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Three-Filters-to-Normal: An Accurate and Ultrafast
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Rui Fan, Member, IEEE, Hengli Wang, Graduate Student Member, IEEE,
Bohuan Xue, Graduate Student Member, IEEE, Huaiyang Huang, Graduate Student Member, IEEE,

Yuan Wang, Ming Liu, Senior Member, IEEE, Ioannis Pitas, Fellow, IEEE

Fig. 1. Surface normal estimation from depth and disparity images: (a) and (b) show examples of RGB and depth images of the Augmented ICL-NUIM
dataset [1], respectively; (d) and (e) show examples of RGB and disparity images of the Tsukuba stereo dataset [2], respectively; (c) and (f) show the surface
normals estimated from (b) and (e), respectively, using 3F2N SNE.

Abstract—This paper proposes three-filters-to-normal (3F2N),
an accurate and ultrafast surface normal estimator (SNE), which
is designed for structured range sensor data, e.g., depth/disparity
images. 3F2N SNE computes surface normals by simply perform-
ing three filtering operations (two image gradient filters in hor-
izontal and vertical directions, respectively, and a mean/median
filter) on an inverse depth image or a disparity image. Despite the
simplicity of 3F2N SNE, no similar method already exists in the
literature. To evaluate the performance of our proposed SNE,
we created three large-scale synthetic datasets (easy, medium
and hard) using 24 3D mesh models, each of which is used to
generate 1800–2500 pairs of depth images (resolution: 480×640
pixels) and the corresponding ground-truth surface normal maps
from different views. 3F2N SNE demonstrates the state-of-the-art
performance, outperforming all other existing geometry-based
SNEs, where the average angular errors with respect to the
easy, medium and hard datasets are 1.66◦, 5.69◦ and 15.31◦,
respectively. Furthermore, our C++ and CUDA implementations
achieve a processing speed of over 260 Hz and 21 kHz, respec-
tively. Our datasets and source code are publicly available at
sites.google.com/view/3f2n.
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I. INTRODUCTION

Real-time 3-dimensional (3D) object recognition is a very
challenging computer vision task [3]. Surface normal is an
informative and important visual feature used in 3D object
recognition [4]. However, not much research has been con-
ducted thoroughly on surface normal estimation, as it is merely
considered as an auxiliary functionality for other computer
vision applications. Such applications are generally required
to perform in an online fashion, and therefore, surface normal
estimation must be carried out extremely fast [4].

The surface normals can be estimated from either a 3D point
cloud or a depth/disparity image (see Fig. 1). The former, such
as a LiDAR point cloud, is generally unstructured. Estimating
surface normals from unstructured range data usually requires
the generation of an undirected graph [4], e.g., a k-nearest
neighbor graph or a Delaunay tessellation graph. However,
the generation of such graphs is very computationally inten-
sive. Therefore, in recent years, many researchers have been
focusing on surface normal estimation from structured range
sensor data, e.g., depth/disparity images.

Existing surface normal estimators (SNEs) can be cate-
gorized as either geometry-based [3]–[6] or machine/deep
learning-based [7], [8]. The former typically computes surface
normals by fitting planar or curved surfaces to locally selected
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3D point sets, using statistical analysis or optimization tech-
niques, e.g., singular value decomposition (SVD) or principal
component analysis (PCA) [4]. On the other hand, the latter
generally utilizes data-driven classification/regression models,
e.g., convolutional neural networks (CNNs) to infer surface
normal information from RGB or depth images [9].

In recent years, with rapid advances in machine/deep learn-
ing, many researchers have resorted to deep convolutional
neural networks (DCNNs) for surface normal estimation. For
instance, Xu et al. [10] utilized a so-called prediction-and-
distillation network (PAD-Net) to 1) realize monocular depth
prediction and surface normal inference, as well as 2) perform
scene parsing and contour detection simultaneously. Recently,
Huang et al. [11] formulated the problem of densely estimating
local 3D canonical frames from a single RGB image as a joint
estimation of surface normals, canonical tangent directions and
projected tangent directions. Such problem was then addressed
by a DCNN.

The existing data-driven SNEs are generally trained using
supervised learning techniques. Hence, they require a large
amount of hand-labeled training data to find the best CNN
parameters [8]. Additionally, such CNNs were not specifically
designed for surface normal estimation, because SNEs were
only used as an auxiliary functionality for other computer
vision applications, such as scene parsing, 3D object detec-
tion, and depth perception. Furthermore, many robotics and
computer vision applications, e.g., autonomous driving [12],
require very fast surface normal estimation (in milliseconds).
Unfortunately, the existing machine/deep learning-based SNEs
are not fast enough. Moreover, the accuracy achieved by
data-driven SNEs is still far from satisfactory (the average
proportion of good pixels is usually lower than 80%) [7], [8].
Most importantly, it can be considered more reasonable to
estimate surface normals from point clouds or disparity/depth
images rather than from RGB images. Hence, there is a strong
motivation to develop a lightweight SNE for structured range
data with high accuracy and speed.

