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Abstract— Collision-free space detection is a critical
component of autonomous vehicle perception. The state-
of-the-art algorithms are typically based on supervised
deep learning. Their performance is dependent on the
quality and amount of labeled training data. It remains an
open challenge to train deep convolutional neural networks
(DCNNs) using only a small quantity of training samples.
Therefore, in this paper, we mainly explore an effective
training data augmentation approach that can be employed
to improve the overall DCNN performance, when additional
images captured from different views are available. Due
to the fact that the pixels in collision-free space (gener-
ally regarded as a planar surface) between two images,
captured from different views, can be associated using a
homography matrix, the target image can be transformed
into the reference view. This provides a simple but effective
way to generate training data from additional multi-view
images. Extensive experimental results, conducted with
six state-of-the-art semantic segmentation DCNNs on three
datasets, validate the effectiveness of the proposed method
for enhancing collision-free space detection performance.
When validated on the KITTI road benchmark, our approach
provides the best results, compared with other state-of-
the-art stereo vision-based collision-free space detection
approaches.

Index Terms— collision-free space detection, supervised
deep learning, homography matrix, data augmentation.
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d disparity
f camera focal length
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u horizontal coordinate of p
v vertical coordinate of p
ou horizontal coordinate of po

ov vertical coordinate of po

z depth from camera to P

nx,y,z x, y and z coordinates of n
Φ stereo rig roll angle
κ, κ road disparity projection model coefficients
p0 − p5,∆ constants for Φ estimation
c constant for κ and κ estimation
w image rotation function
m disparity pixel number
E energy for Φ, κ and κ estimation
D distance between r and the planar surface
W image width
Tc stereo rig baseline
I driving scene image
p 2D image pixel
po principal point
p̃ homogeneous coordinates of p
t translation vector
n normal vector of the planar surface
I identity matrix
P 3D point in the world coordinate system
Rtr rotation matrix
Htr homography matrix
K camera intrinsic matrix

I. INTRODUCTION

THE paradigm in the automotive industry has shifted
from high-performance cars to comfortable and safe cars

in the past decade [1]. This paradigm shift has accelerated
the development of autonomous driving technologies, such
as the internet of vehicles (IoV) [2] and advanced driver
assistance systems (ADAS). In recent years, industry titans,
such as Waymo, BMW, Tesla and Volvo, have been competing
with each other to commercialize autonomous vehicles [3].
However, a number of accidents occurred during experiments
recently, and this has cast doubt on whether the autonomous
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Fig. 1. Block diagram of our proposed collision-free space detection approach.

driving technology is safe enough for deployment [4]. In
this regard, the self-driving industry is now becoming more
realistic. Many of them believe that the current research and
development of autonomous driving technologies should still
focus on the ADAS [5], [6].

Visual environment perception is a key component of the
ADAS [3]. Its tasks include [7]: a) 3D information acquisition;
b) object detection/recognition; and c) semantic segmentation.
Collision-free space detection, also referred to as occupancy
grid mapping or drivable area detection, is an important task in
visual environment perception [8]. Collision-free space detec-
tion approaches generally classify each pixel in the image as
positive (drivable) or negative (undrivable) [9]. Such classifica-
tion results are then used by other autonomous car modules,
e.g., trajectory prediction [10], lane departure warning [11],
and obstacle avoidance [12], to ensure that the autonomous
car can safely navigate in complex environments.

Recent deep convolutional neural network (DCNN)-based
collision-free space detection approaches perform incredibly
well [13], [14]. However, the quality and amount of training
samples can greatly affect the performance of these DCNNs. In
this regard, training data augmentation is generally performed
to increase the diversity of the available data, without actually
collecting new data. The most common way of training data
augmentation is to apply different types of image transforma-
tion operations, such as reflections, rotations and translations,
to the existing data. Fortunately, for a multi-camera system,
such as a stereo rig, multi-view images are available. However,
the aforementioned image transformation operations do not
consider the relationship among images captured at different
view points. Therefore, jointly exploring effective training
data augmentation approaches and leveraging the relationship
among multi-view images, especially for stereo images, has
become a popular area of research that requires more attention.

