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Abstract— In this article, we focus on resolving the traffic flow
prediction, robot path planning, and motion coordination prob-
lems in large-scale warehousing robotics systems with thousand-
robot networks. The warehousing environment is partitioned
into several sectors, and a hierarchical framework is developed,
which includes a centralized prediction and planning level and
a decentralized local coordination level. In the centralized level,
a traffic flow prediction algorithm is first proposed to predict the
evolution of the robot density distribution in a future horizon
and estimate the future traffic heat value of each sector. Based
on this, the sector-level robot path can be generated in the
time-expended sector graph by comprehensively considering the
traveling distance and the predicted traffic heat value and will
be dynamically updated by considering the most recent traffic
information. In the coordination level, local cooperative A* algo-
rithm, incorporated with the conflict-based searching strategy,
is implemented within each sector to generate conflict-free road-
level paths for all the robots in the sector simultaneously, and the
rolling planning scheme is utilized in order to immediately react
to robot motion uncertainties and communication disconnections.
The effectiveness and practical applicability of the proposed
approach are validated by large-scale simulations with more than
one 1000 robots and real laboratory experiments.

Note to Practitioners—Considering practical situations and
requirements in industrial warehouses and automated logis-
tics systems, this article resolves the life-long planning and
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coordination problems of large-scale robot networks and ensures
the practical execution performance in the presence of robot
motion uncertainties and temporary communication disconnec-
tions. Our main idea is to reduce robot congestions and improve
warehouse working efficiency by balancing the traffic flow in the
whole environment. To achieve this, we present a traffic flow
prediction algorithm to estimate the robot density distribution
in a future horizon and take this information into consideration
in sector-level path planning. The reliability, scalability, and the
real-time performance of the proposed solution are achieved by
the presented hierarchical system framework and the dynamic
planning scheme. The proposed concept and approach can also
be used to coordinate other large-scale systems with multirobot
or multi-AGV networks. Simulation and experimental results
suggest that the proposed solution is effective and practically
applicable, but a saturation phenomenon of the system capacity
can be observed under a very heavy workload. In the future,
we will investigate the relation between the maximum system
capacity and the environment structure and make further efforts
to optimize the environment structure and road layout in order
to improve the warehouse working efficiency.

Index Terms— Hierarchical planning and coordination,
large-scale robot network, traffic prediction, uncertainty.

I. INTRODUCTION

RECENTLY, mobile robots are widely implemented in
various logistics applications, such as the automatic

parcel sorting in robotic warehouses, pickup and deliv-
ery in unmanned storage systems, cargo transportation in
autonomous container piers, and the mail service in office
buildings [1]–[7]. Replacing human workers with the robotic
system contributes to reducing labor costs, improving ware-
house working efficiency, and increasing the reliability and
scalability of the warehousing system. In order to give full
play to the potential and efficiency advantage of the robotic
system and split the cost, practicalrobotic warehousing systems
usually contain a large number of mobile robots. In such
large-scale systems, the real-time path planning and robust
motion coordination are two of the most challenging problems,
the performance of which will greatly affect the efficiency
and reliability of the overall warehousing system. In this
article, we focus on the life-long path planning and motion
coordination problems of the large-scale robotic networks,
aiming for the practical warehousing and logistics applications
(such as the system shown in Fig. 1).

At present, lots of algorithms are presented in the litera-
ture [1], [4], [6]–[9] to solve the multirobot path planning
and motion coordination problems; however, there exists a
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Fig. 1. Example of the robotic warehousing system, where the blue, green,
and purple grids represent the robot stations, task pickup stations, and working
stations, respectively. Robots are commanded to transport cargos from pickup
stations to working stations while avoiding motion conflicts with each other.

dichotomy between the academic researches and industry
implementations and several open challenges that have not
been well-resolved yet. First, as opposed to the traditional
multirobot pathfinding problem [8], the practical robotic ware-
housing system operates in a life-long manner. How to build
a well-constructed environment/a well-formulated problem is
of great importance in such life-long planning and coor-
dination instance since directly utilizing a well-established
one-shot multirobot planning algorithm in a life-long system
may not always obtain the feasible solutions [10]. Second,
in large-scale systems with hundreds (or possibly thousands)
of robots, the unneglected traffic congestion often leads to
the extreme decline of the warehouse operation efficiency and
even causes robot deadlocks. Thus, the robot density distrib-
ution is expected to be balanced over the whole environment
in order to alleviate traffic congestions and avoiding traffic
shock waves [7]. How to consider the traffic flow equilibrium
in the path planning stage is a very critical issue, especially in
large-scale robot networks. Third, in practical systems, robot
motion uncertainties (caused by the human–robot interaction,
motion control accuracy, or hardware malfunctions) and tem-
porary communication disconnections (caused by bandwidth
limitations, route handoff, reestablishment operators, or system
malfunctions) are unneglected and also unpredictable [11].
These uncertainties will greatly decrease the system perfor-
mance and make the coordination problem very challeng-
ing. Finally, how to improve the real-time performance and
ensure the system scalability are also challenging issues in
the large-scale system.

We develop a systematic solution in this article to address
the abovementioned issues. Our main contributions include the
following.

1) Considering the structure of the practical robotic ware-
houses, we present a set of criteria to formulate a
well-formed planning and coordination problem; based
on which, the solvability of the life-long system can be
ensured.

2) We present a hierarchical approach to exploit the advan-
tages of both the centralized and decentralized methods.
In the centralized level, a time-efficient traffic flow pre-
diction algorithm is presented to estimate the evolution
of the robot density distribution in a future horizon. The
most recent traffic predictions will be utilized to generate
the sector-level path for each robot and dynamically
adjust it. These manners aim to ensure the traffic flow
equilibrium in the whole environment and guarantee
real-time performance. In the decentralized level, the

local cooperative A* algorithm is utilized in the reduced
spatial–temporal road map within each sector to generate
collision-free local paths for all the robots in the sec-
tor simultaneously. What is more, the rolling planning
strategy is used to improve the system tolerance to
uncertainties, and a K-step redundancy mechanism is
designed to handle communication failures.