The major contributions of this work are as follows:

1) Three-filter-to-normal (3F2N), an accurate and ultra-
fast SNE. We published its Matlab, C++ and CUDA im-
plementations at github.com/ruirangerfan/three_filters_
to_normal. Compared with other geometry-based SNEs,
3F2N SNE greatly improves the trade-off between speed
and accuracy.

2) Three datasets (easy, medium and hard) created using
24 3D mesh models. Each mesh model is used to
generate 1800–2500 depth images from different views.
The corresponding surface normal ground truth is also
provided, as 3D mesh object models (rather than the
objects themselves) are available for surface normal
ground truth generation.

II. RELATED WORK

This section provides an overview of geometry-based SNEs.
1) PlaneSVD SNE [13]: The simplest way to estimate the

surface normal of an observed 3D point pi = [x, y, z]> in the

camera coordinate system (CCS) is to fit a local plane:

nxx+ nyy + nzz + b = 0 (1)

to the points in Q+
i = [Q>i ,pi]

>, where Qi = [qi1, . . . ,qik]>

(qij 6= pi) is a set of k neighboring points of pi. The surface
normal ni = [nx, ny, nz]

> can be estimated by solving:

min
bi

∣∣∣∣∣∣[Q+
i 1k+1

]
bi

∣∣∣∣∣∣
2
, (2)

where bi = [n>i , b]
> and 1m is an m-entry vector of ones.

(1) can be solved by factorizing Q+
i into UΣV> using SVD.

b̂i (the optimum bi) is a column vector in V corresponding
to the smallest singular value in Σ [4].

2) PlanePCA SNE [14]: ni can also be estimated by
removing the empirical mean q̄i = 1

k+1 (pi + Σkj=1qij) from
Q+
i and rearranging (2) as follows [15]:

min
ni

∣∣∣∣∣∣[Q+
i − Q̄+

i

]
ni

∣∣∣∣∣∣
2
, (3)

where Q̄+
i = 1k+1q̄

>
i . Minimizing (3) is equivalent to

performing PCA on Q+
i and selecting the principal component

with the smallest covariance [4].
3) VectorSVD SNE [4]: A straightforward alternative to

fitting (1) to Q+
i is to minimize the sum of the inner dot

products between rij = qij − pi and ni, namely,

min
ni

∣∣∣∣∣∣[Qi − 1kp
>
i

]
ni

∣∣∣∣∣∣
2
. (4)

This minimization is done by SVD.
4) AreaWeighted SNE [4]: A triangle can be formed by

a given pair of rij and rij+1, as defined above. A general
expression of averaging-based SNEs is as follows [4]:

ni =
1

k

k∑
j=1

wj
rij × rij+1

‖rij × rij+1‖2
, (5)

where wj is a weight and rik+1 = ri1. In AreaWeighted
SNE, the surface normal of each triangle is weighted by the
magnitude of its area:

wj =
1

2
‖rij × rij+1‖2. (6)

5) AngleWeighted SNE [4]: The weight wj of each triangle
relates to the angle between rij and rij+1:

wj = cos−1

(
〈rij , rij+1〉
‖rij‖2‖rij+1‖2

)
, (7)

where 〈·〉 is a dot product operator.
6) FALS SNE [5]: The relationship between the Cartesian

coordinate system and the spherical coordinate system (SCS)
is as follows [5]:

pi = rivi = ri

sin θi cosφi
sinφi

cos θi cosφi

 , (8)

where ri ≥ 0, θi ∈ (−π, π] and φi ∈ (−π2 ,
π
2 ]. Since all points

in Q+
i are in a small neighborhood [5], their ri are considered

to be identical in FALS SNE. (2) and (8) result in:

min
ñi

∣∣∣∣∣∣V+
i ñi − si

∣∣∣∣∣∣
2
, (9)

github.com/ruirangerfan/three_filters_to_normal
github.com/ruirangerfan/three_filters_to_normal
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where V+
i = [vi,vi1, . . . ,vik]>, ñi = ni/b

2 and si =
[r−1i , ri

−1
1 , . . . , ri

−1
k ]>.