The collision-free space can be considered as a planar
surface. Since the 3D points on the same planar surface
between two images captured from different views can be
linked by a homography matrix [15], the target image can
be transformed into its reference view [16]. Hence in this
paper, we propose an effective driving scene generator (DS-
Generator), which can produce additional RGB images for
training data augmentation. The block diagram of our pro-
posed collision-free space detection approach is shown in
Fig. 1. The 3D points on the collision-free space between
the reference and target images are first used to estimate
their corresponding homography matrix. The target image and

the estimated homography matrix then serve as the input
to our DS-Generator, and a driving scene image can be
generated. Since the generated image is in the same view of
the reference image, they can use the same ground truth label.
To validate the effectiveness of our DS-Generator, we train
six state-of-the-art semantic segmentation DCNNs on three
road segmentation datasets for collision-free space detection.
Extensive experiments illustrate that our DS-Generator can
effectively augment training sets and all the evaluated DCNNs
achieve better results for collision-free space detection. When
validated on the KITTI road benchmark1 [17], our approach
provides the best results, compared with other state-of-the-art
stereo vision-based collision-free space detection approaches.

The remainder of this paper is organized as follows: Sec. II
provides an overview of the state-of-the-art collision-free space
detection approaches. Sec. III introduces our DS-Generator for
training data augmentation. Sec. IV shows the experimental
results of the six state-of-the-art DCNNs and demonstrates the
effectiveness of our DS-Generator for enhancing collision-free
space detection. Finally, Sec. V summarizes the paper.

II. RELATED WORK

The state-of-the-art collision-free space detection algorithms
are generally grouped into two classes: a) geometry-based and
b) deep learning-based. The geometry-based algorithms typi-
cally formulate collision-free space with an explicit geometry
model, e.g., a straight line [18] or a quadratic surface [19],
and find its best coefficients using optimization approaches,
such as gradient descent [18] or singular value decomposition
(SVD) [19]. The collision-free space can then be detected
by comparing the difference between the actual and modeled
road surfaces [19]. [20] is a typical geometry-based collision-
free space detection algorithm, where the road segmentation
was performed by fitting a B-spline model [21] to the road
disparity projections on a 2D disparity histogram (referred
to as v-disparity image [22]). Similarly, [23] considered road
surface modeling as a shortest path problem and extracted the
road disparity projections from the v-disparity image using
Dijkstra algorithm [24]. Moreover, [19] and [25] formulated
the road disparity projection modeling into a more general
way by incorporating the stereo rig roll angle into the least
squares fitting process, which can produce more robust results
when the stereo rig baseline is not perfectly parallel to the
collision-free space [25].

1www.cvlibs.net/datasets/kitti/eval_road.php

www.cvlibs.net/datasets/kitti/eval_road.php
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With recent advances in machine learning, collision-free
space detection is regarded as a part of semantic driving
scene segmentation, where DCNNs are proven to be the best
solution. Since [26] introduced Fully Convolutional Network
(FCN), research on semantic driving scene segmentation has
experienced a major boost. SegNet [27] presented the encoder-
decoder architecture, which is widely utilized in current
networks. The encoder network performs convolutions and
max-poolings, while the decoder network uses the transferred
pooling indices from the encoder to produce a sparse feature
map, which is then fed to a trainable filter bank to produce
a dense feature map [27]. Finally, a softmax classifier is used
for the classification of each image pixel. U-Net [28] was
designed based on FCN [26]. It consists of a contracting path
and an expansive path [28]. The former includes convolutions,
rectified linear units, and max pooling layers, while the
latter combines the feature and spatial information through
a sequence of upconvolutions and concatenations with the
corresponding feature map from the contracting path [28].

DeepLabv3+ [29] was improved from DeepLabv1 [30],
DeepLabv2 [31] and DeepLabv3 [32]. It was designed to com-
bine the advantages of both the spatial pyramid pooling (SPP)
module and the encoder-decoder architecture. It applies the
depthwise separable convolution to both atrous SPP (ASPP)
and the decoder module, which makes its encoder-decoder
module much faster and more robust [29]. In [31], ASPP was
proposed to concatenate multiple atrous-convolved features
into a final feature map. However, the feature resolution is
not dense enough for semantic driving scene segmentation.
DenseASPP [33] was proposed to solve this problem, by
connecting a set of atrous convolutional layers (ACLs) in
a dense way. The ACLs in DenseASPP are organized in a
cascade fashion, where the dilation rate increases layer by
layer [33]. Then, DenseASPP concatenates the output of each
atrous layer with the input feature map and all the outputs from
lower layers. The final output of DenseASPP is a feature map
generated by multi-scale atrous convolutions [33]. For recent
approaches with encoder-decoder architectures, the last layer
of the decoder is typically a bilinear upsampling procedure for
final pixel-wise prediction recovery.