3) To the best of our knowledge, this article is the first
to solve the coordination problem of large-scale net-
works with more than 1000 robots in the presence of
motion and communication uncertainties. Large-scale
simulations and laboratory experiments are presented to
validate the scalability, robustness, and practical applica-
bility of the proposed solution.

A. Related Work

Multirobot path planning and motion coordination issues
have been studied actively for more than 20 years. Existing
approaches can be mainly classified into the centralized [8] and
decentralized methods [12]. Generally speaking, centralized
methods mainly put their effort into finding the optimal
solution and decreasing the computation complexity, while
decentralized methods mainly focus on increasing system
flexibility, fulfilling real-time requirements, and resolving local
deadlocks.

Centralized methods include the reduction-based algorithm
[8] and the A*-based algorithm [6]. The former one transforms
the multirobot pathfinding problem into well-solved mathe-
matical programming problems (such as the time-expanded
network flow problem [8]) and calculates the optimal plan-
ning result by utilizing the existing algorithms (such as the
integer linear programming algorithm). However, in most
cases, reduction-based algorithms are only effective in solving
small-scale problems with the makespan optimization index
[9], and the problem transformation processes are also com-
putationally expensive. The decoupled hierarchical cooperative
A*-based methods [13] are promising in solving large-scale
problems as they have good real-time performances although
they cannot guarantee the optimal result. Recently, searching
tree structures [9], [11], [14] are utilized to decrease the
searching complexity in traditional cooperative A* algorithms
and improve the optimality. However, since the computational
complexity of these methods is much larger than the decoupled
hierarchical cooperative A*, their performances in solving
large-scale planning problems have not been demonstrated.
In order to solve this problem, in our previous work [15],
we develop a hierarchical framework for large-scale robot net-
works that utilize the searching tree-based cooperative A* [9]
to ensure the local motion coordination performance. However,
traffic flow prediction information has not been considered,
and communication uncertainties have also been neglected.
More recently, path diversification-based heuristics [16] are
introduced into decoupled cooperative A* algorithm, and
traffic balance is considered in order to decrease path conflicts.
However, the routing performance in complex environments
with hundreds of robots decreases largely, and motion and
communication uncertainties have not been considered.
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Decentralized methods include the local coordination-based
algorithm (off-line independent planning and online coordi-
nation) and the priority-based algorithm (off-line prioritized
cooperative planning). Local coordination-based algorithms
depend on well-designed local traffic rules and coordinate
robot velocity vectors [17], regenerate local robot routes
according to priorities [18], or reschedule the passing time [5],
[12] to avoid local conflicts. Priority-based algorithms [1], [18]
define a priority value for each robot. The path coordination
is achieved in an incremental manner by the continuous
replanning conducted on the low-priority robots. Decentralized
methods are mostly incomplete, and the traffic jams and robot
conflicts cannot be avoided in the crowded environment with
a large number of robots. What is more, the high require-
ments for the robot perception and communication abilities
also limit these methods’ practical applicabilities. Recently,
a hierarchical strategy is presented for the coordination of
automated guided vehicles [7], and a probabilistic traffic model
is proposed to predict the possibly congested areas [19].
However, the scalability of this method in large-scale problems
has not been validated. Furthermore, since the future robot
action is modeled by random movements, the proposed traffic
predictions are not reliable. Compared with [7] and [19], our
traffic flow prediction algorithm is more accurate and time-
efficient, and the proposed approach can be used in large-scale
planning and coordination problems with high uncertainties.

In recent years, learning-based approaches have attracted
wide attention [20], [21], which provides fully decentralized
policies and teach robots to reactively plan motions by observ-
ing local environmental information while coordinating with
each other implicitly. However, learning-based approaches
require high computational resources, and the training time can
be as long as a few weeks [20]. In addition, the low success
rate in crowded environments and the poor generalizability to
large robot numbers also greatly limit their practical applica-
bility. A comprehensive comparison can be found in [21],
which demonstrates that the recent learning-based approaches
still cannot achieve comparable performance with the tradi-
tional approaches [9], [13].

The abovementioned methods mostly focus on the one-shot
problem, where all the tasks are predefined and each robot
needs to deliver its allocated task while avoiding conflicts with
other robots, and the system terminates once all robots have
arrived at their destinations. However, for a life-long system,
we need to well-formulate the problem to ensure the solvabil-
ity first. What is more, since finding out the optimal solution is
very difficult and time expansive in a dynamic system, improv-
ing the real-time planning performance and increasing the
system reliability are more important. The life-long problem is
solved in [10] with a token passing strategy and the coopera-
tive A* algorithm, and recently, the windowed cooperative A*
is further utilized with the frequent replanning strategy to solve
the large-scale planning problem [23]. In addition, an online
cooperative path planning method is presented in [24], which
considers the predicted information of the robots and tasks
that will appear in the future. However, these approaches
have not taken communication and motion uncertainties into
consideration. In order to ensure the practical applicability,

the hierarchical planning-execution framework is studied by
considering kinematic constraints [4] and arbitrary dynamic
limits [22]. However, the introduction of the motion orders
will greatly affect the system performance in the presence of
motion uncertainties, and this framework cannot be used to
solve the life-long planning problem of large-scale networks.

