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Abstract—Combining multiple LiDARs enables a robot to maxi-
mize its perceptual awareness of environments and obtain sufficient
measurements, which is promising for simultaneous localization
and mapping (SLAM). This article proposes a system to achieve
robust and simultaneous extrinsic calibration, odometry, and map-
ping for multiple LiDARs. Our approach starts with measurement
preprocessing to extract edge and planar features from raw mea-
surements. After a motion and extrinsic initialization procedure,
a sliding window-based multi-LiDAR odometry runs onboard to
estimate poses with an online calibration refinement and conver-
gence identification. We further develop a mapping algorithm to
construct a global map and optimize poses with sufficient features
together with a method to capture and reduce data uncertainty. We
validate our approach’s performance with extensive experiments
on 10 sequences (4.60-km total length) for the calibration and
SLAM and compare it against the state of the art. We demonstrate
that the proposed work is a complete, robust, and extensible system
for various multi-LiDAR setups. The source code, datasets, and
demonstrations are available at: https://ram-lab.com/file/site/m-
loam.

Index Terms—Autonomous driving, calibration and
identification, sensor fusion, simultaneous localization and
mapping (SLAM).

I. INTRODUCTION

A. Motivation

S IMULTANEOUS localization and mapping (SLAM) is es-
sential to a wide range of applications, such as scene re-

construction, robotic exploration, and autonomous driving [1]–
[3]. Approaches that use only a LiDAR have attracted much
attention from the research community due to their accuracy
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and reliability in range measurements. However, LiDAR-based
methods commonly suffer from data sparsity and limited vertical
field of view (FOV) in real-world applications [4]. For instance,
LiDARs’ points distribute loosely, which induces a mass of
empty regions between two nearby scans. This characteristic
usually causes state estimation to degenerate in structureless
environments, such as narrow corridors and stairs [5]. Recently,
owing to the decreasing price of sensors, we have seen a growing
trend of deploying multi-LiDAR systems on practical robotic
platforms [6]–[11]. Compared with a single-LiDAR setup, the
primary improvement of multi-LiDAR systems is the significant
enhancement on the sensing range and density of measurements.
This benefit is practically useful for self-driving cars since we
have to address the critical blind spots created by the vehicle
body. Thus, we consider multi-LiDAR systems in this article.

B. Challenges

Despite their great advantages in environmental perception,
a number of issues affect the development of SLAM using a
multi-LiDAR setup.

1) Precise and Flexible Extrinsic Calibration: Recovering
the multi-LiDAR transformations for a new robotic platform
is complicated. In many cases, professional users have to cali-
brate sensors in human-made surroundings [12] carefully. This
requirement increases the cost to deploy and maintain a multi-
LiDAR system for field robots.

It is desirable that the system can self-calibrate the extrin-
sics in various environments online. As shown in [13]–[15],
benefiting from the simultaneous estimation of extrinsics and
ego-motion, the working scope of visual–inertial systems has
been expanded to drones and vessels in outdoor scenes. These
approaches continuously perform calibration during the mission
to guarantee the objective function to be always “optimal.” How-
ever, this process typically requires environmental or motion
constraints to be fully observable. Otherwise, the resulting ex-
trinsics may become suboptimal or unreliable. Thus, we have to
fix the extrinsics if they are accurate, which creates a demand for
online calibration with a convergence identification. In order to
cope with the centimeter-level calibration error and unexpected
changes on extrinsics over time, it is also beneficial to model the
extrinsic perturbation for multi-LiDAR systems.
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2) Low Pose Drift: To provide accurate poses in real time,
state-of-the-art (SOTA) LiDAR-based methods [16]–[18] com-
monly solve SLAM by two algorithms: 1) odometry and 2)
mapping. These algorithms are designed to estimate poses in
a coarse-to-fine fashion. Based on the original odometry al-
gorithm, an approach that fully exploits multi-LiDAR mea-
surements within a local window is required. The increasing
constraints help to prevent degeneracy or failure of frame-to-
frame registration. The subsequent mapping algorithm runs at
a relatively low frequency and is given plenty of feature points
and many iterations for better results. However, as we identify
in Section VIII, many SOTA approaches neglect the fact that un-
certain points in the global map limit the accuracy. To minimize
this adverse effect, we must develop a method to capture map
points’ uncertainties and reject outliers.

C. Contributions

To tackle these challenges, we propose M-LOAM, a robust
system for Multi-LiDAR extrinsic calibration, real-time Odom-
etry, and Mapping. Without manual intervention, our system can
start with several extrinsic-uncalibrated LiDARs, automatically
calibrate their extrinsics, and provide accurate poses as well
as a globally consistent map. Our previous work [5] proposed
sliding window-based odometry to fuse LiDAR points with
high-frequency IMU measurements. That framework inspires
this article, where we try to solve the problem of multi-LiDAR
fusion. In addition, we introduce a motion-based approach [4]
to initialize extrinsics, and employ the tools in [19] to repre-
sent uncertain quantities. Our design of M-LOAM presents the
following contributions.

1) Automatic initialization that computes all critical states,
including motion between consecutive frames as well as
extrinsics for subsequent phases. It can start at arbitrary
positions without any prior knowledge of the mechanical
configuration or calibration objects (see Section VI).

2) Online self-calibration with a general convergence cri-
terion is executed simultaneously with the odometry.
It has the capability to monitor the convergence and
trigger termination in a fully unsupervised manner (see
Section VII-B).

3) Sliding-window-based odometry fully exploits informa-
tion from multiple LiDARs. This implementation can be
explained as small-scale frame-to-map registration, which
further reduces the drift accumulated by the consecutive
frame-to-frame odometry (see Section VII-C).

4) Mapping with a two-stage approach captures and propa-
gates uncertain quantities from sensor noise, degenerate
pose estimation, and extrinsic perturbation. This approach
enables the mapping process with an awareness of un-
certainty and helps us to maintain the consistency of a
global map as well as boost the robustness of a system for
long-duration navigation tasks (see Section VIII).

To the best of our knowledge, M-LOAM is the first complete
solution to multi-LiDAR calibration and SLAM. The system
is evaluated under extensive experiments on both handheld
devices and autonomous vehicles, covering various scenarios

Fig. 1. We visualize the immediate results of M-LOAM. The raw point clouds
perceived by different LiDARs are denoised and extracted with edge (blue dots)
and planar (red dots) features, which are shown at the top-right position. The
proposed online calibration is performed to obtain accurate extrinsics. After that,
the odometry and mapping algorithms use these features to estimate poses. The
trajectory of the mapping (green) is more accurate than that of the odometry
(red).

from indoor offices to outdoor urban roads, and outperforms
the SOTA LiDAR-based methods. Regarding the calibration on
diverse platforms, our approach achieves an extrinsic accuracy
of centimeters in translation and decidegrees in rotation. For the
SLAM in different scales, M-LOAM has been successfully ap-
plied to provide accurate poses and map results. Fig. 1 visualizes
M-LOAM’s output at each stage. To benefit the research com-
munity, we publicly release our code, implementation details,
and the multi-LiDAR datasets.

D. Organization

The rest of the article is organized as follows. Section II re-
views the relevant literature. Section III formulates the problem
and provides basic concepts. Section IV gives the overview
of the system. Section V describes the preprocessing module
on LiDAR measurements. Section VI introduces the motion
and extrinsic initialization procedure. Section VII presents the
tightly coupled, sliding-window-based multi-LiDAR odometry
(M-LO) with online calibration refinement. The uncertainty-
aware multi-LiDAR mapping algorithm is introduced in Sec-
tion VIII, followed by experimental results in Section IX. In
Section X, we provide a discussion about the proposed system.
Finally, Section XI concludes this article.

II. RELATED WORK

Scholarly works on SLAM and extrinsic calibration are ex-
tensive. In this section, we briefly review relevant results on
LiDAR-based SLAM and online calibration methods for multi-
sensor systems.
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A. LiDAR-Based SLAM

Generally, many SOTA are developed from the iterative clos-
est point (ICP) algorithm [20]–[23], into which the methods
including measurement preprocessing, degeneracy prediction,
and sensor fusion are incorporated. These works have pushed
the current LiDAR-based systems to become fast, robust, and
feasible to large-scale environments.

1) Measurement Preprocessing: As the front-end of a sys-
tem, the measurement preprocessing encodes point clouds into
a compact representation. We categorize related algorithms into
either dense or sparse methods. As a typical dense method,
SuMa [24] demonstrates the advantages of utilizing surfel-
based maps for registration and loop detection. Its extended
version [25] incorporates semantic constraints into the original
cost function. The process of matching dense pixel-to-pixel cor-
respondences makes the method computationally intensive, thus
requiring dedicated hardware (GPU) for real-time operation.
These approaches are not applicable to our cases since we have
to frequently perform the registration on a CPU.

Sparse methods prefer to extract geometric features from
raw measurements and are, thus, supposed to have real-time
performance. Grant et al. [26] proposed a plane-based regis-
tration, whereas Velas et al. [27] represented point clouds as
collar line segments. Compared to them, LOAM [16] has fewer
assumptions about sensors and surroundings. It selects distinct
points from both edge lines and local planar patches. Recently,
several following methods have employed ground planes [17],
[28], visual detection [29], probabilistic grid maps [30], good
features [31], or directly used dense scanners [18], [32], [33]
to improve the performance of sparse approaches in noisy or
structureless environments. To limit the computation time when
more LiDARs are involved, we extract the sparse edge and planar
features like LOAM. But differently, we represent their residuals
in a more concise and unified way.