7) SRI SNE [5]: Similar to FALS SNE, SRI SNE first
transforms the range data from the Cartesian coordinate system
to the SCS. ni is then obtained by computing the partial
derivative of the local tangential surface s:

ni = ∇s(θi, φi) =
[
ez, ex, ey

]
Ri

 1
1

ri cosφi
∂ri/∂θi

1
ri
∂ri/∂φi

 ,
(10)

where Ri is an SO(3) matrix with respect to θi and φi. ez , ex
and ey are the unit vectors in the z, x and y coordinate axes,
respectively. ∇s(θi, φi) can be obtained by applying standard
image convolutional kernels.

8) LINE-MOD SNE [3]: Firstly, the optimal gradient ∇z =
[∂z/∂u, ∂z/∂v]> of a depth map is computed. Then, a 3D
plane is formed by three points p0, p1 and p2:

p0 = t(p̃i)z,

p1 = t
(
p̃i + [1, 0]>

)
(z +

∂z

∂u
),

p2 = t
(
p̃i + [0, 1]>

)
(z +

∂z

∂v
),

(11)

where t(p̃i) is the vector along the line of sight that goes
through an image pixel p̃i = [ui, vi]

> and is computed using
camera intrinsic parameters. The surface normal ni can be
computed using:

ni =
(p1 − p0)× (p1 − p2)

‖(p1 − p0)× (p1 − p2)‖2
. (12)

III. THREE-FILTERS-TO-NORMAL

In this paper, we introduce 3F2N SNE, which is simple to
understand and use. Our SNE can compute surface normals
from structured range sensor data using only three filters: 1)
a horizontal image gradient filter, 2) a vertical image gradient
filter and 3) a mean/median filter.

A 3D point pi = [x, y, z]> in the CCS can be transformed
to p̃i = [u, v]> using [16]:

z

uv
1

 = Kpi =

fx 0 uo
0 fy vo
0 0 1

xy
z

 , (13)

where K is the camera intrinsic matrix, po = [uo, vo]> is the
image principal point, and fx and fy are the camera focal
lengths (in pixels) in the x and y directions, respectively.
Combining (1) and (13) results in:

1

z
= −1

b

(
nx
u− uo

fx
+ ny

v − vo

fy
+ nz

)
. (14)

Differentiating (14) with respect to u and v leads to:

∂1/z

∂u
= − nx

bfx
,

∂1/z

∂v
= − ny

bfy
, (15)

which can be approximated by respectively performing hori-
zontal and vertical image gradient filters, e.g., Sobel, Scharr
and Prewitt, on the inverse depth image (an image storing

the values of 1/z). Rearranging (15) results in the following
expressions of nx and ny:

nx = −bfx
∂1/z

∂u
, ny = −bfy

∂1/z

∂v
. (16)

Given an arbitrary qij ∈ Qi, we can compute the correspond-
ing nzj by plugging (16) into (1):

nzj = b
fx∆xij

∂1/z
∂u + fy∆yij

∂1/z
∂v

∆zij
, (17)

where rij = qij − pi = [∆xij ,∆yij ,∆zij ]
>. Since (16) and

(17) have a common factor of −b, they can be simplified as:

nx = fx
∂1/z

∂u
, ny = fy

∂1/z

∂v
,

n̂z = −Φ

{
∆xijnx + ∆yijny

∆zij

}
, j = 1, . . . , k,

(18)

where Φ{·} represents the manner of n̂z (the optimum nz)
estimation. In our previous work [12], ni is written in spherical
coordinates and Φ(·) is formulated as an energy minimization
problem [12], which is computationally intensive. Hence, in
this paper, Φ{·} represents a mean/median filtering operation
used to estimate nz . Please note: if the depth value of pi
is identical to those of all its neighboring points qij ∈ Qi,
we consider that the direction of its corresponding surface
normal is perpendicular to the image plane and simply set ni
to [0, 0,−1]>. The performances of estimating ni using the
mean filter and using the median filter will be compared in
Section IV.

Specifically, for a stereo camera, fx = fy = f , and the
relationship between depth z and disparity d is as follows
[18]:

z =
ftc
d
, (19)

where tc is the stereo rig baseline. Therefore,

∂1/z

∂u
=
∂1/z

∂d

∂d

∂u
=

1

ftc

∂d

∂u
,

∂1/z

∂v
=
∂1/z

∂d

∂d

∂v
=

1

ftc

∂d

∂v
.

(20)

Plugging (19) and (20) into (18) results in:

nx = ∂d/∂u, ny = ∂d/∂v,

n̂z = −Φ

{
∆xijnx + ∆yijny

∆zij

}
, j = 1, . . . , k.

(21)

Therefore, our SNE can also estimate surface normals from a
disparity image using three filters.