II. WELL-FORMULATION OF THE LIFE-LONG PROBLEM

As shown in Fig. 1, we consider the warehouse environment
that contains robot stations (such as the maintenance station
or charging station in a warehouse), the task stations (such as
the inventory pod area), and the working stations (such as the
order packaging area or cargo delivery area). Consider a large
group of mobile robots Rn , n = 1, . . . , Nr , in which all the
free robots stay in the robot station area and wait for the task
assignments. Transportation tasks are online published one by
one or in the batch model. Each transportation task has one
pickup station and one working station. In real applications,
the order management system, the task allocation system, and
the robot management system are almost decoupled in order to
ensure real-time performance and decrease the mutual influ-
ence between each system. Thus, in this article, we assume
that there are high-level order management and task allocation
systems to publish transportation tasks and assign them to
proper free robots; then, we mainly focus on the robot path
planning and motion coordination problems. Once a new task
is allocated to a free transportation robot, the robot will move
from the robot station to the task pickup station to load the
cargo and then transport it to one working station along the
planned path. In the meantime, the robot needs to avoid motion
conflicts with other transportation robots. We consider the
discrete environment model in this article and assume that,
in time k, the location of robot Rn is qn(k), and then, two
types of location constraints are considered in order to avoid
collisions:

1) ∀Rn, Rg , n �= g, qn(k) �= qg(k);
2) ∀Rn, Rg , n �= g, qn(k + 1) �= qg(k).

The second constraint is designed to avoid conflict in the
presence of motion and communication uncertainties.

In the life-long system described earlier, the path planning
and motion coordination problem may not always be solvable
(a problem is solvable means that one can find out at least
one solution to solve the problem) since a free robot that has
accomplished its previous task may obstruct the movement of
other robots that are assigned new tasks [10]. Robot motion
and communication uncertainties in practical applications will
further decrease the problem solvability. Thus, in this article,
we define the following criteria to ensure the solvability. First,
the warehouse environment should fulfill the following criteria.

C1: The number of robot stations is not less than the number
of robots.

C2: Between any two stations (including the robot stations,
task pickup stations, and working stations), there exists
at least one path that traverses no other station.

Second, the assignment of a newly published task should fulfill
the following criteria.
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C3: For a new task, its corresponding task pickup station and
working station should be different from those of all the
unaccomplished tasks that have been assigned.

C4: If C3 cannot be fulfilled, the new task should be put into
a waiting list to wait for the accomplishment of all the
conflicting tasks (i.e., until C3 is fulfilled).

Third, the motion of all the robots should fulfill the following
criterion.

C5: Once the assigned task is accomplished, the robot should
either return to one of the free robot stations that have
not been occupied by any other robot or move away
from the working station of its previous task to the task
pickup station area to accomplish a new task.

Based on the abovementioned criteria, we have the following
result.

Proposition 1: The life-long multirobot path planning and
motion coordination problem is always solvable, i.e., the
problem is well-formulated, if the abovementioned criteria
C1–C5 are fulfilled.

Proof: C1 and C2 ensure that the free robots have enough
parking stations, and a free robot that stays in a robot station
will not conflict with any other robot. C2–C4 ensure that a
robot that is staying in a task pickup station (or a working
station) and is preparing to pick up its assigned task (or
is waiting to accomplish its assigned task) will not conflict
with any other robot. C5 further ensures that a robot that
has accomplished its task assigned before will not occupy
the working station all the time and affect other robots to
accomplish their tasks. The abovementioned analyses ensure
that a robot that stays in any station will not conflict with any
other robot. Then, in the worst case, the path planning and
motion coordination problem can be solved by a priority-based
approach, i.e., each robot has a priority value defined by its
task assignment order, and the robot with the lower priority
will stay in the robot station until all the robots with higher
priorities have accomplished their tasks and returned to robot
stations. In this way, robots can move one by one without any
collision and accomplish their assigned tasks according to the
task assignment order; thus, the life-long task planning and
motion coordination problem is always solvable.

In this section, we present criteria C1–C5 to make sure
that any problem generated by the following five criteria is
solvable, i.e., we can find out at least one solution to solve
this problem. Then, the abovementioned proposition gives the
solution in the worst case. Please note that criteria C1–C5
and the abovementioned proposition only provide a sufficient
condition to ensure the solvability; however, the actual path of
each robot in the proposed system is not planned in this way.

III. HIERARCHICAL PLANNING AND COORDINATION

FRAMEWORK

A. Environment Model

In this article, the environment map is modeled as a
hierarchical form. On the global level, we divide the whole
environment into several partitions, and each partition is
defined as a sector Sj . Then, at the local level, we build
the road map within each sector and define adjacent exits

Fig. 2. Example of the road topology map in a sector, where the arrowed
lines represent monodirectional road segments, the dotted lines represent the
ramps to task pickup stations, and the four blue road segments in the middle
of the sector form an intersection.

and entrances between every two neighboring sectors. More
specifically, we utilize the following environment partitioning
criteria in the sector generation.

C6: In the local road map within each sector Sj , there is one
and only one intersection.

C7: For two sectors that are neighbors, there is one and
only one unidirectional entryway (includes the exit and
entrance) from one sector to the other sector, and vice
versa.

C8: In the road map within each sector Sj , from each
entrance to each exit, there is at least one movable
path located within this sector that does not traverse any
station (including the robot stations, task pickup stations,
and working stations) located in the sector.

The abovementioned environment partitioning criteria result
in a sector topology graph Gs , where each vertex in Gs denotes
a sector Sj , j = 1, 2, . . . , Ns , and each edge in Gs represents
the connection between two neighboring sectors. Although C7
implies that all the edges in Gs are bidirectional, we define two
weights wi j (k) �= w j i (k) to represent the different traveling
costs from sector Si to Sj and from Sj to Si in time k.

Within each sector, we build a local road map that satisfies
the environment partitioning criteria C6–C8. Then, a whole
road network can be generated by combining all the local road
maps. The roads in all the sectors are divided into segments,
and a road topology graph Gx is generated to describe the
whole road network, where each vertex in Gx represents a
place xl , l = 1, 2, . . . , Nx , each edge in Gx represents that
there is a road segment from place xl to x p that does not travel
through any other place, and the edge weight vlp is set to the
distance of the road segment. In order to improve the traffic
speed and reduce robot congestions, all the road segments are
defined as monodirectional roads, i.e., Gx is a directed graph.
What is more, an index matrix �Ns ×Nx is defined as follows:
if xl ∈ Sj , � j l = 1; otherwise, � j l = 0. Fig. 2 shows an
example of the local road map in a sector.