2) Degeneracy in State Estimation: The geometric con-
straints of features are formulated as a state-estimation problem.
Different methods have been proposed to tackle the degeneracy
issue. Zhang et al. [34] defined a factor, which is equal to the
minimum eigenvalue of information matrices, to determine the
system degeneracy. They also proposed a technique called so-
lution remapping to update variables in well-conditioned direc-
tions. This technique was further applied to tasks including lo-
calization, registration, pose graph optimization, and inspection
of sensor failures [35]–[37]. To quantify a nonlinear system’s
observability, Rong et al. [38] computed the condition number of
the empirical observability Gramian matrix. Since our problem
linearizes the objective function as done in Zhang et al. [34], we
introduce the solution remapping to update states. Additionally,
our online calibration method employs the degeneracy factor as
a quantitative metric of the extrinsic calibration.

3) Multisensor Fusion: Utilizing multiple sensors to im-
prove the motion-tracking performance of single-LiDAR odom-
etry is promising. Most existing works on LiDAR-based fusion
combine visual or inertial measurements. The simplest way
to deal with multimodal measurements is the loosely coupled
fusion, where each sensor’s pose is estimated independently. For

example, LiDAR-IMU fusion is usually done by the extended
Kalman filter (EKF) [39]–[41]. Tightly coupled algorithms that
optimize sensors’ poses by jointly exploiting all measurements
have become increasingly prevalent in the community. They are
usually done by either the EKF [42]–[44] or batch optimiza-
tion [5], [45]–[48]. Besides multimodal sensor fusion, another
domain is to explore the fusion of multiple LiDARs (unimodel),
which is still an open problem.

Multiple LiDARs improve a system by maximizing the sens-
ing coverage against extreme occlusion. Inspired by the success
of tightly coupled algorithms, we achieve a sliding-window
estimator to optimize states of multiple LiDARs. This mode
has great advantages for multi-LiDAR fusion.

B. Multisensor Calibration

Precise extrinsic calibration is important to any multisensor
system. Traditional methods [12], [49]–[51] have to run an ad-
hoc calibration procedure before a mission. This tedious process
needs to be repeated whenever there is slight perturbation on the
structure. A more flexible solution to estimate these parameters
is combined with SLAM-based techniques. Here, extrinsics
are treated as one of the state variables and optimized along
with sensors’ poses. This scheme is also applicable to some
nonstationary parameters, such as robot kinematics, IMU biases,
and time offsets.

Kummerle et al. [52] pioneered a hypergraph optimization
framework to calibrate an onboard laser scanner with wheel
encoders. Their experiments reveal that online correction of
parameters leads to consistent and accurate results. Teichman et
al. [53], meanwhile, proposed an iterative SLAM-fitting pipeline
to resolve the distortion of two RGB-D cameras. To recover
spatial offsets of a multicamera system, Heng et al. [54] formu-
lated the problem as a bundle adjustment, whereas Ouyang et
al. [55] employed the Ackermann steering model of vehicles
to constrain extrinsics. As presented in [47], [56]–[58], the
online estimation of time offsets among sensors is crucial to
IMU-centric systems. Qin et al. [56] utilized reprojection errors
of visual features to formulate the temporal calibration problem,
whereas Qiu et al. [58] proposed a more general method to
calibrate heterogeneous sensors by analyzing sensors’ motion
correlation.

This article implicitly synchronizes the time of multiple Li-
DARs with an hardware-based external clock and explicitly
focuses on the extrinsic calibration. Our approach consists of
an online procedure to achieve flexible multi-LiDAR extrinsic
calibration. To monitor the convergence of estimated extrinsics,
we propose a general criterion. In addition, we model the ex-
trinsic perturbation to reduce its negative effect for long-term
navigation tasks.

III. PROBLEM STATEMENT

We formulate M-LOAM in terms of the maximum likelihood
estimation (MLE). The MLE leads to a nonlinear optimization
problem where the inverse of the Gaussian covariances weights
the residual functions. Before delving into details of M-LOAM,
we first introduce some basic concepts. Section III-A presents

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on February 09,2022 at 02:28:08 UTC from IEEE Xplore.  Restrictions apply. 



354 IEEE TRANSACTIONS ON ROBOTICS, VOL. 38, NO. 1, FEBRUARY 2022

TABLE I
NOMENCLATURE

notations. Section III-B introduces the MLE, and Section III-C
describes suitable models to represent uncertain measurements
in R3 and transformations in SE(3). Finally, Section III-D
briefly presents the implementation of the MLE with approx-
imate Gaussian noise in M-LOAM.

A. Notations and Definitions

The nomenclature is shown in Table I. We consider a system
that consists of one primary LiDAR and multiple auxiliary
LiDARs. The primary LiDAR defines the base frame, and we use
()l

1
/()b to indicate it. The frames of the auxiliary LiDARs are

denoted by ()l
i,i>1

. We denote F as the set of available features
extracted from the LiDARs’ raw measurements. Each feature
is represented as a point in 3-D space: p = [x, y, z]�. The state
vector, composed of translational and rotational parts, is denoted
by x = [t,q] where t is a 3× 1 vector, and q is the Hamilton
quaternion. But in the case that we need to rotate a vector, we
use the 3× 3 rotation matrix R in the Lie group SO(3). We can
convert q into R with the Rodrigues formula [59]. Section VIII
associates uncertainty with poses on the vector space, where we
use the 4× 4 transformation matrix T in the Lie group SE(3) to
represent a pose. A rotation matrix and translation vector can be

associated with a transformation matrix as T =

[
R p

0� 1

]
.

B. Maximum Likelihood Estimation

We formulate the pose and extrinsic estimation of a multi-
LiDAR system as an MLE problem [60]

x̂k = argmax
xk

p(Fk|xk) = argmin
xk

f(xk,Fk) (1)

where Fk represents the available features at the kth frame, xk

is the state to be optimized, and f(·) is the objective function.
Assuming the measurement model to be subjected to Gaussian
noise [3], problem (1) becomes a nonlinear least-squares (NLS)
problem

x̂k = argmin
xk

m∑
i=1

ρ
(∣∣∣∣r(xk,pki)

∣∣∣∣2
Σi

)
(2)

where ρ(·) is the robust Huber loss to handle outliers [61], r(·) is
the residual function, and Σi is the covariance matrix. Iterative
methods such as Gauss–Newton or Levenberg–Marquardt can
often be used to solve this NLS problem. These methods locally
linearize the objective function by computing the Jacobian w.r.t.
xk as J = ∂f/∂xk. Given an initial guess, xk is iteratively
optimized by usage of J until converging to a local minima.
At the final iteration, the least-squares covariance of the state
is calculated as Ξ = Λ−1 [62], where Λ = J�J is called the
information matrix.

C. Uncertainty Representation

We employ the tools in [19] to represent data uncertainty. We
first represent a noisy LiDAR point as

p = p̄+ ζ, ζ ∼ N (0,Z) (3)

where p̄ is a noise-free vector, ζ ∈ R3 is a small Gaussian
perturbation variable with zero mean, andZ is a noise covariance
of LiDAR measurements. To make (3) compatible with transfor-
mation matrices (i.e., p′

h = Tph), we also express it with 4× 1
homogeneous coordinates

ph =

[
p̄

1

]
+Dζ = p̄h +Dζ, ζ ∼ N (0,Z) (4)

where D is a matrix that converts a 3× 1 vector into ho-
mogeneous coordinates. As investigated in [63], the LiDARs’
depth measurement error (also called sensor noise) is primarily
affected by the target distances. Z is simply set as a constant
matrix.1 We, then, define a random variable in SE(3) with a
small perturbation according to2

T = exp(ξ∧)T̄, ξ ∼ N (0,Ξ) (5)

where T̄ is a noise-free transformation and ξ ∈ R6 is the small
perturbation variable with covariance Ξ. This representation
allows us to store the mean transformation as T̄ and use ξ for
perturbation on the vector space. We consider that Ξ indicates
following two practical error sources.

1) Degenerate Pose Estimation arises from cases such as lack
of geometrical structures in poorly constrained environ-
ments [34]. It typically makes poses uncertain in their

1Z = diag(σ2
x, σ

2
y , σ

2
z), where σx, σy , σz are standard deviations of Li-

DARs’ depth noise along different axes. We refer to manuals to obtain them
for a specific LiDAR.

2The (·)∧ operator turns ξ into a member of the Lie algebra se(3). The
exponential map associates an element of se(3) to a transformation matrix in
SE(3). Similarly, we can also use (·)∧ and exp(·) to associate 3× 1 vector
φ with a rotation matrix in SO(3). Barfoot and Furgale[19] provide detailed
expressions.
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Fig. 2. Block diagram illustrating the full pipeline of the proposed M-LOAM system. The system starts with measurement preprocessing (see Section V). The
initialization module (see Section VI) initializes values for the subsequent nonlinear optimization-based multi-LiDAR odometry with calibration refinement (see
Section VII). According to the convergence of calibration, the optimization is divided into two subtasks: 1) Online calibration and 2) pure odometry. If the calibration
converges, we can skip the extrinsic initialization and refinement steps, and enter the pure odometry and mapping phase. The uncertainty-aware multi-LiDAR
mapping (see Section VIII) maintains a globally consistent map to decrease the odometry drift and remove noisy points.

degenerate directions [62], [64]. Existing works resort to
model-based and learning-based [65] methods to estimate
pose covariances in the context of ICP or vibration, impact,
and temperature drift during long-term operation.