However, the simple bilinear upsampling has limited ability
to accurately recover the pixel-wise prediction, because it does
not take the correlation among the prediction of each pixel
into account [34]. Data-dependent upsampling (DUpsampling)
[34] was designed to solve this problem, by exploiting the
redundancy in the label space of semantic image segmentation
and recovering the pixel-wise prediction from low-resolution
outputs of DCNNs. Due to the effectiveness of DUpsampling,
the encoder can avoid the excessive reduction of its overall
strides and this can in turn reduce the consumption of com-
putation and memory resources dramatically [34].

Different from the aforementioned DCNNs, Gated-SCNN
(GSCNN) [35] utilizes a novel two-branch architecture, which
consists of a shape branch and a regular branch. Specifically,
the regular branch can be any backbone architecture, and the
shape branch processes the shape information in parallel to
the regular branch through a set of residual blocks and gated
convolutional layers (GCL). Then, GSCNN uses the higher-

level activations in the regular branch to effectively help the
shape branch only focus on the relevant boundary information
[35]. Finally, GSCNN employs an ASPP to combine the
information from the two streams in a multi-scale fashion.

III. METHODOLOGY

We have two pinhole cameras r and t,2 looking at a 3D
point P i on a planar surface in the world coordinate system
(WCS). The image pixel rpi = (rui;

rvi) of P i captured by r
and the image pixel tpi = (tui;

tvi) of P i captured by t can
be linked using [16]

tp̃i = Htr
rp̃i, (1)

where r,tp̃ is the homogeneous coordinates of r,tp, and the
expression of the homograph matrix Htr is [15]:

Htr =
rzi
tzi

Kt ·
(
Rtr −

ttrn
>

D

)
·K−1r , (2)

where rzi and tzi are the z coordinates of P i in the r and t
camera coordinates systems (CCSs), respectively; Rtr is the
rotation matrix by which r is rotated with respect to t; ttr
is the translation vector from r to t; Kr and Kt are the
intrinsic matrices of r and t, respectively; n = (nx;ny;nz)
is the normal vector of the collision-free space; and D is the
distance between r and the collision-free space. For a stereo
rig, rzi = tzi, Rtr, ttr, Kr and Kt can be obtained from
stereo rig calibration, Rtr = I , and ttr = (Tc; 0; 0), where
Tc is the stereo rig baseline,

Kr = Kt =

f 0 ou
0 f ov
0 0 1

 , (3)

f is the camera focal length, and po = (ou, ov) is the principal
point. (2) can, therefore, be rewritten as:

Htr =

1− Tcnx

D −Tcny

D
ouTcnx

D +
ovTcny

D − fTcnz

D
0 1 0
0 0 1

 .
(4)

(4) can be further written in a simplified form as follows [36]:

Htr = κ

 1
κ + sin Φ − cos Φ −κ

0 1/κ 0
0 0 1/κ

 , (5)

where Φ is the stereo rig roll angle, κ and κ are two road
disparity projection model coefficients [37]. They can be
estimated by minimizing [38]:

E(Φ,κ, κ) =

m∑
i=1

(
di − κ

(
w(rpi,Φ) + κ

))2

, (6)

where
w(rpi,Φ) = rvi cos Φ− rui sin Φ. (7)

minE(Φ,κ, κ) has a closed-form solution [36]:

Φ = arctan
( p4p1 − p3p2 + q

√
∆

p3p0 + p5p2 − p5p1 − p4p0

)
s.t. q ∈ {−1, 1},

(8)

2r and t refer to “reference” and “target”, respectively.
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(a)

(b)

(c)

(1) (2) (3) (4)

Fig. 2. Examples of the experimental results on the KITTI road dataset [17]: columns (1)-(2) on rows (a)-(c) show the experimental results of (a)
SegNet [27], (b) DeepLabv3+ [29] and (c) DUpsampling [34], trained on the original and augmented training sets, respectively; columns (3)-(4)
on rows (a)-(c) show the experimental results of (a) U-Net [28], (b) DenseASPP [33] and (c) GSCNN [35], trained on the original and augmented
training sets, respectively. The true positive, false negative and false positive pixels are shown in green, red and blue, respectively.

TABLE I
PERFORMANCE COMPARISON (%) AMONG DIFFERENT DCNNS TRAINED ON THE ORIGINAL AND AUGMENTED KITTI ROAD DATASETS [17]. BEST

RESULTS OF EACH NETWORK ARE SHOWN IN BOLD TYPE.