IV. EXPERIMENTS

A. Datasets and Evaluation

In our experiments, we used 24 3D mesh models from
Free3D1 to create three datasets (eight models in each dataset).
According to different difficulty levels, we name our datasets
“easy”, “medium” and “hard”, respectively. Each 3D mesh

1free3d.com

free3d.com
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(a) (b) (c) (d) (e)

Fig. 2. eA comparisons with respect to different filter types and sizes: (a) 3F2N-easy dataset; (b) 3F2N-medium dataset; (c) 3F2N-hard dataset; (d) DIODE
indoor dataset [17]; (e) DIODE outdoor dataset [17]. Please note: (a)-(e) use different scales.

model is first fixed at a certain position. A virtual range
sensor with pre-set intrinsic parameters is then used to capture
depth images at 1800–2500 different view points. At each
view point, a 480 × 640 pixel depth image is generated
by rendering the 3D mesh model using OpenGL Shading
Language2 (GLSL). However, since the OpenGL rendering
process applies linear interpolation by default, rendering sur-
face normal images is infeasible. Hence, the surface normal of
each triangle, constructed by three mesh vertices, is considered
to be the ground truth surface normal of any 3D points
residing on this triangle. Our datasets are publicly available
at sites.google.com/view/3f2n/datasets for research purposes.
In addition to our datasets, we also utilize two real-world
datasets: 1) the DIODE dataset3 [17] and 2) the ScanNet4 [19]
dataset to evaluate the SNE performance on noisy depth data.
Furthermore, we utilize two metrics: a) the average angular
error (AAE) eA and b) the proportion of good pixels (PGP)
eP [6]:

eA =
1

m

m∑
k=1

ψk, eP(ϕ) =
1

m

m∑
k=1

δ(ψk, ϕ) (22)

to quantify the SNE accuracy, where:

δ(ψk, ϕ) =

{
0 (ψk > ϕ)
1 (ψk ≤ ϕ)

, (23)

ψk = cos−1
(
〈nk, n̂k〉
‖nk‖2‖n̂k‖2

)
, (24)

m is the number of 3D points used for evaluation, ϕ is the
angular error tolerance, and nk and n̂k are the estimated
and ground truth surface normals, respectively. In addition to
accuracy, we also record the SNE processing time t (ms) and
introduce a new metric:

π = eAt (degrees/kHz) (25)

to quantify the trade-off between the speed and accuracy of a
given SNE. A fast and precise SNE achieves a low π score.

2opengl.org/sdk/docs/tutorials/ClockworkCoders/glsl_overview.php
3diode-dataset.org
4www.scan-net.org/

TABLE I
THE RUNTIME (MS) OF THE CPU IMPLEMENTATIONS (USING A SINGLE

THREAD) WITH RESPECT TO DIFFERENT IMAGE GRADIENT FILTERS AND
MEAN/MEDIAN FILTERS.

Gradient filter Mean filter Median filter
FD 3.722 10.973
Sobel 3.824 11.167
Scharr 3.848 11.355
Prewitt 3.743 11.065

TABLE II
THE RUNTIME (MS) OF THE GPU IMPLEMENTATIONS WITH RESPECT TO

DIFFERENT IMAGE GRADIENT FILTERS AND MEAN/MEDIAN FILTERS.

Method Jetson TX2 GTX 1080 Ti RTX 2080 Ti
FD-Mean 0.823521 0.049504 0.046944
Sobel-Mean 0.855843 0.052288 0.051232
Scharr-Mean 0.860319 0.052320 0.051280
Prewitt-Mean 0.857762 0.052256 0.050816
FD-Median 1.206337 0.102368 0.065536
Sobel-Median 1.217023 0.104608 0.067840
Scharr-Median 1.239041 0.105376 0.071008
Prewitt-Median 1.240479 0.105152 0.069024

B. Filter Settings and Implementation Details

As discussed in Section III, nx and ny can be estimated
by convolving an inverse depth image or a disparity map with
image convolutional kernels, e.g., Sobel, Scharr, Prewitt, etc.
Hence, in our experiments, we first compare the accuracy
of the surface normals estimated using the aforementioned
convolutional kernels. The brute-force search strategy is then
applied to find the best parameters for a 3 × 3 kernel. Our
experiments illustrate that finite difference (FD) kernel, i.e.,
[−1, 0, 1], can achieve the best overall performance.