2) Extrinsic Perturbation always exists due to calibration
errors [12]. Wide baseline sensors such as stereocam-
eras, especially, suffer even more extrinsic deviations than
standard sensors. Such perturbation is detrimental to the
measurement accuracy [66], [67] of multisensor systems
but is hard to measure.

The computation of Ξ is detailed in Section VIII.

D. MLE With Approximate Gaussian Noise in M-LOAM

We extend the MLE to design multiple M-LOAM estimators
to solve the robot poses and extrinsics in a coarse-to-fine fashion.
The most important step is to approximate the Gaussian noise
covariance Σ to realistic measurement models. Based on the
discussion in Section III-C, we identify that three sources of error
may make landmarks uncertain: 1) sensor noise, 2) degenerate
pose estimation, and 3) extrinsic perturbation. The frame-to-
frame motion estimation (see Section VI-A) is approximately
subjected to the sensor noise. The tightly coupled odometry (see
Section VII-C) establishes a local map for the pose optimization.
We should propagate pose uncertainties onto each map point.
Nevertheless, this operation is often time-consuming (around
10–20 ms) if more LiDARs and sliding windows are involved.
To guarantee the real-time odometry, we do not compute the
pose uncertainty here. We simply set Σ = Z as the covariance
of residuals. In mapping, we are given sufficient time for an
accurate pose and a global map. Therefore, we consider all un-
certainty sources. Section VIII explains how the pose uncertainty
affects the mapping precision and Σ is propagated.

IV. SYSTEM OVERVIEW

We make following three assumptions to simplify the system
design.

1) LiDARs are synchronized, meaning that the temporal
latency among different LiDARs is almost zero.

2) The platform undergoes sufficient rotational and transla-
tional motion in the period of calibration initialization.

3) The local map of the primary LiDAR should share an over-
lapping FOV with auxiliary LiDARs for feature matching
in refinement to shorten the calibration phase. This can be
achieved by moving the robot.

Fig. 2 presents the pipeline of M-LOAM. The system starts
with measurement preprocessing (see Section V), in which edge
and planar features are extracted and tracked from denoised
point clouds. The initialization module (see Section VI) provides
all necessary values, including poses and extrinsics, for boot-
strapping the subsequent nonlinear optimization-based M-LO.
The M-LO fuses multi-LiDAR measurements to optimize the
odometry and extrinsics within a sliding window. If the extrinsics
already converge, we skip the extrinsic initialization as well
as refinement steps and enter the pure odometry and mapping
phase. The probabilistic mapping module (see Section VIII)
constructs a global map with sufficient features to eliminate the
odometry drift. The odometry and mapping run concurrently in
two separated threads.

V. MEASUREMENT PREPROCESSING

We implement three sequential steps to process LiDARs’ raw
measurements. We first segment point clouds into many clusters
to remove noisy objects and, then, extract edge and planar
features. To associate features between consecutive frames, we
match a series of correspondences. In this section, each LiDAR
is handled independently.
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A. Segmentation for Noise Removal

With knowing the vertical scanning angles of a LiDAR, we
can project the raw point cloud onto a range image without data
loss. In the image, each valid point is represented by a pixel. The
pixel value records the Euclidean distance from a point to the
origin. We apply the segmentation method proposed in [68] to
group pixels into many clusters. We assume that two neighboring
points in the horizontal or vertical direction belong to the same
object if their connected line is roughly perpendicular (> 60◦)
to the laser beam. We employ the breadth-first search algorithm
to traverse all pixels, ensuring a constant time complexity. We
discard small clusters since they may offer unreliable constraints
in optimization.

B. Feature Extraction and Matching

We are interested in extracting the general edge and planar
features. We follow the work by Zhang and S. Singh [16] to
select a set of feature points from measurements according to
their curvatures. The set of extracted features F consists of two
subsets: 1) edge subset (high curvature) E and 2) planar subset
(low curvature) H. Both E and H consist of a portion of features
that are the most representative. We further collect edge points
from E with the highest curvature and planar points from H
with the lowest curvature. These points form two new sets: 1) Ê
and 2) Ĥ. The next step is to determine feature correspondences
between two consecutive frames, ()l

i
k−1 → ()l

i
k , to construct ge-

ometric constraints. For each point in Ê lik , two closest neighbors
from E lik−1 are selected as the edge correspondences. For a point
in Ĥlik , the three closest points to Hlik−1 that form a plane are
selected as the planar correspondences.

VI. INITIALIZATION

Optimizing states of multiple LiDARs is highly nonlinear
and needs initial guesses. This section introduces our motion
and extrinsic initialization approach, which does not require any
prior mechanical configuration of the sensor suite. It also does
not involve any manual effort, making it particularly useful for
autonomous robots.

A. Scan-Based Motion Estimation

With found correspondences between two successive frames
of each LiDAR, we estimate the frame-to-frame transformation
by minimizing residual errors of all features. As illustrated in
Fig. 3, the residuals are formulated by both edge and planar
correspondences. Let xk be the relative transformation between
two scans of a LiDAR at the kth frame. Regarding planar
features, for a point p ∈ Ĥlik , if Π is the corresponding planar
patch, the planar residual is computed as

rH(xk,p,Π) = aw, a = w�(Rkp+ tk) + d (6)

where a is the point-to-plane Euclidean distance and [w, d] is
the coefficient vector of Π. Then, for an edge point p ∈ Ê lik , if
L is the corresponding edge line, we define the edge residual as

Fig. 3. Planar and edge residuals. The red dot indicates the reference point
and the green dots are its corresponding points.

a combination of two planar residuals using (6) as

rE(xk,p, L) = [rH(xk,p,Π1), rH(xk,p,Π2)] (7)

where [w1, d1] and [w2, d2] are the coefficients of Π1 and Π2,
w1 coincides with the projection direction from L to p, and
Π2 is perpendicular to Π1 s.t. w2⊥w1, and w2⊥L. The afore-
mentioned definitions are different from that of LOAM [16],
and show two benefits. First, the edge residuals offer additional
constraints to the states. Furthermore, the residuals are repre-
sented as vectors, not scalars, allowing us to multiply a 3× 3
covariance matrix. We minimize the sum of all residual errors
to obtain the MLE as

x̂k = argmin
xk

∑
p∈F̂li

k

ρ
(∥∥rF (xk,p)

∥∥2
Σp

)

rF (xk,p) =

{
rE(xk,p, L) if p ∈ Ê lik

rH(xk,p,Π) if p ∈ Ĥlik

(8)

where the Jacobians of rF (·) are detailed in Appendix A.
In practice, points are skewed after a movement on LiDARs

with a rolling-shutter scan. After solving the incremental motion
xk, we correct points’ positions by transforming them into
the last frame ()l

i
k−1 . Let tk−1 and tk be the start and end

time of a LiDAR scan, respectively. For a point p captured at
t ∈ (tk−1, tk], it is transformed as3

plik−1 = Rτ
kp+ tτk, τ =

t− tk−1

tk − tk−1
(9)

where the rotation and translation are linearly interpolated [5]

Rτ
k = exp(φ∧

k)
τ = exp(τφ∧

k), tτk = τtk. (10)

B. Calibration of Multi-LiDAR System

The initial extrinsics are obtained by aligning motion se-
quences of two sensors. This is known as solving the hand-eye
calibration problem AX = XB, where A and B are the his-
torical transformations of two sensors and X is their extrinsics.
As the robot moves, the following equations of the ith LiDAR
should hold for any k

R
lik−1

lik
Rb

li = Rb
liR

bk−1

bk
(11)

3The timestamp of each point can be obtained from raw data.
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(R
lik−1

lik
− I3)t

b
li = Rb

lit
bk−1

bk
− t

lik−1

lik
(12)

where the original problem is decomposed into the rotational
and translational components according to [14]. We implement
this method to initialize the extrinsics online.

1) Rotation Initialization: We rewrite (11) as a linear equa-
tion by employing the quaternion

q
lik−1

lik
⊗ qb

li = qb
li ⊗ qbk−1

bk

⇒
[
Q1(q

lik
lik−1

)−Q2(q
bk−1

bk
)
]
qb
li = Qk−1

k qb
li

(13)

where⊗ is the quaternion multiplication operator andQ1(·) and
Q2(·) are the matrix representations for left and right quaternion
multiplication, respectively [59]. Stacking (13) from multiple
time intervals, we form an overdetermined linear system as⎡

⎢⎢⎣
w0

1 ·Q0
1

...

wK−1
K ·QK−1

K

⎤
⎥⎥⎦
4K×4

qb
li = QKqb

li = 04K×4 (14)

where K is the number of constraints, and wk−1
k are robust

weights defined as the angle in the angle-axis representation
of the residual quaternion

wk−1
k = ρ′(φ), φ = 2arctan (||qxyz||, qw)

q = (q̌b
li)

∗ ⊗ (q
lik−1

lik
)∗ ⊗ q̌b

li ⊗ qbk−1

bk

(15)

where ρ′(·) is the derivative of the Huber loss, q̌b
li is the currently

estimated extrinsic rotation, and q∗ is the inverse of q. Subject
to ‖qb

li‖ = 1, we find the closed-form solution of (14) using
SVD. For the full observability of 3-DoF rotation, sufficient
motion excitations are required. Under sufficient constraints, the
null space of QK should be rank one. This means that we only
have one zero singular value. Otherwise, the null space of QK

may be larger than one due to degenerate motions on one or
more axes. Therefore, we need to ensure that the second small
singular value σmin2 is large enough by checking whether this
condition is achieved. We set a threshold σR, and terminate the
rotation calibration ifσmin2 > σR. The increasing data grows the
row of QK rapidly. To bound the computational time, we use
a priority queue [69] with the length K = 300 to incrementally
store historical constraints. Constraints with the smallest rotation
are removed.

