65.2
+B(3)(4)(5) c-kd (mas) 81.8 0.1 39.2 66.8

+B(3)(4)(5) joint training 83.8 -1.9 29.4 65.3
A(1..5) 81.5 0.4 28.8 64.8

TABLE III: Evaluation results on testing set of the increment-
in-sequence TIL experiment based on the KITTI dataset.

C. Increment in sequence

Fig. 6: Increment-in-sequence mAP curves of task-(1..2). The
x-axis denotes the time step of evaluating the mAP on task-
(1..2). For example, if the number of steps is three, its mAP
value is the evaluation result after incrementally training on
task-3.

We explore an alternative scenario of TIL: incrementing
multiple tasks in sequence. To compare with the increment-at-
once experiment in Section V-B, we first train the 3D object
detector on task-(1..2) as before, and then incrementally train
the detector on task-3, task-4, and task-5 in sequence. The
evaluation results are shown in Table III 3.

3+B(3)(4)(5) joint training improves the performance of old-task a little,
since its training iterations is three times as many as +B(3..5) joint training
with all annotations.

We can observe the manifestation of LED problem by
comparing +B(3)(4)(5) kd in Table III with +B(3..5) kd in
Table II: 0.8 mAP ↔ 14.1 mAP in the forget metric. In
contrast, c-kd (ewc) and c-kd (mas) perform much better and
more consistent: 0.8 mAP ↔ 2.6 mAP as well as 0.0 mAP ↔
0.1 mAP in the forget metric. It demonstrates that our proposed
corrected knowledge distillation method takes effect in solving
the LED problem as we expected. We also plot the mAP curves
of the old task during the whole TIL process in Figure 6 for
a better comparison.

We also conducted the incremental-in-sequence based on the
NuScenes dataset [33]. The same conclusion still holds, and
please refer to our Supplementary Materials for more detail.

VI. CONCLUSION

In this paper, we attribute the LED problem to the inevitable
data distribution differences in TIL. To solve this problem, we
propose to correct the original knowledge distillation for TIL
by additionally maximizing the posterior probability related
to all previously seen tasks. We show its usefulness with an
application in 3D object detection. The experimental results
demonstrate its effectiveness. Our proposed method reaches
the upper-bound performance, which is provided by joint
training with all old data, in the TIL experiments based on
the KITTI dataset.

As a result, the existing knowledge-distillation-based TIL
methods will benefit from the proposed corrected knowledge
distillation and prevent parametric models from forgetting
knowledge even in the face of a long task sequence.
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