B. Hierarchical Framework and System Structure

We present a hierarchical planning and coordination frame-
work, as shown in Fig. 3, which consists of a centralized
sector-level traffic flow prediction and dynamic sector path
planning system, and a decentralized local road path planning
and motion coordination system. The detailed algorithms
implemented are shown in Fig. 4. In the high level, a traffic
flow prediction algorithm is presented to estimate the robot
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Fig. 3. Proposed hierarchical framework.

Fig. 4. System structure of the proposed approach.

density distribution in a future horizon. In the sector topology
graph, the traffic prediction information will be considered
in the traveling cost through a sector in order to estimate
the practical traveling time. Then, the sector path of each
robot will be planned on the time-expended sector graph,
and a dynamic planning strategy will be utilized in order to
take into account the most recent traffic information. These
manners contribute to achieve the traffic flow equilibrium in
the whole environment, improve the optimization performance
of the robot sector path planning, and ensure the real-time
performance in the centralized high level, simultaneously. In
the low level, local cooperative A* algorithm in the local
spatial–temporal road topology graph is utilized within each
sector, and the conflict-based searching strategy (CBS) is
implemented to increase the searching efficiency. Local road
path planning and motion coordination are executed within
each sector periodically on a reduced spatial horizon to imme-
diately react to robot state changes in the sector and to improve
the algorithm tolerance to robot motion delays and communi-
cation failures. What is more, an entryway reservation system
is implemented to coordinate every two neighboring sectors
and manage the authority to avoid any robot collision caused
in sector switchings during robot movements.

IV. TRAFFIC FLOW PREDICTION AND SECTOR-LEVEL

DYNAMIC PATH PLANNING

In this article, our main idea is to improve the warehouse
working efficiency and reduce robot congestions by balancing

the traffic flow over all the sectors in the whole environment.
Thus, we need to first predict the evolution of the traffic in
a future horizon; based on which, the sector-level robot path
can be generated and dynamically updated by comprehensively
considering the traveling distance and the traffic information.

A. Traffic Flow Prediction

Given the current task assignments and planed robot paths,
the evolution of the traffic in a future horizon can be predicted
by utilizing a probabilistic model. To achieve this, we need
to first predict the position probability distribution of each
moving robot and estimate the number of robots in each sector
at each time step. Based on which, the robot motion delay
probability (due to local motion coordination reasons) in each
sector at each time step can be estimated. Then, by repeating
the abovementioned two steps, the robot density distribution
over sectors in a future horizon and the evolution of the traffic
flow can be predicted.

Since the road map has been partitioned into segments,
without loss of generality, we assume that each road segment
has a uniform traveling distance and can be tracked in a unit
time. Then, robot movement along its planed path can be
modeled in a discrete manner, i.e., at each time step, each
robot can either travel through a road segment on its path (if
no conflict occurs) or stay in the place where it is (if a conflict
exists and the robot should coordinate its motion with others).
Let Qn = [qn

1 , qn
2 , . . . , qn

i . . .] be the road path of robot n,
and the predicted probability that robot n is located in place
qn

i at time k can be modeled as

Pn
q,i (k) = Pn

q,i (k − 1)ρn
q,i (k) + Pn

q,i−1(k − 1)
[
1 − ρn

q,i (k)
]
(1)

where k = 2, . . . , H and H is the prediction horizon. The
motion delay probability ρn

q,i (k) represents the probability that
robot n stays in its previous place, and if qn

i ∈ Sj , we set
ρn

q,i (k) = ρ j (k), where ρ j (k) denotes a uniform motion delay
probability of all the robots in sector Sj at time k. Then, for a
given place xl in the road map, the predicted probability that
place xl is occupied by a robot at time k can be calculated as

Px,l(k) =
∑

n
∣∣qn

i =xl

Pn
q,i (k). (2)

Define an occupancy vector O(k) = [O1(k), . . . , ONx (k)]T ,
where Ol(k) = 1 if Px,l(k) > ε; otherwise, Ol(k) = 0, ε is an
empirical threshold. Then, the number of robots in each sector
can be estimated as

M(k) = �O(k) (3)

where M(k) = [M1(k), . . . , MNs (k)]T , and M j (k) represents
the number of robots in sector Sj at time k. Then, we define
the motion delay probability of sector Sj in time step k + 1
as

ρ j (k + 1) = M j (k)

C j
(4)

where C j is the maximum allowable robot number of sector
Sj , which can be defined to be linearly proportional to the
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size of movable area in sector Sj . In this article, we set C j =
� j 1Nx , where � j = [� j,1, . . . ,� j,Nx ] is the j th row of �.

With the initial location information of each robot, we can
directly count the number of robots in each sector and calculate
the initial motion delay probability ρ j (1). Then, by repeating
(1)–(4) from k = 2 to k = H , the robot density distribution
over sectors in a future horizon H and the evolution of the
traffic flow can be predicted. Please note that the robots that
stay in robot stations without any assigned task will not be
considered in the abovementioned traffic flow predictions.

The computational complexity of the abovementioned traffic
flow prediction method can be estimated as O(H 2 Nr ) since,
in each iteration k from k = 2 to k = H , for each robot n,
we need to calculate the probabilities that robot n is located
in place q1

1 , q2
1 , . . . , qmin{k,|Qn |}

1 . As a consequence, the upper
bound of the complexity can be estimated as O(H 2 Nr ).