2) Translation Initialization: Once the rotational calibration
is finished, we construct a linear system from (12) by incorpo-
rating all the available data as⎡

⎢⎢⎢⎣
R

li0
li1
− I3
...

R
liK−1

liK
− I3

⎤
⎥⎥⎥⎦
3K×3

tbli =

⎡
⎢⎢⎢⎣

R̂b
lit

b0
b1

− t
li0
li1

...

R̂b
lit

bK−1

bK
− t

liK−1

liK

⎤
⎥⎥⎥⎦
3K×1

(16)

where tbli is obtained by applying the least-squares approach.
However, the translation at the z-axis is unobservable if the robot
motion is planar. In this case, we set tz = 0 and rewrite (16)
by removing the z− component of tbli . Unlike [4], our method

cannot initialize tz by leveraging ground planes and must recover
it in the refinement phase (see Section VII-B).

VII. TIGHTLY COUPLED MULTI-LIDAR ODOMETRY WITH

CALIBRATION REFINEMENT

Taking the initial guesses as input, we propose a tightly cou-
pled M-LO to optimize all states within a sliding window. This
procedure is inspired by the recent success of bundle adjustment,
graph-based formation, and marginalization in multisensor
systems [5], [15], [70].

A. Formulation

The full state vector in the sliding window is defined as

X = [Xf , Xv, Xe]

= [x1, . . . ,xp,xp+1, . . . ,xN+1,x
b
l2 , . . . ,x

b
lI ]

xk = [twbk ,q
w
bk
], k ∈ [1, N + 1]

xb
li = [tbli ,q

b
li ], i ∈ [1, I]

(17)

where xk is the state of the primary sensor in the world frame
at different timestamps, xb

li represents the extrinsics from the
primary LiDAR to auxiliary LiDARs, and N + 1 is the number
of states in the window. To establish data association to constrain
these states, we build local maps.

Fig. 4 visualizes the graph-based formulation. We use p to
index the pivot state of the window and set xp as the origin of the
local map. With the relative transformations from the pivot frame
to other frames, the map is constructed by concatenating with
features at the firstN frames, i.e.,F lik , k ∈ [1, N ]. The local fea-
ture map of the ith LiDAR, which consists of the local edge map
and local planar map, is denoted by Mli . We split X into three
groups:Xf ,Xv , andXe.Xf = [x1, . . . ,xp] are considered as the
fixed, accurate states.Xv = [xp+1, . . . ,xN+1] are considered as
the variables which are updated recursively during optimization.
Xe = [xb

l2 , . . . ,x
b
lI ] are the extrinsics. Their setting depends on

the convergence of the online calibration. We minimize the sum
of all residual errors within the sliding window to obtain a MAP
estimation as

X̂ = argmin
X

{∥∥rpri(X )
∥∥2 + fM(X )

}
(18)

where rpri(X ) is the prior term from the state marginalization
defined in Section VII-E and fM(X ) is the sum of map-based
residual errors. The Jacobians of (18) are given in Appendix A.
Different from the frame-to-frame estimation in Section VI-A,
the presented sliding-window estimator jointly optimizes all
states in the window. This approach outputs more accurate
results since the local map provides dense and reliable corre-
spondences. If sensors are precisely calibrated, the constraints
from other LiDARs are also used. According to the convergence
of calibration, we divide the problem into two subtasks: 1) online
calibration (variable Xe) and 2) pure odometry (fixed Xe). At
each task, the definition of fM(X ) is different, and we present
the details in Sections VII-B and VII-C.
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Fig. 4. Illustration of a graphical model for a sliding-window estimator (p = 3,N = 6) with online calibration (left) and pure odometry (right). Mb
F (Mli

F )
is the local map of the base (ith) LiDAR. It consists of transformed and merged feature points captured by the base (ith) LiDAR from the first N frames in the
window. Note that the extrinsics are optimized in the online calibration while they are fixed in the pure odometry.

B. Optimization With Online Calibration

We exploit the map-based measurements to refine the coarse
initialization results. Here, we treat the calibration as a reg-
istration problem. fM(X ) is divided into two functions w.r.t.
Xv and Xe. For states in Xv, the constraints are constructed
from correspondences between features of the primary sensor
at the latest frames, i.e., Fbk , k ∈ [p+ 1, N + 1] and those of
the primary local map, i.e., Mb. For states in Xe, the constraints
are built up from correspondences between features of auxiliary
LiDARs at the pth frame, i.e., F lip and the map Mb.

The correspondences between Fbk and Mb are found using
the method in [16]. KD-Tree is used for fast indexing in a map.
1) For each edge point, we find a set of its nearest points in the
local edge map within a specific region. This set is denoted byS ,
and its covariance is then computed. The eigenvector associated
with the largest value implies the direction of the corresponding
edge line. By calculating the mean of S , the position of this line
is also determined. 2) For each planar point, the coefficients of
the corresponding plane in the local planar map are obtained by
solving a linear system such as ws+ d = 0, ∀s ∈ S . Similarly,
we find correspondences between F lip and Mb. Finally, we
define the objective as the sum of all measurement residuals
for the online calibration as

fM(X ) = fM(Xv) + fM(Xe)

=

N+1∑
k=p+1

∑
p∈Fbk

ρ
(∥∥rF (x−1

p xk,p)
∥∥2
Σp

)

+

I∑
i=2

∑
p∈Flip

ρ
(∥∥rF (xb

li ,p)
∥∥2
Σp

)
(19)

where x−1
p xk defines the relative transformation from the pivot

frame to the kth frame.

C. Optimization With Pure Odometry

Once we finish the online calibration by fulfilling the con-
vergence criterion (see Section VII-D), the optimization with
pure odometry given accurate extrinsics is then performed. In
this case, we do not optimize the extrinsics, and utilize all
available map-based measurement to improve the single-LiDAR
odometry. We incorporate constraints between features of all
LiDARs and local maps into the cost function as

fM(X ) = fM(Xv)

=
N+1∑

k=p+1

∑
p∈Fbk

ρ
(∥∥rF (x−1

p xk,p)
∥∥2
Σp

)

+
I∑

i=2

N+1∑
k=p+1

∑
p∈Fli

k

ρ
(∥∥rF (x−1

p xkx
b
li ,p)

∥∥2
Σp

)
(20)

where x−1
p xkx

b
li is the transformation from the primary LiDAR

at the pivot frame to auxiliary LiDARs at the kth frame.

D. Monitoring the Convergence of Calibration

While working on the online calibration in an unsupervised
way, it is of interest to decide whether calibration converges.
After the convergence, we fix the extrinsics. This is beneficial
to our system since both the odometry and mapping are given
more geometric constraints from auxiliary LiDARs for more
accurate poses. As derived in [34], the degeneracy factor λ,
which is the smallest eigenvalue of the information matrix,
reveals the condition of an optimization-based state-estimation
problem. Motivated by this work, we use λ to indicate whether
our problem contains sufficient constraints or not for accurate
extrinsics. The detailed pipeline to update extrinsics and monitor
the convergence is summarized in Algorithm 1. The algorithm
takes the function fM(·) defined in (19) as well as the current
extrinsics as input, and returns the optimized extrinsics. On line
4, we computeλ from the information matrix of the cost function.
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On lines 5–7, the extrinsics are updated if λ is larger than a
threshold. On line 8, we use the number of candidate extrinsics to
check the convergence. On lines 9–10, the convergence criterion
is met, and the termination is thus triggered. We then compute the
sampling mean of L as the resulting extrinsics and the sampling
covariance as the calibration covariance.

E. Marginalization

We apply the marginalization technique to remove the oldest
variable states in the sliding window. The marginalization is a
process to incorporate historical constraints as a prior into the
objective, which is an essential step to maintain the consistency
of odometry and calibration results. In our system, xp is the only
state to be marginalized after each optimization. By applying the
Schur complement, we obtain the linear information matrix Λ∗

rr

and residual g∗
r w.r.t. the remaining states. The prior residuals

are formulated as ‖rpri‖2 = g∗�
r Λ∗−1

rr g∗
r. Appendix B provides

some mathematical foundations.

VIII. UNCERTAINTY-AWARE MULTI-LIDAR MAPPING

We first review the pipeline of the mapping module of typical
LiDAR SLAM systems [16]–[18]. Taking the prior odometry
as input, the algorithm constructs a global map and refines the
poses with enough constraints. This is done by minimizing the
sum of all map-based residual errors as

x̂w
bk

= argmin
xw
bk

I∑
i=1

∑
p∈Fli

k

ρ
(∥∥rF (xw

bk
xb
li ,p)

∥∥2
Σp

)
(21)

where F lik are the input features while perceiving the kth point
cloud, Gwk

F is the global map, and xw
bk
xb
li denotes the state of

the ith LiDAR. We use the method in Section VII-B to find
correspondences between F lik and Gwk

F . After solving (21), the
resulting pose is used to transform current features into the world
frame, and add them into the map. To reduce the computational
and memory complexity, the map is also downsized using a voxel
grid filter [71]. However, the precision of optimization depends

Fig. 5. Illustration of the mapping process and occurrence of noisy map points.
The black curve represents historical poses. The blue curve indicates the current
pose of the primary LiDAR. The purple curve shows the extrinsics from the
primary LiDAR to the auxiliary LiDAR. With the pose and extrinsics, input
features (red and green dots) are transformed and added into the global map
(black dots). The noisy poses make new map points uncertain.

on the map quality. Fig. 5 visualizes the occurrence of noisy
map points (also called landmarks) transformed by the uncertain
pose. We believe that three sources of uncertainties make map
points noisy: 1) sensor noise, 2) degenerate pose estimation, and
3) extrinsic perturbation.