We implement the proposed SNE in Matlab C and C++ on
a CPU and in CUDA on a GPU. The source code is available
at github.com/ruirangerfan/three_filters_to_normal. Similar to
the FALS, SRI and LINE-MOD SNE implementations pro-
vided in the opencv_contrib repository,5 we use advanced

5github.com/opencv/opencv_contrib

sites.google.com/view/3f2n/datasets
opengl.org/sdk/docs/tutorials/ClockworkCoders/glsl_overview.php
diode-dataset.org
www.scan-net.org/
github.com/ruirangerfan/three_filters_to_normal
github.com/opencv/opencv_contrib
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Fig. 3. Examples of the experimental results: (1)–(5) columns on (a), (d) and (g) rows show the 3D mesh models, depth images, surface normal ground truth
and the experimental results obtained using FD-Mean and FD-Median SNEs, respectively; (1)–(5) columns on (b), (e) and (h) rows show the angular error
maps obtained by PlaneSVD/PlanePCA [13], VectorSVD [4], AreaWeighted [4], AngleWeighted [4] and FALS [5] SNEs, respectively; (1)–(5) columns on
(c), (f) and (i) rows show the angular error maps obtained by SRI [5], LINE-MOD [3], SNE-RoadSeg [12], FD-Mean and FD-Median SNEs, respectively.

vector extensions 2 (AVX2) and streaming SIMD (single instruction, multiple data) extensions (SSE) instruction sets
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TABLE III
COMPARISONS AMONG GEOMETRY-BASED SNES ON OUR CREATED SYNTHETIC DATASETS.

Method t (ms) ↓ eA (degrees) ↓ π (degrees/kHz) ↓
Easy Medium Hard Easy Medium Hard

PlaneSVD [14] 393.69 2.07 6.07 17.59 813.87 2389.73 6923.18
PlanePCA [13] 631.88 2.07 6.07 17.59 1306.29 3835.59 11111.92
VectorSVD [4] 563.21 2.13 6.27 18.01 1199.63 3529.11 10142.34
AreaWeighted [4] 1092.24 2.20 6.27 17.03 2407.74 6843.56 18600.68
AngleWeighted [4] 1032.88 1.79 5.67 13.26 1850.00 5855.62 13693.24
FALS [5] 4.11 2.26 6.14 17.34 9.26 25.20 71.17
SRI [5] 12.18 2.64 6.71 19.61 32.18 81.66 238.78
LINE-MOD [3] 6.43 6.53 9.94 31.45 41.93 63.84 202.08
SNE-RoadSeg [12] 7.92 2.04 6.28 16.37 16.16 49.74 129.65
FD-Mean (ours) 3.72 2.14 6.66 15.30 7.96 24.80 56.96
FD-Median (ours) 10.97 1.66 5.69 15.31 18.18 62.38 168.03

TABLE IV
eP COMPARISON AMONG GEOMETRY-BASED SNES WITH RESPECT TO DIFFERENT ϕ ON OUR CREATED SYNTHETIC DATASETS.

Method
eP ↑

Easy Medium Hard
ϕ=10◦ ϕ=20◦ ϕ=30◦ ϕ=10◦ ϕ=20◦ ϕ=30◦ ϕ=10◦ ϕ=20◦ ϕ=30◦

PlaneSVD [14] 0.9648 0.9792 0.9855 0.8621 0.9531 0.9718 0.6202 0.7394 0.7914
PlanePCA [13] 0.9648 0.9792 0.9855 0.8621 0.9531 0.9718 0.6202 0.7394 0.7914
VectorSVD [4] 0.9643 0.9777 0.9846 0.8601 0.9495 0.9683 0.6187 0.7346 0.7848
AreaWeighted [4] 0.9636 0.9753 0.9819 0.8634 0.9504 0.9665 0.6248 0.7448 0.7977
AngleWeighted [4] 0.9762 0.9862 0.9893 0.8814 0.9711 0.9809 0.6625 0.8075 0.8651
FALS [5] 0.9654 0.9794 0.9857 0.8621 0.9547 0.9731 0.6209 0.7433 0.7961
SRI [5] 0.9499 0.9713 0.9798 0.8431 0.9403 0.9633 0.5594 0.6932 0.7605
LINE-MOD [3] 0.8542 0.9085 0.9343 0.7277 0.8803 0.9282 0.3375 0.4757 0.5636
SNE-RoadSeg [12] 0.9693 0.9810 0.9871 0.8618 0.9512 0.9725 0.6226 0.7589 0.8113
FD-Mean (ours) 0.9563 0.9767 0.9864 0.8349 0.9423 0.9674 0.6191 0.7671 0.8368
FD-Median (ours) 0.9723 0.9829 0.9889 0.8722 0.9600 0.9766 0.6631 0.7821 0.8289

TABLE V
COMPARISONS AMONG DIFFERENT GEOMETRY-BASED SNES ON THE DIODE DATASET [17].