B. Traffic Flow Prediction-Based Sector-Level Path Planning

Based on the proposed traffic flow prediction method,
we can predict the robot number M j (k) in each sector Sj

in a future horizon. We define the traffic heat value h j (k) of
each sector Sj as

h j (k) = M j (k)

C j − M j (k)
. (5)

The predicted traffic heat values of all the sectors constitute
a dynamic traffic heat map in the future horizon H . The
traffic heat map can be considered as an additional cost in the
sector-level path planning, in order to balance the traffic flow
in the whole environment. To achieve this, the edge weight
wi j (k) in sector topology graph Gs defined in Section III-A
is set to

wi j (k) =
{

γi j × [1 + h j (k)], k ≤ H

γi j × [1 + h j (H )], k > H
(6)

where γi j represent the traveling distance from sector Si to
sector Sj . In this article, without loss of generality, we set γi j

to the shortest road path length from the center of Si to the
center of Sj . The edge weight wi j (k) represents the traveling
cost from sector Si to Sj in the future time k, which can be
regarded as an estimated traveling time from sector Si to Sj

under the predicted traffic condition in time k.
Then, the sector-level path planning problem can be trans-

ferred into finding the path with the smallest traveling cost in
the sector topology graph Gs , which has time-varying edge
weight wi j (k). This is the shortest path planning problem in
the dynamic graph. We introduce the concept of finite time
expanded network (FTEN) to solve this problem [25], [26].

The FTEN Gs is a directed and time-invariant graph, which
is formulated by expanding the corresponding dynamic graph
Gs in the discrete time dimension. More specifically, we first
make a separate copy of all the vertices in Gs for every time k.
Each vertex in FTEN Gs represents a time-vertex pair ( j, k)
in Gs , where j = 1, . . . , Ns represents each sector Sj and
k = 1, 2, . . . , H is the time step. Since the traffic prediction
horizon is set to H , the vertices copied in k = H also represent
all time-vertex pairs with k > H . Then, for every edge i → j

Fig. 5. Example of the FTEN. Top left: the original dynamic graph with
four sectors. Bottom left: the dynamic weights with the prediction horizon
H = 4. Right: the corresponding FTEN.

in Gs and every time k = 1, . . . , H , we add an edge in FTEN
Gs from the time-vertex pair (i, k) to the time-vertex pair
( j, min{H, k + wi j (k)}) with the edge weight wi j (k). Fig. 5
shows an example of the FTEN.

Based on the abovementioned definition, we can find that
a sector path in the dynamic sector topology graph Gs

corresponds to a sector path in the FTEN Gs with the same
departure time, the same reaching time, and the same trav-
eling cost. Thus, the shortest path planning problem in a
dynamic graph is equivalent to the shortest path planning
problem in the corresponding FTEN. Since FTEN Gs is a
time-invariant graph, any existing graph-based path planning
algorithm can be utilized to solve the problem. Furthermore,
since, in Section III-A, we have defined all the road segments
as monodirectional roads, and we do not allow the overtaking
behavior in the robot control, the first-in–first-out (FIFO)
property [25] of each edge both in Gs and Gs can be satisfied,
i.e.,

k + wi j (k) ≤ k + 1 + wi j (k + 1) ∀k = 1, . . . , H. (7)

Based on which, the shortest path planning problem from the
start sector Ss to any sector Sj can be formulated as

K j =
{

min
i

(Ki + wi j (Ki )) ∀i |(Si , Sj ) ∈ Gs, j �= s

1, j = s
(8)

where K j represents the earliest reaching time at sector Sj .
From any sector Sj to the destination sector Se, we also

have the following results.
Proposition 2: Consider a static graph Gs , which has the

same vertices and edges with Gs , but in that the weight is
defined as wi j = γi j . For any sector Sj , its traveling cost
d je(k) (with the departure time k) to the destination sector Se

satisfies

d je(k) ≥ d je (9)

where d je represents the minimum traveling cost from Sj to
Se in the static graph Gs .

Proof: Assume that the sector paths with the minimum
traveling cost in the static graph Gs and the dynamic graph
Gs are U and U , respectively. Since Gs has the same vertices
and edges with Gs , and U is also a feasible sector path in U ,
this implies that d je ≤ dU

je, where dU
je is the traveling cost
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Algorithm 1 Sector Path Planning With Traffic Prediction
Input: The sector topology graph Gs with wi j (k) updated

by the current traffic prediction results; The start sector Ss

and destination sector Se for a robot Rn .
Sector-level
Output: path Un for the robot Rn .
1: Generate the FTEN Gs from Gs ;
2: Set Ks = 1, Fs = dse + 1;
3: ∀ j �= s, Set K j = ∞, Fj = ∞;
4: Set Open = {s}, Close = ∅;
5: while i �= e do
6: i = arg min j∈Open Fj ;
7: Open = Open\{i}, Close = Close ∪ {i};
8: for Each j that there is an edge from the pair

(i, min{Ki , H }) to ( j, min{min{Ki , H }+wi j (Ki ), H }) in
Gs do

9: if Ki + wi j (Ki ) + d je < Fj then
10: Set K j = Ki + wi j (Ki ), Fj = K j + d je;
11: if j /∈ Open then
12: Open = Open ∪ { j}
13: end if
14: end if
15: end for
16: end while
17: return The corresponding shortest path Un;

of U in Gs . By the definition in (6), we have wi j (k) ≥ γi j ,
which implies that dU

je ≤ d je(k). Then, we have d je(k) ≥ d je;
this proposition is proven.

Based on the abovementioned proposition and (8), we uti-
lize the A*-based algorithm on FTEN Gs to generate the
sector-level path Un for each robot Rn , and the details are
shown in Algorithm 1. From criteria C7 and C8 in Section III-
A, we can find that, based on the planned sector-level path
Un , a rough prediction of the corresponding road path Qn

can be obtained by directly combining the shortest road path
between every two consecutive sectors in Un . Please note
that in order to ensure the optimality of A* and increase its
searching efficiency, we need to provide a heuristic method
to estimate the traveling cost between any two sectors in the
FTEN Gs . Thus, the abovementioned proposition presents a
heuristic method to estimate the traveling cost by using Gs ,
and the traveling cost in Gs provides a good lower-bound of
the traveling cost in the FTEN Gs .