In the next section, we propagate the uncertainties of LiDAR
points and poses (represented as transformation matrices) on
map points. As a result, each map point is modeled as an
i.i.d Gaussian variable. We then propose an uncertainty-aware
approach to improve the robustness and accuracy of the multi-
LiDAR mapping algorithm.

A. Uncertainty Propagation

Continuing the preliminaries in Section III-C, we now com-
pute Ξ. The mapping poses are optimized by solving the NLS
problem (21). We directly calculate the inverse of the informa-
tion matrix, i.e., Ξxw

bk
= Λ−1, as the covariance. The setting

of the extrinsic covariances depends on a specific situation. We
generally define the extrinsic covariance as

Ξxb
li
= α ·Ξcalib, ξbli ∼ N (0,Ξxb

li
) (22)

where ξbli is the perturbation variable of extrinsics, Ξcalib is the
calibration covariance calculated according to Algorithm 1, and
α is a scaling parameter allowing us to increase the magnitude
of the covariance. If a multi-LiDAR system has been recently
calibrated, we setα = 1, whereas if the system has been used for
a long time and not recalibrated, there should be small extrinsic
deviations on LiDARs, and α is set to be larger. It has an implicit
relation with time and external impact, and temperature drift.
Given the mean pose of the primary sensor, the mean extrinsics,
and their covariances, we then compute the mean poses of other
LiDARs and the covariances, i.e., {Tw

lik
,Ξw

lik
}. This is a problem

about compounding two noisy poses. We follow the fourth-order
approximation in [19] to calculate them. And then, we need
to pass the Gaussian uncertainty of a point through a noisy
transformation to produce a new landmark y ∈ Gwk+1

F with the
mean and covariance as {ȳ,Σ}. By transforming a point into
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the world frame, we have

y � Tw
lik
ph = exp(ξw

∧
elik

)T̄w
lik
(p̄h +Dζ)

≈
(
I+ ξw

∧
lik

)
T̄w

lik
(p̄h +Dζ)

(23)

where we keep the first-order approximation of the exponential
map. If we multiply out the equation and retain only the first-
order terms, we have

y ≈ h+Hθ (24)

where

h = T̄w
lik
p̄h, H =

[
(T̄w

lik
p̄h)

� T̄w
lik
D
]

θ = [ξw�
lik

, ζ�]�, θ ∼ N (0,Θ), Θ = diag(Ξw
lik
,Z)

(25)

and the operator � converts a 4× 1 column into a 4× 6 matrix[
ε

η

]�
=

[
ηI −ε∧

0� 0�

]
, ε ∈ R3, η = 1. (26)

All perturbation variables are embodied in θ in R9. The co-
variance Θ = diag(Ξw

lik
,Z) denotes the combined uncertainties

of sensor readings, estimated poses, and extrinsics. Linearly
transformed byH,y is Gaussian with the mean ȳ and covariance
Σ as

ȳ = h, Σ = HΘH�. (27)

We follow the work in [72] to use the trace, i.e., tr(Σ), to
quantify the magnitude of a covariance.

B. Uncertainty-Aware Operation

The original mapping algorithm is integrated with three ad-
ditional steps to boost its performance and robustness. In the
last section, we show that the covariances of all map points are
propagated by considering three sources of error. First, problem
(21) is integrated with the propagated covariance in (27). This
operation lets the cost function take the pose uncertainty and
extrinsic perturbation into account. As a result, a point that stays
near the origin should have a high weight. Moreover, the primary
LiDAR tends to have more confidence than auxiliary LiDARs
given the extrinsic covariances.

At the last iteration of the optimization, Ξxw
bk

is equal to the
inverse of the new information matrix. Second, the uncertainty
of each point after transformation is repropagated. We filter out
outliers if tr(Σ) is larger than a threshold. Finally, we modify
the original voxel grid filter to downsize the global map in a
probabilistic way. The modified filter samples points for each
cube according to their covariances. Let {yi,Σi} be the ith
point in a cube, and M be the number of points in the cube. The
sampled mean and covariance of a cube are

ȳ =

M∑
i=1

wiyi, Σ =

M∑
i=1

w2
iΣi (28)

where w is the threshold, and wi =
w−tr(Σi)∑m

i=1[w−tr(Σi)]
is a normal-

ized weight.

IX. EXPERIMENT

We perform simulated and real-world experiments on three
platforms to test the performance of M-LOAM. First, we cali-
brate multi-LiDAR systems on all the presented platforms. The
proposed algorithm is compared with SOTA methods, and two
evaluation metrics are introduced. Second, we demonstrate the
SLAM performance of M-LOAM in various scenarios covering
indoor environments and outdoor urban roads. Moreover, to
evaluate the sensibility of M-LOAM against extrinsic error, we
test it on the handheld device and vehicle under different levels
of extrinsic perturbation. Finally, we provide a study to compre-
hensively evaluate M-LOAM’s performance and computation
time with different LiDAR combinations.

A. Implementation Details

We use the PCL library [71] to process point clouds and the
Ceres Solver [73] to solve nonlinear least-squares problems. In
experiments that are not specified, our algorithm is executed on
a desktop with an i7 CPU@4.20 GHz and 32 GB RAM. Three
platforms with different multi-LiDAR systems are tested: 1) a
simulated robot, 2) a handheld device, and 3) a vehicle. The
LiDARs on real platforms are synchronized with the external
GPS clock triggered at an ns-level accuracy.

1) The Simulated Robot (SR) is built on the Gazebo [74].
Two 16-beam LiDARs are mounted on a mobile robot
for testing. We build a closed simulated rectangular room.
We use the approach from the work in [75] to set the
LiDAR configuration for maximizing the sensing cover-
age. We moved the robot in the room at an average speed
of 0.5˜ m/s. The ground-truth extrinsics and poses are
provided.

2) The Real Handheld Device (RHD) is made for handheld
tests and shown in Fig. 6. Its configuration is similar to that
of the SR. Besides two VLP-16s,4 we also install a mini
computer (Intel NUC) for data collection and a camera
(mvBlueFOX-MLC200 w) for recording test scenes. We
used this device to collect data on the campus with an
average speed of 2˜m/s.

3) The Real Vehicle (RV) is a vehicle for autonomous logis-
tic transportation [11]. We conduct experiments on this
platform to demonstrate that our system also performs
well in large-scale, challenging outdoor environments.
As shown in Fig. 7, four RS-LiDAR-16s5 are rigidly
mounted at the top, front, left, and right positions. We
drove the vehicle through urban roads at an average speed
of 3˜m/s. Ground-truth poses are obtained from a cou-
pled LiDAR-GPS-encoder localization system that was
proposed in [48] and [76].

Table II shows the parameters that are empirically set. σR,
λcalib, and Lcalib are the convergence thresholds in calibration.
Setting the last two parameters requires a preliminary training
process, which is detailed in the supplementary material [77]. p
andN are the size of the local map and the sliding window in the

4[Online]. Available: https://velodynelidar.com/products/puck
5[Online]. Available: https://www.robosense.ai/rslidar/rs-lidar-16
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Fig. 6. (a) Real handheld device for indoor tests. Two VLP-16 s are mounted
at the left and right sides, respectively. The attached camera is used to record
test scenes. (b) Calibrated point cloud consists of points from the left (red) and
right (pink) LiDARs. (a) Real handheld device. (b) Calibrated point cloud.

Fig. 7. (a) RV for large-scale, outdoor tests. Four RS-16 s are mounted at
the top, front, left, and right positions, respectively. (b) Calibrated point cloud
consists of points from the top (red), front (green), left (blue), and right (pink)
LiDARs. (a) RV. (b) Calibrated point cloud.

TABLE II
PARAMETERS FOR CALIBRATION AND SLAM

odometry, respectively. w is the threshold of filtering uncertain
points in mapping, and α is the scale of the extrinsic covariance.
We set α = 10 for the case of injecting large perturbation in
Section IX-D. Otherwise, α = 1.

B. Performance of Calibration

1) Evaluation Metrics: We introduce following two metrics
to assess the LiDAR calibration results from different aspects.

1) Error Compared With Ground truth (EGT) computes the
distance between the ground truth and the estimated values
in terms of rotation and translation as

EGTR =
∥∥ ln(RgtR

−1
est )

∨∥∥
EGTt =

∥∥tgt − test

∥∥. (29)

2) Mean Map Entropy (MME) is proposed to measure the
compactness of a point cloud [78]. It has been explored
as a standard metric to assess the quality of registration if
ground truth is unavailable [79]. Given a calibrated point
cloud, the normalized mean map entropy is

MME =
1

m

m∑
i=1

ln [det(2πe ·Cpi
)] (30)

where m is the size of the point cloud and Cpi
is the

sampling covariance within a local radius r aroundpi. For
each calibration case, we select 10 consecutive frames of
point clouds that contain many planes and compute their
average MME values for evaluation.

Since the perfect ground truth is unknown in real-world
applications, we use the results of “PS-Calib” [12] as the “rel-
ative ground truth” to compute the EGT. PS-Calib is a well-
understood, target-based calibration approach, which should
have similar or superior accuracy to our method [80]. Another
metric is the MME, which computes the score in an unsupervised
way. It can be interpreted as an information-theoretic measure
of the compactness of a point cloud.