Network Accuracy Precision Recall F-Score IoU

SegNet [27] 93.8 77.6 85.3 81.2 68.4
HA-SegNet 95.6 85.1 87.3 86.2 75.7

UNet [28] 95.7 89.6 82.4 85.9 75.2
HA-U-Net 96.5 84.4 95.4 89.5 81.1

DeepLabv3+ [29] 98.0 91.5 96.4 93.9 88.5
HA-DeepLabv3+ 98.6 97.2 93.9 95.5 91.4

DenseASPP [33] 97.3 90.8 92.0 91.4 84.1
HA-DenseASPP 98.5 93.9 96.4 95.1 90.7

DUpsampling [34] 94.7 82.5 83.8 83.1 71.2
HA-DUpsampling 96.2 90.2 85.2 87.7 78.0

GSCNN [35] 94.8 84.1 82.4 83.2 71.3
HA-GSCNN 95.4 87.1 83.2 85.1 74.1

κ =
1

c

(
m

m∑
i=1

diw(rpi,Φ)−
m∑
i=1

di

m∑
i=1

w(rpi,Φ)

)
, (9)

κ =
1

κc

(
m∑
i=1

di

m∑
i=1

w(rpi,Φ)
2

−
m∑
i=1

w(rpi,Φ)

m∑
i=1

diw(rpi,Φ)

)
,

(10)

where

c = m

m∑
i=1

w(rpi,Φ)
2 −

( m∑
i=1

w(rpi,Φ)
)2
. (11)

The expressions of p0–p5 and ∆ are given in [25]. Φ can be
determined by separately replacing q in (8) with -1 and 1 and
finding the minimum minE [25]. With the estimated Φ, κ
and κ, the target image tI can be used to generate an image
gI in the reference view using:

gI(pi) =


rI(pi) if ui − (κ(w(pi,Φ) + κ) ≤ 0

or ui − (κ(w(pi,Φ) + κ) > W
tI(pi − (κ(w(rpi,Φ) + κ); 0)) otherwise

,

(12)

where pi is a 2D pixel in the generated image gI and W is
the image width. rI and gI then use the ground truth label of
rI to train the DCNN.

IV. EXPERIMENTAL RESULTS

A. Datasets
We conduct the experiments on three datasets:
• The KITTI road dataset [17]: this dataset provides stereo

image pairs, collected in real-world environments. We
split it into three sets: a) training (173 pairs of stereo
images), b) validation (58 pairs of stereo images), and
c) testing (58 pairs of stereo images). The disparity
information is acquired by PSMNet [40].

• The SYNTHIA road dataset [39]: this dataset provides
stereo image pairs acquired in simulation environments.
We select 300 images from it and split them into three
sets: training (180 pairs of stereo images), validation (60
pairs of stereo images), and testing (60 pairs of stereo
images). This dataset provides the disparity ground truth.

• Our SYN-Stereo road dataset: we publish a multi-view
synthetic dataset, named SYN-Stereo road dataset. This
dataset is created using CARLA3 simulator [41]. We first

3carla.org

carla.org
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(a)

(b)

(1) (2) (3) (4) (5) (6)

Fig. 3. Examples of the experimental results on the SYNTHIA road dataset [39], where (1) SegNet [27], (2) U-Net [28], (3) DeepLabv3+ [29], (4)
DenseASPP [33], (5) DUpsampling [34], (6) GSCNN [35], (a) trained on the original training set, and (b) trained on the augmented training set. The
true positive, false negative and false positive pixels are shown in green, red and blue, respectively.

TABLE II
PERFORMANCE COMPARISON (%) AMONG DIFFERENT DCNNS TRAINED ON THE ORIGINAL AND AUGMENTED SYNTHIA ROAD DATASETS [39].

BEST RESULTS OF EACH NETWORK ARE SHOWN IN BOLD TYPE.

Network Accuracy Precision Recall F-Score IoU

SegNet [27] 94.1 94.5 89.5 91.9 85.1
HA-SegNet 96.3 95.5 94.2 94.8 90.2

UNet [28] 94.9 94.9 91.3 93.1 87.0
HA-U-Net 97.1 95.8 96.1 95.9 92.2

DeepLabv3+ [29] 97.2 95.0 97.4 96.2 92.7
HA-DeepLabv3+ 98.3 96.8 98.6 97.7 95.5

DenseASPP [33] 96.0 94.0 95.1 94.5 89.7
HA-DenseASPP 97.7 95.8 97.8 96.8 93.8

DUpsampling [34] 95.9 95.7 93.1 94.4 89.4
HA-DUpsampling 97.4 95.9 96.9 96.4 93.0