C. Dynamic Planning Strategy

The proposed traffic flow prediction method only considers
the robot motion delay probability that results from local
motion coordinations. However, the unpredictable uncertain-
ties considered in this article, including the temporary com-
munication failures and other robot motion delays caused
by human–robot interactions or hardware malfunctions, will
increase the robot motion delay probability and decrease the
accuracy of the traffic flow prediction results. Furthermore, the
longer prediction horizon H will lead to less reliable prediction
results.

In order to solve these problems, we introduce the roll
planning strategy to replan the sector-level path of each robot
dynamically. More specifically, when a robot Rn enters a new
sector, count the current robot number M j in each sector Sj

and the number � of sectors with M j > αC j . If � > β Ns ,
predict the traffic flow in the future horizon H and replan the
rest sector-level path of the robot Rn by using Algorithm 1
under the current traffic flow prediction results. α and β are
empirical threshold parameters. The abovementioned strategy
implies that we only repredict the traffic flow and replan the
robot sector path when the number of crowded sectors (i.e.,
the sectors with M j > αC j ) exceeds a certain threshold
β Ns . On the one hand, when the problem scale is very
large (i.e., the sector number Ns and the robot number Nr

are very large), traffic flow prediction will be computation-
ally expensive, and the resulting large FTEN will also lead
to a long path planning time. Repredicting the traffic flow
and replaning the robot sector path frequently cannot ensure
real-time performance. On the other hand, the unpredictable
motion and communication uncertainties will greatly reduce
the traffic prediction accuracy; the robot sector-level path
should be reoptimized by repredicting the traffic flow under
the most recent traffic information. Defining the threshold
β Ns contributes to achieve a tradeoff between the real-time
performance and the optimization performance.

D. Discussion

Balancing the traffic flow in the whole environment
contributes to reducing the probability of robot collisions and
congestions, increasing transportation flow capacities, and
improving warehouse working efficiency. Only considering
the shortest path in the planning process cannot ensure
the expected optimization performance since the robot
congestions (especially in crossroads or trunk roads) cannot
be neglected and will greatly affect the real performance of
the previous planning results. Thus, we present the traffic
flow prediction-based dynamic sector path planning method
to achieve the traffic flow equilibrium purpose in the whole
environment.

Dynamically planning the robot path in the sector level
aims to ensure real-time performance and solve the problems
caused by manipulation uncertainties and hardware malfunc-
tions. In existing approaches, the cooperative A* algorithm
in the spatial–temporal road graph [9], [13] and the time-
window-based algorithms [12] are commonly used to plan a
collision-free path for each robot. However, these approaches
require that each robot should follow its predefined time
schedule strictly. In practical applications, this requirement
usually cannot be ensured since the human manipulation time
in task loading and unloading processes, the movement time
from one place to another place, and the waiting time in
working stations usually cannot be accurately predicted or
controlled. What is more, directly planning (and replanning)
the path of each robot in the spatial–temporal road graph will
be very computationally expansive, especially in large-scale
environments with a large number of robots. Thus, we only
plan the sector-path of each robot and leave the motion
coordination problem to the local planner of each sector.
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V. DECENTRALIZED LOCAL MOTION COORDINATION

Road-level path planning and robot motion coordination
are accomplished locally within each sector Sj . This aims
to decrease the coordination complexity, react to robot delays
and failures immediately, and sure the solvability of the whole
system. More specifically, the objective in the local planner of
each sector Sj is to plan local road paths for all the robots that
travel through the sector Sj and, in the meantime, coordinate
their motions to avoid conflicts.

A. Road-Level Cooperative Path Planning

In Section III-A, we have defined the road topology graph
Gx ; based on which, we can obtain the local road topology
graph G j

x that describes the local road topology within the
sector Sj . Based on the local road topology graph G j

x , the
cooperative A* algorithm [9], [13] is utilized in each sector
Sj to generate a collision-free local road path (within sector
Sj ) for each robot located in sector Sj . In the cooperative A*
algorithm, the path of each robot is planned in a time-expanded
road graph generated from G j

x simultaneously; thus, the robot
collision can be avoided by considering the location constraints
presented in Section II. In order to ensure the real-time
performance, we utilize the CBS in the spatial–temporal space
[9] to speed up the convergence procedure of the cooperative
A* algorithm. Please note that introducing the CBS will not
affect the optimality of the cooperative A* algorithm.

Each time, a new robot may move into sector Sj , or a robot
that is located in sector Sj previously may move out from sec-
tor Sj . Thus, the robots located in each sector usually change
continuously. In order to solve this problem, we introduce
the online roll planning strategy to continuously replan the
local road path of each robot in each sector Sj , i.e., at each
time step, the local planner of each sector plans the local road
path for each robot in the sector from its current locations to
the exit corresponding to its next sector in the sector path,
but each robot only moves one step. Introducing the rolling
planning structure also contributes to solve the motion delay
problem caused by uncertainties mentioned in Section IV-D
since the location constraints presented in Section II have taken
the motion uncertainties into consideration, and the path of all
the robots will be regenerated frequently.

In order to avoid any robot conflict caused in sector switch-
ings during robot movements, an entryway reservation system
is implemented to manage the authority. More specifically, if a
robot has arrived at the exit of its current sector Sj , the robot
should first apply for the authority to enter the next sector
Sj+1. If the entrance of Sj has not been occupied by any other
robot, the entrance will be reserved for the robot and will not
delegate to anyone else. After the robot has entered the sector
Sj+1 and moved away from the entrance, the entrance will
be released again. Note that the movement delays caused by
the abovementioned authority application procedures will also
be regarded as motion uncertainties in this article and will be
solved by the proposed rolling planning strategy.

B. Strategies for Resolving Communication Failures

The communication connection between robots and the
local planner/controller of each sector may be temporarily

Fig. 6. Environment map in simulations. The blue, green, and gray grids
denote the robot station, the task pickup station, and the working station,
respectively. The white area is the moveable region of each robot, and the
black grids represent the human activity areas.

disabled due to bandwidth limitations, route handoff
and reestablishment operators, or hardware malfunctions.
By implementing the heart-single-based method [27], the state
of each robot in the sector can be monitored, and communi-
cation failures can be detected in real time.