2) Calibration Results: The multi-LiDAR systems of all the
presented platforms are calibrated by our methods. To initialize
the extrinsics, we manually move these platforms with suffi-
cient rotations and translations. Table III reports the resulting
extrinsics, where two simulated cases (same extrinsics, different
motions) and two real-world cases are tested. Due to limited
space, we only demonstrate the calibration between the top
LiDAR and front LiDAR on the vehicle. Our method is de-
noted by “Proposed (Ini.+Ref.),” which is compared with an
offline multi-LiDAR calibration approach [4] (“Auto-Calib”).
Although Auto-Calib follows a similar initialization-refinement
procedure to obtain the extrinsics, it is different from our algo-
rithm in several aspects. For example, Auto-Calib only uses pla-
nar features in refinement. And it assumes that LiDARs’ views
should have large overlapping regions. The hand-eye-based
initial (“Proposed (Ini.)”), uncalibrated (“W/O Calib”), CAD
(“CAD model” for real platforms), and ground-truth (“GT”)
extrinsics are also provided for reference.

Our hand-eye-based method successfully initializes the rota-
tion offset (< 9◦) for all cases, but fails to recover the translation
offset (> 0.3˜m) on the SR and RV. Both the simulated robot and
vehicle have to perform planar movement with a long distance
for initialization, making the recovery of the x-, y-translation
poor due to the drift of motion estimation. The planar movement
also causes the z-translation to be unobservable. But we can
move the RHD in 6-DoF and rapidly gather rich constraints. Its
initialization results are, thus, good. Regarding the online refine-
ment, our algorithm outperforms Auto-Calib and demonstrates
comparable performance with PS-Calib in terms of the EGT
(< 3◦ and< 0.07˜m) and MME metrics. Based on these results,
we conclude that the initialization phase can provide coarse
rotational estimates, and the refinement for precise extrinsics
is required.

We explicitly show the test on the RHD in detail. In Fig. 8,
we plot all MME values over different frames of calibrated
point clouds, where the results are consistent with Table III.
Whether r is set to 0.3 or 0.4˜m, our method always has a better
score than Auto-Calib. Fig. 9 illustrates the calibration process,
with the trajectory of the sensor suite shown in Fig. 10. This
process is divided into three sequential phases: Phase 1 (extrinsic
initialization, Section VI-B), Phase 2 (odometry with extrinsic
refinement, Section VII-B), and Phase 3 (pure odometry and
mapping, Section VII-C).
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TABLE III
CALIBRATED EXTRINSICS

↓ indicates that the lower the value, the better the score.
Boldface values indicate the best results.

Fig. 8. MME values over 10 consecutive frames of point clouds that are
calibrated by different approaches on the RHD platform. The lower the value,
the better the score for a method.

Phase 1 starts with recovering the rotational offsets without
prior knowledge about the mechanical configuration. It exits
when the second small singular value of QK is larger than
a threshold. The translational components are then computed.
Phase 2 performs a nonlinear optimization to jointly refine
the extrinsics. This process may last for a prolonged period
if there are not sufficient environmental constraints. However,
our sliding-window-based marginalization scheme can ensure a

bounded complexity program to consistently update the extrin-
sics. The convergence condition is monitored with the degener-
acy factor (see Section VII-D) and number of candidates. After
convergence, we turn OFF the calibration and enter Phase 3 that
is evaluated in Section IX-C.

We also evaluate the sensitivity of our refinement method
to different levels of initial guesses: the CAD model as well
as rough rotational and translational initialization. Quantitative
results can be found in the supplementary material [77].

C. Performance of SLAM

We evaluate M-LOAM on both simulated and real-world
sequences that are collected by the SR, RHD, and RV platforms.
The multi-LiDAR systems are calibrated with our online ap-
proach (see Section VII-B). The detailed extrinsics can be found
on the first, third, and fourth rows in Table III. We compare M-
LOAM with two SOTA, open-source LiDAR-based algorithms:
A-LOAM6 (the advanced implementation of LOAM [16]) and
LEGO-LOAM7 [17]. Both of them directly take the calibrated
and merged point clouds as input. In contrast, our method
formulates the sliding-window estimator to fuse point clouds.

6[Online]. Available: https://github.com/HKUST-Aerial-Robotics/A-LOAM
7[Online]. Available: https://github.com/RobustFieldAutonomyLab/LeGO-

LOAM
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Fig. 9. Detailed illustration of the whole calibration process, including the
initialization and optimization with online calibration on the RHD. Different
phases are separated by bold dashed lines. In Phase 1, the initial rotation and
translation are estimated with the singular value-based exit criteria (see Sec-
tion VI-B). In Phase 2, the nonlinear optimization-based calibration refinement
process is performed. The convergence is determined by the degeneracy factor
(see Section VII-D). Phase 3 only optimizes the LiDAR odometry with fixed
extrinsics. The black lines in the bottom plot indicate the setting thresholds σR

and λcalib, which are defined in Section VII-D.

Fig. 10. Calibration trajectory of the sensor suite estimated by M-LO on the
RHD. The dot and diamond indicate the start and end points, respectively.

There are many differences in detail among these methods, as
presented in the technical sections. Overall, our system is more
complete with online calibration, uncertainty estimation, and
probabilistic mapping. LEGO-LOAM is a ground-optimized
system and requires LiDARs to be horizontally installed. It easily
fails on the SR and RV. We, thus, provide its results only on
the RV sequences for a fair comparison. The results estimated
by parts of M-LOAM are also provided. These are denoted by
M-LO and M-LOAM-wo-ua, indicating our proposed odometry
(see Section VII-C) and the complete M-LOAM without the
awareness of uncertainty (see Section VIII-B), respectively. To
fulfill the real-time requirement, we run the odometry at 10 Hz
and the mapping at 5 Hz.

1) Simulated Experiment: We move the SR to follow five
paths with the same start point to verify our method. Each se-
quence is performed with 10-trial SLAM tests, and at each trial,
zero-mean Gaussian noises with an SD of 0.05˜m are added onto
the point clouds. The ground-truth and the estimated trajectories
of M-LOAM are plotted in Fig. 11. The absolute trajectory error
(ATE) on all sequences is shown in Table IV, as evaluated in
terms of root-mean-square error (RMSE) [81]. All sequences
are split into either an easy or hard level according to their

Fig. 11. (Left) Trajectories of the SR01-SR05 sequences with different lengths.
(Right) M-LOAMs trajectories compared against the ground truth.

TABLE IV
ATE [81] ON SIMULATED SEQUENCES

Boldface values indicate the best results.

length. First, M-LO outperforms A-LO around 4− 10 orders
of magnitudes, which shows that the sliding-window estimator
can refine the frame-to-frame odometry. Second, we observe that
the mapping module greatly refines the odometry module. Third,
M-LOAM outperforms other methods in most cases. This is due
to two main reasons. 1) The small calibration error may poten-
tially affect the map quality and degrade M-LOAM-wo-ua’s and
A-LOAM’s performance. 2) The estimates from A-LO do not
provide a good pose prior to A-LOAM. Since the robot has to
turn around in the room for exploration, A-LOAMs mapping
error accumulates rapidly and, thus, makes the optimized poses
worse. This explains why A-LOAM has large error in SR04hard
and SR05hard. One may argue that A-LOAM has less rotational
error than other methods on SR02easy – SR04hard. We explain
that A-LOAM uses ground points to constrain the roll and pitch
angles, whereas M-LOAM tends to filter them out.

We show the results of SR05hard in detail. The estimated
trajectories are shown in Fig. 12. A-LOAM has a few defects
in the marked box region and at the tail of their trajectories,
whereas M-LOAM-wo-ua’s trajectory nearly overlaps with that
of M-LOAM. The relative pose errors (RPE) evaluated in [81]
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Fig. 12. Trajectories on SR05 of M-LOAM-wo-ua, M-LOAM, and A-LOAM
and the map constructed by M-LOAM. A-LOAM has a few defects, whereas
M-LOAM-wo-ua’s trajectory nearly overlaps with that of M-LOAM.

Fig. 13. Mean RPE on SR05 with 10 trials. For the distance 40˜m, the
median values of the relative translation and rotation error of M-LOAM-wo-ua,
M-LOAM, and A-LOAM are (0.87◦, 0.07 m), (0.62◦, 0.06˜m), and (1.26◦,
0.22 m), respectively.

are shown in Fig. 13. In this plot, M-LOAM has lower rotation
and translation errors than others over a long distance.

2) Indoor Experiment: We used the handheld device to
collect four sequences called RHD01corridor, RHD02lab,
RHD03garden, and RHD04building to test our approach.

The first experiment is done in a long and narrow corridor.
As emphasized in [62], this is a typical poorly constrained envi-
ronment. Here, we show that the uncertainty-aware operation is
beneficial to our system. In Fig. 14, we illustrate the sample poses
of M-LOAM and the generated map on RHD01corridor. These
ellipses represent the size of the pose covariances. A large radius
indicates that the pose in the x-, z-directions of each mapping
step is uncertain. This is mainly caused by the fact that only
a small set of points scan the walls and ceiling, which cannot
provide enough constraints. Map points become uncertain due
to noisy transformations. The uncertainty-aware operation of
M-LOAM is able to capture and discard uncertain points. This
leads to a map with a reasonably good signal-to-noise ratio,
which generally improves the precision of optimization. This is
the reason why M-LOAM outperforms M-LOAM-wo-ua.