GSCNN [35] 95.5 96.4 91.4 93.8 88.4
HA-GSCNN 97.3 95.3 97.2 96.2 92.8

mount a simulated stereo rig (baseline: 1.5 m) on the
top of a vehicle to capture synchronized stereo images
(resolution: 640×480 pixels). The vehicle then navigates
in different maps under different illumination and weather
conditions, e.g., clear, rainy, daytime and sunset, for driv-
ing scene collection. We set random pedestrians including
adults and children walking along the sidewalks. We also
randomly set different types of vehicles, such as cars
and motorcyclists, navigating in the scenarios at different
speeds. The pedestrians and vehicles are all controlled
by the CARLA simulator. We select 300 pairs of stereo
images with corresponding disparity and semantic seg-
mentation ground truth for collision-free space detection.
We split them into three sets: a) training (180 pairs of
stereo images), b) validation (60 pairs of stereo images),
and c) testing (60 pairs of stereo images). Our dataset
is publicly available at sites.google.com/view/
syn-stereo for research purposes.

Please note that the training, validation, and testing sets con-
tain data from different driving scenarios, and therefore data
corresponding to a single driving scenario is only contained
within one of these sets.

B. Experiment Setup
In our experiments, six state-of-the-art networks: SegNet

[27], U-Net [28], DeepLabv3+ [29], DenseASPP [33], DUp-

sampling [34], and GSCNN [35] are trained to validate the
effectiveness and robustness of our proposed DS-Generator.
The networks trained on the augmented training sets are named
as “HA-Network”, such as HA-U-Net and HA-DeepLabv3+.
Furthermore, five metrics: a) accuracy, b) precision, c) recall,
d) F-score and e) the intersection over union (IoU) are used
to quantify the performance of the trained DCNNs.

Additionally, other conventional training data augmentation
methods, such as translation and rotation, are also used in our
experiments. The stochastic gradient descent with momentum
(SGDM) optimizer is utilized to minimize the loss function,
and the initial learning rate is set to 0.001. Furthermore, we
adopt the early-stopping mechanism [42] on the validation set
to reduce over-fitting problem. The DCNN performance is then
quantified on the testing set, as presented in subsection IV-C.
Moreover, we select the best-performing model and fine-tune
it for the result submission to the KITTI road benchmark [17].

C. Performance Evaluation
This subsection evaluates the performance of our proposed

DS-Generator both qualitatively and quantitatively. Examples
of the experimental results on the KITTI [17], SYNTHIA [39]
and our SYN-Stereo road datasets are shown in Figs. 2, 3
and 4, respectively. We can clearly observe that the DCNNs
trained on the augmented training set generally perform better
than the same DCNNs trained on the original training set. The

sites.google.com/view/syn-stereo
sites.google.com/view/syn-stereo
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(a)

(b)

(1) (2) (3) (4) (5) (6)

Fig. 4. Examples of the experimental results on our created SYN-Stereo road dataset, where (1) SegNet [27], (2) U-Net [28], (3) DeepLabv3+ [29],
(4) DenseASPP [33], (5) DUpsampling [34], (6) GSCNN [35], (a) trained on the original training set, and (b) trained on the augmented training set.
The true positive, false negative and false positive pixels are shown in green, red and blue, respectively.

TABLE III
PERFORMANCE COMPARISON (%) AMONG DIFFERENT DCNNS TRAINED ON THE ORIGINAL AND AUGMENTED SYN-STEREO ROAD DATASETS.

BEST RESULTS OF EACH NETWORK ARE SHOWN IN BOLD TYPE.

Network Accuracy Precision Recall F-Score IoU

SegNet [27] 93.0 90.7 92.7 91.7 84.7
HA-SegNet 95.6 96.6 93.0 94.8 90.1

UNet [28] 92.8 90.3 92.6 91.4 84.2
HA-U-Net 95.4 95.8 93.4 94.6 89.7

DeepLabv3+ [29] 95.3 95.8 93.1 94.4 89.4
HA-DeepLabv3+ 97.1 98.2 95.0 96.6 93.4

DenseASPP [33] 94.3 90.9 95.8 93.3 87.4
HA-DenseASPP 96.6 96.8 95.0 95.9 92.1

DUpsampling [34] 93.3 89.0 95.3 92.0 85.3
HA-DUpsampling 95.9 96.0 94.2 95.1 90.6

GSCNN [35] 93.8 90.8 94.7 92.7 86.4
HA-GSCNN 96.4 97.7 93.8 95.7 91.8

corresponding quantitative comparisons are given in Tables I,
II and III, respectively, where it can be seen that the F-score
and IoU of the DCNNs trained on the augmented training
set obtained by our proposed DS-Generator are improved
by around 1.5-5.0% and 2.8-7.3%, respectively. Furthermore,
HA-DeepLabv3+ performs better than all other DCNNs. Our
analysis shows that, compared to the common training set aug-
mentation operations, our proposed DS-Generator can leverage
the relationship between multi-view images to perform more
effective training data augmentation, and thus, benefit all state-
of-the-art DCNNs for collision-free space detection.