Method t (ms) ↓
eA (degrees) ↓ π (degrees/kHz) ↓ ep ↑

Indoor Outdoor Indoor Outdoor Indoor Outdoor
ϕ=10◦ ϕ=20◦ ϕ=30◦ ϕ=10◦ ϕ=20◦ ϕ=30◦

PlaneSVD [14] 883.458 10.888 16.579 9619.002 14646.762 0.693 0.924 0.942 0.574 0.763 0.811
PlanePCA [13] 1501.707 10.888 16.579 16350.436 24896.650 0.693 0.924 0.942 0.574 0.763 0.811
VectorSVD [4] 1327.847 10.868 16.514 14431.572 21928.464 0.696 0.925 0.942 0.577 0.764 0.812
AreaWeighted [4] 2522.729 10.887 16.560 27465.203 41775.635 0.691 0.924 0.942 0.572 0.763 0.812
AngleWeighted [4] 2661.607 10.759 16.545 28636.496 44037.086 0.689 0.925 0.943 0.568 0.763 0.815
FALS [5] 10.706 11.072 16.671 118.531 178.474 0.682 0.923 0.941 0.571 0.759 0.813
SRI [5] 39.075 11.154 16.903 435.854 660.481 0.685 0.918 0.936 0.571 0.757 0.807
LINE-MOD [3] 17.026 12.839 17.272 218.593 294.071 0.663 0.886 0.907 0.577 0.749 0.796
SNE-RoadSeg [12] 20.310 10.316 15.431 209.599 313.383 0.692 0.921 0.941 0.555 0.760 0.810
FD-Mean (ours) 9.511 11.202 16.981 106.540 161.507 0.613 0.854 0.903 0.477 0.713 0.779
FD-Median (ours) 30.193 10.589 16.254 319.705 490.769 0.706 0.922 0.940 0.578 0.761 0.809

TABLE VI
COMPARISONS AMONG DIFFERENT GEOMETRY-BASED SNES ON THE SCANNET DATASET [19].

Method t (ms) ↓ eA (degrees) ↓ π (degrees/kHz) ↓ ep ↑
ϕ=10◦ ϕ=20◦ ϕ=30◦

PlaneSVD [14] 462.349 13.164 6086.362 0.645 0.861 0.890
PlanePCA [13] 782.475 13.164 10300.501 0.645 0.861 0.890
VectorSVD [4] 687.917 13.239 9107.333 0.646 0.856 0.887
AreaWeighted [4] 1391.188 13.213 18381.767 0.641 0.858 0.889
AngleWeighted [4] 1475.558 12.958 19120.281 0.642 0.863 0.894
FALS [5] 5.308 13.256 70.363 0.639 0.860 0.891
SRI [5] 15.704 13.626 213.983 0.637 0.849 0.881
LINE-MOD [3] 7.679 14.479 111.184 0.631 0.834 0.866
SNE-RoadSeg [12] 10.634 12.669 134.722 0.630 0.847 0.881
FD-Mean (ours) 4.630 13.225 61.232 0.565 0.805 0.865
FD-Median (ours) 13.924 12.628 175.832 0.651 0.864 0.893

to optimize our C++ implementation. Since our approach estimates surface normals from an 8-connected neighborhood,
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TABLE VII
eA COMPARISON AMONG GEOMETRY-BASED SNES WITH RESPECT TO DIFFERENT NOISE LEVELS ON OUR CREATED SYNTHETIC DATASETS.

Method
eA (degrees) ↓

Low noise level Medium noise level High noise level
Easy Medium Hard Easy Medium Hard Easy Medium Hard

PlaneSVD [14] 2.26 6.69 19.45 3.11 9.21 26.39 4.19 12.14 35.28
PlanePCA [13] 2.26 6.69 19.45 3.11 9.21 26.39 4.19 12.14 35.28
VectorSVD [4] 2.34 6.92 19.80 3.23 9.41 27.06 4.23 12.58 36.02
AreaWeighted [4] 2.42 6.86 18.71 3.36 9.43 25.59 4.36 12.56 34.06
AngleWeighted [4] 1.93 6.24 15.69 2.67 8.51 21.89 3.68 11.34 28.52
FALS [5] 2.49 6.65 19.17 3.39 9.31 26.01 4.53 12.28 34.78
SRI [5] 2.93 7.40 21.59 3.96 10.07 29.52 5.26 13.42 39.12
LINE-MOD [3] 6.98 10.93 33.60 8.90 14.91 39.18 12.06 17.88 55.90
SNE-RoadSeg [12] 2.26 6.91 18.11 3.05 9.42 24.66 4.09 12.56 32.64
FD-Mean (ours) 2.37 7.32 16.83 3.23 9.97 22.92 4.27 13.32 30.51
FD-Median (ours) 1.82 6.26 16.85 2.49 8.52 22.96 3.35 11.38 30.61