We conduct more experiments to demonstrate the perfor-
mance of M-LOAM on other RHD sequences. For evaluation,
these datasets contain at least a closed loop. Our results of
RHD02lab are shown in Fig. 15. This sequence contains two

Fig. 14. (a) Side view of sample poses with covariances estimated by M-
LOAM and generated map on RHD01corridor. The below blue map is created by
M-LOAM-wo-ua. The upper red map is created with M-LOAM. The covariances
of pose calculated by M-LOAM are visualized as blue ellipses. A large radius
represents a high uncertainty of a pose. The pose estimates in the x-, z-direction
are degenerate and uncertain, making the map points on the ceiling and ground
noisy. M-LOAM is able to maintain the map quality by smoothing the noisy
points. (b) Scene image. (a) Poses and the map with covariance visualization.
(b) Scene image.

Fig. 15. Results on RHD02lab. (a) Map generated in a laboratory and esti-
mated trajectories (from right to left). The black box is the region shown in
the bottom figures. Two loops are in this sequence. (b) Trajectories in another
viewpoint. (c) Visualization of poses and map points uncertainty. The grid size is
5 m. Covariances of poses are represented as blue ellipses. The larger the radius,
the higher the uncertainty. The uncertainty of a point is measured by the trace
of its covariance. The larger the trace, the higher the uncertainty. The marked
regions indicate the degenerate (scene 1) and well-conditioned (scene 2) pose
estimation respectively. With compounded uncertainty propagation, the map
points in scene 1 become uncertain. (d) Scene images. (a) Map and trajectories.
(b) Trajectories. (c) Pose and map points with uncertainties. (d) Scene images.

loops in a lab region. Fig. 15(a) shows M-LOAM’s map, and
Fig. 15(b) shows the trajectories estimated by different meth-
ods. Both M-LOAM-wo-ua and A-LOAM accumulates signif-
icant drift at the x-, y-, z-directions after two loops, whereas
M-LOAMs results are almost drift free. Fig. 15(c) shows the
estimated poses and map points in the first loop. The covariances
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Fig. 16. Results of RHD03garden. (a) Map generated in a garden, and the
trajectory estimated by M-LOAM. The colors of the points vary from blue to
red, indicating the altitude changes (0˜ to 23˜m) (b) Scene images. (a) Map and
M-LOAMs trajectory. (b) Scene image.

Fig. 17. Mapping results of RHD04building that goes through the HKUST
academic buildings and the trajectories estimated by different methods (total
length is 700˜m). The map is aligned with Google Maps. The colors of the
points vary from blue to red, indicating the altitude changes (0˜ to 40˜m).

of the poses and points evaluated by M-LOAM are visible as
ellipses and colored dots in the figure. Besides the corridor
in scene 1, we also mark the well-conditioned environment in
scene 2 for comparison. Fig. 15(d) shows the scene pictures. The
results fit our previous explanation that the points in scene 1 are
uncertain because of noisy poses. In contrast, scene 2 has more
constraints for estimating poses, making the map points certain.

Fig. 16 shows the results of RHD03garden. Since the in-
stallation of LiDARs on the RHD has a large roll angle, the
areas over a 20-m height are scanned. Another experiment is
carried out in a longer sequence. This dataset lasts for 12 min,
and the total length is about 700˜m. The estimated trajectories
and M-LOAMs map are aligned with Google Map in Fig. 17.
Both M-LOAM-wo-ua and M-LOAM provide more accurate
and consistent results than A-LOAM.

Finally, we evaluate the pose drift of methods with 10 re-
peated trials on RHD02–RHD04. We employ the point-to-plane
ICP [20] to measure the distance between the start and end point.
This ground truth distance is used to compare with that of the
estimates, and the mean relative drift is listed in Table V. Both
M-LOAM-wo-ua and M-LOAM achieve a similar accuracy on

TABLE V
MEAN RELATIVE POSE DRIFT

Boldface values indicate the best results.

Fig. 18. Mapping results of urban road and estimated trajectory against the
ground truth on the RV sequence (total length is 3.23˜km). The colors of the
points vary from blue to red, indicating the altitude changes (−5 to 105˜m).

RHD03 and RHD04 since the surroundings of these sequences
are almost well conditioned. We conclude that the uncertainty-
aware operation is not really necessary in well-conditioned en-
vironments and well-calibrated sensors, but maximally reduces
the negative effect of uncertainties.

3) Outdoor Experiment: The large-scale, outdoor sequence
was recorded with the RV platform (see Fig. 7). This sequence
covers an area around 1100˜m in length and 450˜m in width
and has 110˜m in height changes. The total path length is about
3.23˜km. The data lasts for 38 min, and contains the 10-Hz point
clouds from four LiDARs and 25-Hz ground-truth poses. This
experiment is very significant to test the stability and durability
of M-LOAM.

M-LOAMs trajectory against the ground truth and the built
map is aligned with Google Map in Fig. 18. We present the RPE
of M-LOAM, M-LOAM-wo-ua, A-LOAM, and LEGO-LOAM
in Fig. 19. A-LOAM has the highest errors among them. Both
M-LOAM-wo-ua and M-LOAM have competitive results with
LEGO-LOAM. In addition, the outlier terms of M-LOAM are
fewer than other methods. We, thus, extend our previous findings
that the uncertainty-aware mapping has the capability to enhance
the robustness of the system.

D. Sensitivity to Noisy Extrinsics

In this section, we evaluate the sensitivity of M-LOAM to
different levels of extrinsic perturbation. On the RHD and RV
platforms, we test our method by setting the extrinsics with
different levels of accuracy: CAD model, initialization, and
perturbation injection. The experiment settings are listed in
Table VI. The injected perturbation is the simulated shock on
the ground truth extrinsics with [10, 10, 10]deg in roll, pitch,
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TABLE VI
ATE GIVEN DIFFERENT EXTRINSICS FROM BAD TO GOOD: INJECT PERTURBATION, INITIALIZATION, AND CAD MODEL

Boldface values indicate the best results.

Fig. 19. RPE on the RV sequence. For the 1616-m distance, the median values
of the relative translation (in percentage) and rotation error of M-LOAM-wo-
ua, M-LOAM, A-LOAM, and LEGO-LOAM are (6.90◦, 1.87%), (6.45◦,
2.14%), (15.36◦, 2.80%), and (9.33◦, 2.23%) respectively.

and yaw and [0.1, 0.1, 0.1]m along the x-, y-, and z-axis. We use
RHD02lab and a partial sequence on RV to compare M-LOAM
with the baseline methods. It should be noted that extrinsic
calibration is turned OFF, and we only use the top and front
LiDAR on the vehicle in experiments. The estimated trajectories
under the largest perturbation are shown in Figs. 20 and 21
for different platforms. These methods are marked with “(inj).”
We calculate the ATE in Table VI. Here, M-LOAMs trajectory
on RHD02lab in Section IX-C2 is used to compute the error.
We observe that all methods’ performance degrades along with
the increasing extrinsic perturbation. But both M-LOAM-wo-ua
and M-LOAM have smaller error. In particular, under the largest
perturbation, M-LOAM is much more robust since it can track
sensors’ poses.

E. Single LiDAR Versus Multiple LiDARs

In this section, we explore the specific improvements in
utilizing more LiDARs in M-LOAM. The RV platform has four
LiDARs. We use One-, Two-, Three-, Four-LiDAR to denote the
setups of l1, l1,2, l1,2,3, and l1,2,3,4, respectively [see Fig. 7(a)].
We also use x-Odom and x-Map to denote results provided by
the odometry and mapping using different setups, respectively.
The tests are carried out on the complete RV sequence. We
first report statistics of the program in Table VII, including
the average number of edge and planar features as well as
average running time of measurement processing, optimization

Fig. 20. Trajectories on RHD02lab with being injected by a large extrinsic
perturbation. The detailed settings are shown in Table VI. (a) Trajectories in a
down view. (b) Trajectories in another view.

Fig. 21. Trajectories on 341-m-length sequence (a part of the RV sequence)
injected with a large extrinsic perturbation. The detailed settings are shown in
Table VI.

TABLE VII
AVERAGE FEATURE NUMBER AND RUNNING TIME ON A DESKTOP OF

M-LOAM ON THE RV SEQUENCE WITH DIFFERENT LIDAR SETUPS

*Specifications: Intel i7 CPU@4.20 GHz and 32 GB RAM.
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Fig. 22. RPE of M-LOAM on the RV sequence with different numbers of LiDARs in two cases. Better visualization in the colored version. (a) RPE in the
case of 3m/s. From one to four LiDARs, the median values of the rotation and translation error (in percentage) in odometry are: (56.53◦, 20.19%), (54.53◦,
19.29%), (48.08◦, 17.57%), (42.96◦, 15.73%) respectively, whereas those in mapping are: (6.27◦, 2.35%), (6.26◦, 2.16%), (6.77◦, 2.32%), and (6.45◦, 2.14%)
respectively. (b) RPE in the case of 9˜m/s. From one to four LiDARs, the median values of the rotation and translation error (in percentage) in odometry are:
(29.38◦, 11.56%), (28.67◦, 11.00%), (24.60◦, 9.83%), (21.02◦, 8.01%) respectively, whereas those in the mapping are: (6.86◦, 2.42%), (6.43◦, 2.19%), (7.04◦,
2.24%), and (6.06◦, 2.11%), respectively.

with pure odometry, and uncertainty-aware mapping. We see
that the odometry time increases with more LiDARs because
the system needs to handle more geometric constraints. This
phenomenon does not appear in measurement preprocessing
since we parallelize this module. The mapping time does not
grow linearly because we use the voxel grid filter to bound the
map’s complexity. We also provide the running time on an Intel
NUC (i7 CPU@3.1 GHz) in the supplementary material [77],
where the results are consistent with Table VII.