As mentioned above, we fine-tune our best-performing
method, HA-DeepLabv3+4, and submit its results to the KITTI
road benchmark [17]. Then, we compare our HA-DeepLabv3+
with eight state-of-the-art stereo vision-based collision-free
space detection methods: BM [43], HistonBoost [44], SCRFF-
PFHGSP [45], GRES3D+SELAS [46], GEO+GPR+CRF [47],
ProbBoost [48], NNP [49], and BMCF [50], published on the
KITTI road benchmark. Examples of the experimental results
are shown in Fig. 5. The quantitative comparisons are given
in Table IV. Readers can see that our HA-DeepLabv3+ is the

4www.cvlibs.net/datasets/kitti/eval_road_detail.
php?result=4d39ae0a09df67b61c037ad3829f1a2c2b848f07

best stereo vision-based collision-free space detection method,
which achieves the highest MaxF (maximum F-score), AP
(average precision), PRE (precision), REC (recall), FPR (false
positive rate) and FNR (false negative rate). Furthermore, our
method runs in real time and it is much faster than all other
compared methods.

V. CONCLUSION

This paper proposed a novel training data augmentation
approach, referred to as DS-Generator. It can generate addi-
tional driving scene images from multi-view vision data, such
as stereo image pairs. Furthermore, we published a synthetic
collision-free space detection dataset, named SYN-Stereo
road dataset for research purposes. Extensive experimental
results conducted with six state-of-the-art DCNNs on three
datasets demonstrated the effectiveness of our DS-Generator,
where the F-score and IoU of the DCNNs are improved by
around 1.5-5.0% and 2.8-7.3%, respectively. Furthermore, HA-
DeepLabv3+, our best-performing implementation, achieves
the best overall performance compared to other stereo vision-
based collision-free space detection algorithms published on
the KITTI road benchmark.

www.cvlibs.net/datasets/kitti/eval_road_detail.php?result=4d39ae0a09df67b61c037ad3829f1a2c2b848f07
www.cvlibs.net/datasets/kitti/eval_road_detail.php?result=4d39ae0a09df67b61c037ad3829f1a2c2b848f07
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BM

HistonBoost

SCRFFPFHGSP

GRES3D+SELAS

GEO+GPR+CRF

ProbBoost

NNP

BMCF

Ours

Fig. 5. Examples of the experimental results on the KITTI road benchmark, where the true positive, false negative and false positive pixels are
shown in green, red and blue, respectively.

TABLE IV
COMPARISONS OF THE STEREO VISION-BASED COLLISION-FREE SPACE DETECTION METHODS ON THE KITTI ROAD BENCHMARK, WHERE ↑

MEANS HIGHER VALUES ARE BETTER AND ↓ MEANS LOWER VALUES ARE BETTER. BEST RESULTS ARE SHOWN IN BOLD TYPE.

Approach MaxF (%) ↑ AP (%) ↑ PRE (%) ↑ REC (%) ↑ FPR (%) ↓ FNR (%) ↓ Runtime (s) ↓

BM [43] 83.47 72.23 75.90 92.72 16.22 7.28 2
HistonBoost [44] 83.92 73.75 82.24 85.66 10.19 14.34 150
SCRFFPFHGSP [45] 84.93 76.31 85.37 84.49 7.98 15.51 5
GRES3D+SELAS [46] 85.09 86.86 82.27 88.10 10.46 11.90 0.11
GEO+GPR+CRF [47] 85.56 74.21 82.81 88.50 10.12 11.50 30
ProbBoost [48] 87.78 77.30 86.59 89.01 7.60 10.99 150
NNP [49] 89.68 86.50 89.67 89.68 5.69 10.32 5
BMCF [50] 89.75 84.15 89.02 90.49 6.15 9.51 2.50

HA-DeepLabv3+ (Ours) 94.83 93.24 94.77 94.89 2.88 5.11 0.06
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