Fig. 4. Examples of the DIODE dataset [17]: (a) RGB images; (b) depth images; (c) surface normal ground truth; (d) FD-Mean SNE results; (e) FD-Median
SNE results; (f) FD-Mean SNE error maps; (g) FD-Median SNE error maps.
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Fig. 5. Examples of the ScanNet dataset [19]: (a) RGB images; (b) depth images; (c) PlaneSVD/PlanePCA SNE error maps; (d) AngleWeighted error maps;
(e) SNE-RoadSeg SNE error maps; (f) FD-Mean SNE error maps; (g) FD-Median SNE error maps.

we also use memory alignment strategies to speed up our SNE.
In the GPU implementation, we first create a texture object
in the GPU texture memory and then bind this object with
the address of the input depth/disparity image, which greatly
reduces the memory requests from the GPU global memory.

C. Performance Evaluation

We first compare the performances of the proposed SNE
with respect to different image gradient filters (FD, Sobel,
Scharr and Prewitt) and mean/median filter. eA scores achieved
on our and the DIODE [17] datasets are given in Fig. 2.
The runtime of our implementations on an Intel Core i7-
8700K CPU (using a single thread) and three state-of-the-
art GPUs (Jetson TX2, GTX 1080 Ti and RTX 2080 Ti) is
also given in Table I and II, respectively. We can observe
that FD outperforms Sobel, Scharr and Prewitt in terms of
eA on all datasets. Also, using the median filter can achieve

better surface normal accuracy than using the mean filter,
because an nz candidate in (17) can differ significantly from
the ground truth value, introducing significant noise to the
mean filter. The eA scores achieved using FD-Median SNE
are lower than those achieved by FD-Mean SNE by 0.5◦, 1.0◦,
0.6◦, 0.7◦ and 0.6◦ with respect to 3F2N-easy, 3F2N-medium,
DIODE-indoor [17], DIODE-outdoor [17], and ScanNet [19]
datasets, respectively. However, median filter is much more
computationally intensive and time-consuming than the mean
filter, because it needs to sort eight nz candidates and find
the median value. From Table I and II, we can observe
that both FD-Mean SNE and FD-Median SNE perform much
faster than real-time across different computing platforms. The
processing speed of FD-Mean SNE is over 1 kHz and 21 kHz
on the Jetson TX2 GPU and RTX 2080 Ti GPU, respectively.
Furthermore, FD-Mean SNE performs around 1.4 to 2.1 times
faster than the FD-Median SNE. Therefore, the latter achieves



8 IEEE ROBOTICS AND AUTOMATION LETTERS

the best surface normal accuracy, while the former achieves
the best processing speed.

Moreover, we compare 3F2N SNE with all other state-
of-the-art geometry-based SNEs, as mentioned in Section II.
Some examples of the experimental results are shown in
Fig. 3, where it can be seen that the bad estimates mainly
reside on the object edges. Additionally, Table III shows
comparisons of eA on the easy, medium and hard datasets,
where we can find that FD-Median SNE achieves the best
eA score on the easy dataset, while AngleWeighted [4] SNE
achieves the best eA scores on the medium and hard datasets.
Meanwhile, the eA scores achieved by FD-Median SNE and
AngleWeighted [4] SNE are very similar. The runtime (C++
implementations using a single thread) and π scores achieved
by the aforementioned SNEs are given in Table III, where we
can observe that the averaging-based SNEs are the most time-
consuming ones, while FD-Mean SNE achieves the fastest
processing speed. Furthermore, FD-Mean, FALS [5] and FD-
Median SNEs occupy the first three places, respectively, in
terms of π score. Moreover, Table IV compares their PGP
scores with respect to different ϕ on the easy, medium and
hard datasets, where we can see that AngleWeighted [4] SNE
achieves the best eP scores, except for ϕ = 10◦ (hard dataset).
However, according to Table III, AngleWeighted [4] SNE is
extremely time-consuming and achieves a very bad π score.
On the other hand, FD-Median SNE and AngleWeighted [4]
SNE achieve similar eP scores, but the former performs about
100 times faster than the latter. Furthermore, we add random
Gaussian noise to our created depth images and provide
comprehensive comparisons of these SNEs in the supplement.

In addition to our created datasets, we also use the DIODE
[17] and ScanNet [19] datasets, respectively, to compare the
performances of the above-mentioned SNEs on noisy depth
data. Examples of our experimental results are shown in Figs.
4 and 5, respectively. The runtime and average angular errors
obtained by different SNEs are given in Tabs V and VI,
respectively, where it can be seen that FD-Mean SNE is the
fastest among all SNEs, while FD-Median SNE achieves the
lowest ep when ϕ = 10◦. FD-Mean greatly minimizes the
trade-off between speed and accuracy. Therefore, 3F2N SNE
outperforms all other state-of-the-art geometry-based SNEs in
terms of both accuracy and speed. Researchers can use either
FD-Mean SNE or FD-Median SNE in their work, according
to their demand for speed or accuracy.