To demonstrate that more features boost the system perfor-
mance, we conduct experiments in two cases: 1) driving at
a normal speed and 2) high speed. We use the original RV
sequence in the first case. To simulate that the vehicle is moving
faster in the second case, we extract one frame from every three
frames to construct a new dataset. We evaluate the odometry and
mapping of these setups in Fig. 22. The errors of the odometry
decrease if more LiDARs are used. In the second case, the
median values of Four-LiDAR-Odom are smaller than those of
One-LiDAR-Odom around 8◦ relative rotation error and 3.5%
translation error. But this improvement in mapping is small
because the map already provides sufficient constraints. When
the vehicle is moving at a higher speed, the global map becomes
sparser. Consequently, the improvement of mapping on multiple
LiDARs is noticeable. The boxplot of the Four-LiDAR setup has
a smaller variance than others.

X. DISCUSSION

A. Main Advantages

We highlight that M-LOAM is a robust, reliable, and complete
system to provide accurate calibration, odometry, and mapping
results for different multi-LiDAR systems. We can extend M-
LOAM to many types of LiDAR combinations, as shown in
experiments. A typical application of M-LOAM is autonomous
driving, where the multi-LiDAR system is gradually becoming
a standard setup on vehicles. As verified in the experiments,
the usage of multiple LiDARs boosts the SLAM performance
in both robustness and accuracy. For other perception problems

such as 3-D object detection [67] and tracking [82], the multi-
LiDAR systems are also beneficial.

As compared with the SOTA, M-LOAM introduces the slid-
ing window-based tightly-coupled odometry to fuse multiple
LiDARs and the uncertainty-aware mapping to maintain the
globally consistent map with good noise-signal ratio. Further-
more, rather than operating calibrated and merged point clouds
directly, it processes the multi-LiDAR measurements in an sep-
arate way. This design is advantageous in following aspects:

1) programs (e.g., segmentation and feature extraction) can
be easily parallelized;

2) the LiDARs scan models can be used to generate a range
image without data loss;

3) the extrinsic perturbation on the system can be formulated.
We consider that the aforementioned improvements enable M-

LOAM to outperform A-LOAM on most sequences. Compared
with LEGO-LOAM, which uses ground features, M-LOAM
is more applicable to diverse applications. Nevertheless, in-
tegrating M-LOAM with the ground-optimization pipeline of
LEGO-LOAM for mobile robots is encouraging.

The Gaussian distribution is our core hypothesis in modeling
data uncertainty. Based on it, we use a tractable method to esti-
mate covariances of poses (derived from information matrices)
and extrinsics (given a sampling covariance after calibration).
Even though these covariances are approximate, as shown in
experiments, e.g., Fig. 20, the proposed uncertainty-aware oper-
ation significantly improves the robustness of M-LOAM against
degeneracy and extreme extrinsic perturbation.

B. Limitations

We recognize that the proposed calibration and SLAM meth-
ods have limitations. First, the calibration process requires some
preset thresholds that are obtained from experiments. Its accu-
racy is not perfect for applications such as the high definition
map construction construction. In practice, the errors should be
smaller than 0.01˜m and 1◦. Otherwise, the calibration errors are
proportionally propagated onto the map and deteriorate the map
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quality. This effect cannot be entirely eliminated even though
the extrinsic perturbation is modeled by our method.

Second, our system utilizes several point cloud registrations
in different phases to estimate states. As a typical nonconvex
problem, registration requires correct correspondences and a
good initial transformation. But LiDARs only produce a low-
frequency data stream, making this problem sometimes chal-
lenging. For example, when a robot moves and turns at a high
frequency, our method barely tracks its poses. Also, we use the
linear model to interpolate sensors’ poses, which cannot repre-
sent smooth or fast motion well. In these cases, it would be better
to use high-order curves such as B-spline for interpolation [83].

Finally, we extract the simple edge and planar points from
environments. However, these features present drawbacks in
real tests. For instance, they only provide constraints in their
perpendicular directions. In a long tunnel, where all planes are
mostly parallel, M-LOAM may fail. Another example is that
such features do not have enough recognition power to enable
robust matching across frames with large viewpoint changes.
As compared with surfel-based or visual features, they are less
useful for tasks such as place recognition and relocalization.

XI. CONCLUSION

In this article, we proposed a complete and robust solution for
multi-LiDAR extrinsic calibration and SLAM. This approach
contains several desirable features, including fast segmentation
for noise removal, motion and extrinsic initialization, online
extrinsic calibration with convergence identification, a tightly
coupled M-LO, and uncertainty-aware multi-LiDAR mapping.
We conducted extensive experiments covering scenarios from
indoor offices to outdoor urban roads for evaluation. Our ap-
proach calibrated kinds of multi-LiDAR systems for different
platforms. It yields accuracies in centimeters in translation and
decidegrees in rotation and is comparable to a SOTA target-based
method. For SLAM, the proposed system typically reaches a
localization accuracy below 40 cm in medium-scale (> 150˜m)
scenarios and of a few meters in the large-scale urban roads
(> 3.2˜km). For the benefit of the community, we made our
implementation open source.

There are several directions for future research. Adding a
loop-closure module into our system is desirable, which helps to
correct the accumulated drift and maintain the global map [84].
Another research direction concerns object-centric SLAM. Two
challenges are recently growing in the community. On the one
hand, the widely used low-level geometric features are not repre-
sentative and sensitive to viewpoint change. On the other hand,
data sparsity and occlusion in LiDAR-based object detectors
are the dominant bottlenecks. A possible solution to them is
to develop a SLAM approach that can use object-level features
to optimize both ego-motion and motion of dynamic objects.
Trials on cameras or visual–inertial systems have been proposed
in [85]–[87], whereas works on LiDARs are rare. Finally, ex-
tending our approach on calibration and uncertainty modeling
to sensors in various modalities, e.g., IMUs [5], radars [9]
and event-cameras [88], is promising. For instance, we can
propagate the IMU noise model to predict pose uncertainties, or

the proposed convergence criteria can be used for the extrinsic
calibration of multimodal sensors.

A. Jacobians of Residuals

The state vector is defined as x = [t,q]. We convert q into a
rotation matrix R by the Rodrigues formula [59]

R = (q2w − q�
xyzqxyz)I+ 2qxyzq

�
xyz + 2qwq

∧
xyz (31)

1) Jacobians of rH: The residuals in (8) are rewritten as

rH(x,p) =
[
w�(Rp+ t) + d

]
w

= diag(w)
[
w w w

]�
(Rp+ t) + dw

= W(Rp+ t) + dw.

(32)

Using the right disturbance: R exp(δφ∧) ≈ R(I+ δφ∧), the
Jacobians of the rotation and translation are calculated as

∂rH(x,p)
∂x

= [
∂rH(x,p)

∂t
,
∂rH(x,p)

∂q
]

= [W, −WRp∧, 03×1].

(33)

where the quaternion is updated according to δq ≈ [ 12δφ, 1]
�.

2) Jacobians of Residuals in fM for Online Calibration: The
objective function in (19) has two terms: 1) fM(Xv) and 2)
fM(Xe). For the first term, the Jacobians are given by

∂rH(x−1
p xk,p)

∂xk
= [WR�

p ,−WR�
pRkp

∧,03×1] (34)

where k ∈ [p+ 1, N + 1]. Since the second term has the same
form as (8), the Jacobians are given by (33) as

∂rH(xb
li ,p)

∂xb
li

= [W, −WRb
lip

∧, 03×1] (35)

where i ∈ [2, I].
3) Jacobians of Residuals in fM for Pure Odometry: The

Jacobians of the residuals in (20) are computed as

∂rH(x−1
p xkx

b
li ,p)

∂xk

= [WR�
p , −WR�

pRk(R
b
lip+ tbli)

∧, 03×1]

(36)

where i ∈ [1, I] and k ∈ [p+ 1, N + 1].

B. Marginalization

The sliding-window estimator needs to marginalize out sev-
eral states and add new states after optimization. For the whole
state vector X , we denote Xm as the set of marginalized states
and Xr as the set of remaining states. By linearizing and ex-
panding the cost function (18) at an initial point, we obtain the
normal equation: ΛδX = −g, where Λ =

∑
J�Σ−1J is the

information matrix, g = J�Σ−1r. By representing the equation
using block matrices, we have[

Λmm Λmr

Λrm Λrr

][
δXm

δXr

]
= −

[
gm

gr

]
(37)
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where we apply the Schur complement to yield[
Λmm Λmr

0 Λ∗
rr

][
δXm

δXr

]
= −

[
gm

g∗
r

]
(38)

where

Λ∗
rr = Λrr −ΛrmΛ−1

mmΛmr

g∗
r = gr −ΛrmΛ−1

mmgm.
(39)

The resulting Λ∗
rr and g∗

r encode the dependence of the
marginalized states. Taking the linear residual into the next
optimization, we can maintain the consistency of Xr. Since
the Ceres solver [73] uses Jacobians to update variables, when
implementing the marginalization, we rewrite the information
matrices using Jacobians. After obtaining Λ∗

rr, we factorize it
with eigenvalues and eigenvectors

Λ∗
rr = PΨP�. (40)

Let J∗ =
√
ΨP�, r∗ =

√
Ψ−1P�g∗

r, we have

J∗�J∗ = Λ∗
rr, J∗�r∗ = g∗

r. (41)

In the next optimization, the prior residual ‖rpri(Xr)‖2 is
equal to ‖r∗ + J∗ΔXr‖2, where ΔXr is the “distance” between
the current state and initial state.
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