In this article, we design a K-step redundancy mechanism
to solve the robot collision problem caused by communication
failures: if a communication failure occurs, the failed robot
will continue to follow its road-level path planned in the
previous time step while waiting for the reestablishment of
the communication connection. In order to ensure the safety,
if the communication cannot be reconstructed immediately, the
failed robot will move up to K-steps and then stops to wait for
the communication reconstruction. What is more, if the failed
robot reaches the exit of its current sector, it will also stop
to ensure safety. In the meantime, the local planner/controller
in the sector will estimate the maximum motion range (the
K-step range) of the failed robot and close the corresponding
area to prevent other robots from entering, and command
the robots that are currently located in that area to stop
immediately. Since, in the individual robot motion control
system, each robot can detect collisions by its onboard sensors
(such as range sensors or impact sensors), the safety can
be ensured. Finally, once the communication connection is
reconstructed, the local planner/controller in the sector will
replan the road-level path for all the influenced robots.

The proposed K-step redundancy mechanism aims to reduce
the impact of communication failure on traffic efficiency while
ensuring safety. Since most of the communication failures
in practical applications are temporary failures and can be
recovered in a short time (during the K-step movements of
the failed robot), the impact can be eliminated, and the system
performance can be maintained.

VI. LARGE-SCALE SIMULATIONS WITH 1000-ROBOT

NETWORKS

Simulations are conducted in MATLAB platform by using
a computer with 2.2-GHz Core i7-8750 CPU 16-GB RAM.
The environment utilized in simulations is shown in Fig. 6.
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TABLE I

UNCERTAINTY LEVEL DEFINITION

The whole environment is discretized into a mesh of Nx =
166×106 four-connecting grids, and the size of any station is
set to one grid, which can only be occupied by one robot in
each step. In this map, there are totally 1008 robot stations, 744
working stations, and 3528 task pickup stations. The whole
environment is partitioned into Ns = 472 sectors by following
criteria C6–C8 proposed in Section III-A. According to criteria
C1–C5 and Proposition 1, this environment enables the test of
up to 744 running tasks at the same time and can be used to
conduct large-scale simulations with up to 1008 robots. Thus,
1008 robots and 3000 online published transportation tasks
are considered in simulations, where each task is assigned to
the nearest free robot. The Mahalanobis distance is utilized to
compute the distance between two grids (places) or two-sector
centers. The parameters used in simulations are set to ε = 0.5,
H = 40, α = 0.3, β = 0.3, and K = 3. At each time
step, we add a motion delay probability fm to each moving
robot. The delayed robots will stay in their current locations
for one time step, i.e., ignore the local road path planned
by its current sector planner. In order to simulate temporary
communication failures, one of the normal robots will be
disconnected, and the previously disconnected robots will
recover their communication connections with the probability
of fc. As shown in Table I, the uncertainties introduced into
simulations are divided into six levels. Note that at the higher
level, both the motion uncertainties and the communication
uncertainties are larger. All the evaluation indices considered
in simulations are defined in Table II. Simulations under each
condition are repeated for five tests, and both the mean value
and the standard deviation of each evaluation index defined in
Table II are recorded.

We first evaluate the proposed approach under different
TaskPubRate from 1 to 7. The uncertainty condition is set
to Level 1 in order to eliminate the effect of large uncertain-
ties. An obvious saturation phenomenon of each evaluation
index can be seen in the results shown in Fig. 7. This
implies that the system capacity has an upper bound, and
the algorithm performance tends to be saturated under a very
heavy workload. The possible reasons are listed as follows.
First, the environment capacity is determined by the map
size and environment structure. In order to provide enough
space for robot motion and coordination, the number of road
segments and stations cannot be very large. Second, according
to Proposition 1, the number of running tasks at the same time
has an upper bound that is related to the number of task pickup
and working stations. If criterion C3 in Section II cannot be
fulfilled, the release of new tasks will be delayed. Third, a large
number of moving robots will increase traffic congestions and

TABLE II

SIMULATION INDEX DEFINITION

Fig. 7. Simulation results under a different TaskPubRate.

uncertainties, which will further lead to system performance
degradations. From the indices MakespanT, AveTaskWaitT,
AveTaskAccomT, and AveAveHeatVal, we can find that the
saturated capacity of the system can be estimated as TaskPub-
Rate = 4 or 5. After this bound, the system performance
tends to be stable. The saturated computation time in each
simulation is lower than 1.7 s. Since the computing resource
in practical warehousing systems is typically much higher than
the computer used in simulations, the real-time performance
of the proposed approach can be ensured.

As an example, Fig. 8 shows the dynamic task accomplish-
ment states in one simulation with TaskPubRate = 5 and the
uncertainty Level 1. We can find that the system performance
is very stable, and there is no strong fluctuation appeared.
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Fig. 8. Example of the dynamic task accomplishment states.

We set TaskPubRate = 4 to further evaluate the proposed
approach under different uncertainty levels defined in Table I.
As shown in Fig. 9, MakespanT, AveTaskWaitT, and Ave-
TaskAccomT increase slightly with the increasing uncertain-
ties and the average traffic heat value of each sector remains in
the acceptable value interval across all the uncertainty levels,
and these imply that the traffic jams and robot deadlocks are
avoided even in the presence of large motion and communica-
tion uncertainties. Furthermore, the algorithm computing time
remains lower than 1.3 s under different uncertainty levels,
i.e., the real-time performance of the proposed system will
not be affected by large uncertainties. Please note that, in the
abovementioned simulations, the maximum number of delayed
robots is up to 24, the maximum number of robots with
communication disconnections is up to 18, and the longest
disconnection duration is up to 71 time steps, which are
large enough to simulation the worst situations in practical
robotic warehouses. Due to the proposed approach, there is no
robot collision occurred in simulations, and all the tasks are
accomplished successfully. These simulation results validate
the effectiveness of the proposed approach in large-scale
problems with large uncertainties.