V. DISCUSSION

An SNE can be applied in a variety of computer vision and
robotics tasks. In this paper, we perform ElasticFusion [20], a
real-time dense visual simultaneous localization and mapping
(SLAM) algorithm, on the ICL-NUIM RGB-D dataset [21]
with and without surface normal information incorporated,
respectively. According to the quantitative analysis of our
experimental results, the 3D geometry reconstruction accuracy
can be improved by approximately 19%, when using the
surface normal information obtained by 3F2N SNE. Examples
of the experimental results are given in the supplement.

Moreover, we have also proven in [12] and [22] that
surface normal information can be employed for various planar

surface segmentation applications. Therefore, we believe that
3F2N SNE can be utilized to extract informative features for
CNNs in various autonomous driving perception tasks, without
affecting their training/prediction speed.

Finally, it is emphasized that the proposed SNE is essentially
different from the approaches developed for dominant surface
normal estimation (or Manhattan frame model inference [23]).
The latter aims at estimating the surface normal of each planar
surface instead of the one of every single pixel.

VI. CONCLUSION

In this paper, we presented a precise and ultrafast SNE
named 3F2N for structured range data. Our proposed SNE
can compute surface normals from an inverse depth image
or a disparity image using three filters, namely, a horizontal
image gradient filter, a vertical image gradient filter and
a mean/median filter. To evaluate the performance of our
proposed SNE, we created three datasets (containing about 60k
pairs of depth images and the corresponding surface normal
ground truth) using 24 3D mesh models. Our datasets are
also publicly available for research purposes. According to our
experimental results, FD outperforms other image gradient fil-
ters, e.g., Sobel, Scharr and Prewitt, in terms of both precision
and speed. FD-Median SNE achieves the best surface normal
precision (1.66◦, 5.69◦ and 15.31◦ on easy, medium and hard
datasets, respectively), while FD-Mean SNE is most effective
for minimizing the trade-off between speed and accuracy.
Furthermore, our proposed 3F2N SNE achieves better overall
performance than all other geometry-based SNEs.

SUPPLEMENTARY MATERIAL

A. Comparisons on Noisy Synthetic Datasets

To further validate the robustness of 3F2N SNE on noisy
range sensor data, we add random Gaussian noise (with respect
to three different standard deviations) to our created synthetic
depth images. 3F2N SNE is then compared with the state-of-
the-art geometry-based SNEs, as shown in Tab. VII. It can
be observed that our proposed FD-Median SNE achieves the
best results on noisy easy datasets and it performs slightly
worse than AngleWeighted SNE [4] on noisy medium and hard
datasets. Referring to Tab. III in the full paper, AngleWeighted
SNE [4] also performs similarly to FD-Median SNE on clean
depth images, but it is extremely computationally intensive.
We believe that the noise in depth images affects all SNEs to
a similar extent and our proposed method is still among the
best geometry-based SNEs.

B. Applications of 3F2N SNE

As mentioned in the full paper, 3F2N SNE can be applied
in a variety of computer vision and robotics tasks. Therefore,
in our experiments, we first utilize an off-the-shelf registration
algorithm provided by the point cloud library6 (PCL) to match
the 3D point cloud generated from each depth image with
a global 3D geometry model. The sensor poses and motion
trajectory can then be obtained. Meanwhile, we integrate the

6pointclouds.org

pointclouds.org
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(a) (b)

Fig. 6. 3D scene reconstruction comparison: (a) conventional 3D scene
reconstruction; (b) 3D scene reconstruction aided by 3F2N SNE.

surface normal information into the point cloud registration
process and acquire another collection of sensor poses and
motion trajectory. Then, we utilize ElasticFusion [20], a real-
time dense visual SLAM system, to reconstruct the 3D scenery
using the input RGB-D data and two collections of sensor
poses and motion trajectories. Two reconstructed 3D scenes
are illustrated in Fig. 6, where it is obvious that the proposed
SNE can improve the 3D geometry reconstruction accuracy.
The experimental results suggest that the 3D reconstruction
accuracy can be improved by approximately 19%, when using
the surface normal information obtained by 3F2N SNE.

Additionally, 3F2N SNE can also be employed to detect pla-
nar surfaces through end-to-end semantic segmentation CNNs.
As demonstrated in [12] and [22], fusing surface normal maps
and RGB images can bring significant improvements on free-
space detection. The high efficiency of 3F2N SNE enables it
to be easily deployed in CNNs for surface normal information
acquisition, without affecting their training/inference speed.
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