In addition, we compare the proposed approach with [7]
in a small environment with a size of 78 × 50 (similar
to the map structure shown in Fig. 6). In [7], since the
distributed negotiation mechanism is utilized to achieve local
coordinations, the robot deadlocks and traffic jams cannot be
avoided completely in large-scale problems. In order to ensure
the success rate of [7], when robot deadlock occurs, we remove
the blocked robots from the simulation for 20 s and then
reintroduce them in the same positions (please note that we
do not introduce this operation in our approach). We consider
the one-shot problem and set the robot number from 70 to 150
with different uncertainty levels. From the comparison results
in Figs. 10 and 11, we can find the following.

1) The performance of the proposed approach is similar to
[7] in the case with the smallest robot number and lowest
uncertainty level; as, in this case, the robot density is
very low, the motion conflicts can be easily solved, and
the effect of the traffic heat distribution on the robot
motion can be neglected, so both approaches can handle
the path planning and motion coordination tasks easily.

2) With the increasing of the robot number and uncertainty
level, the performance of [7] decreases largely since
more robot conflicts occur and the robot congestion

Fig. 9. Simulation results under different uncertainty levels. (a) Time indices.
(b) Heat-value indices. (c) Motion and communication uncertainties indices.

Fig. 10. Comparison results: the average task accomplish time.

problem cannot be well handled. Especially, in the case
with 150 robots, the average task accomplish time of [7]
is much higher than ours.

3) Our heat values are much smaller than [7]; this validates
that the traffic flow can be balanced, and robot conges-
tions can be reduced in our simulations.
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Fig. 11. Comparison results: heat values of each sector.

Fig. 12. Experiment system.

VII. LABORATORIAL EXPERIMENTS

In order to validate the practical applicability of the pro-
posed approach, we conduct laboratory experiments with seven
TurtleBot robots. The experiment system is shown in Fig. 12;
we develop an indoor global positioning system with ten
VICON cameras to localize each robot in the environment and
build a wireless communication network to achieve real-time
Wi-Fi communications between the centralized sector path
planner, the controller of each sector, and the TurtleBot robots.
In experiments, the traffic flow prediction and sector-level
dynamic path planning are conducted on a laptop with Core
i7-6500U 2.59-GHz CPU and 8-GB RAM, and the local
road path planning and motion coordination are conducted on
laptops with 1.6-GHz CPU and 1-GB RAM.

As shown in Fig. 13, the experiment environment is divided
into 21 sectors, and the moveable region in each sector has
been discretized into several four-connecting grids (the gird
size is 0.3 m × 0.3 m). One grid corresponds to one place
xl in Section III-A and can only be occupied by one robot
at each time step (the robot size is about 0.14 m × 0.18 m).

Fig. 13. Experiment map. The environment size is 5.4 m × 4.2 m,
including 32 task pickup stations distributed over four task pickup station
areas a–d (in each area, there are eight task pickup stations); 12 robot stations
p1 − p12; and 16 working stations distributed over four working station areas
1©– 4© (in each area, there are four working stations).

TABLE III

EXPERIMENTAL RESULTS

Fig. 14. Real robot trajectories recorded by the global positioning system.

All the stations are of the same size as the grids. Note that
temporary communication blocks and motion inaccuracies are
inherently existed in the experiment system. As shown in
Table III, 12 transportation tasks are online published with the
random-generated pickup and working stations. K pub

i , Xpick
i ,

and Xwork
i in Table III show the publishing time, task pickup

station, and working station of each task Ti , respectively.
Initial locations of the seven robots are randomly generated
in the 12 robot stations, where R1 is located in p7, R2 is
located in p11, R3 is located in p4, R4 is located in p12, R5
is located in p6, R6 is located in p5, and R7 is located in p9.
In experiments, all the transportation tasks are assigned to the
nearest free robot.

The last four columns in Table III show the experimental
results, where Ri represents the robot that is assigned to
accomplish the transportation task Ti , and K assign

i , K start
i ,
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Fig. 15. Real experiment scenarios recorded by the bird-eye camera.

Fig. 16. Experiment scenarios in 14 (left) and 17 s (right), where the motions
of three robots are coordinated in an intersection to avoid collisions.

and K finish
i record the real-time instants when the task Ti

is assigned to the robot Ri , picked up by the robot Ri in
station Xpick

i , and accomplished in working station Xwork
i ,

respectively. Results in Table III show that each transportation
task is immediately allocated to the nearest free robot once
published or allocated to the earliest free robot when the
robot has accomplished its previous assigned task. All the
transportation tasks are accomplished within 83 s, and no robot
motion conflict occurs.

Fig. 14 shows the plots of the real robot trajectories
recorded by the global indoor positioning system. We can find
that robots can track their road-level paths with acceptable
navigation accuracy. Fig. 15 shows six real scenarios in the
experiments form 12 to 62 s. Fig. 16 shows two consecutive
scenarios as an example to show our motion coordination per-
formance. The abovementioned experimental results validate
the effectiveness and practical applicability of the proposed
approach. More details of our simulations and experiments
can be found in the video https://youtu.be/Ztzq78plsIM.

VIII. CONCLUSION

In this article, we propose a probabilistic traffic flow pre-
diction algorithm and a hierarchical framework to resolve

the life-long path planning and motion coordination problem
of 1000-robot networks. Large-scale simulations with robot
motion uncertainties and communication failures validate the
effectiveness and robustness of the proposed approach, and
comprehensive comparisons show that our approach outper-
forms existing work. In addition, real experiments with a
group of TurtleBot robots validate the practical applicability
of the proposed approach. In future work, we will take the
environment changes into consideration and also introduce the
learning-based approaches to achieve a fully decentralized sys-
tem without global information. In addition, we will introduce
a local FTEN within each sector to further improve the traffic
prediction accuracy.
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