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Uncertainty Identification via Time-varying

Learning Intensity
Chengxi Zhang, Choon Ki Ahn , Senior Member, IEEE, Jin Wu, Wei He , Senior Member, IEEE,

Yi Jiang, and Ming Liu , Senior Member, IEEE

Abstract—This brief studies the simultaneous estimation of
states and uncertainties in general continuous-time systems. In
particular, we present a novel time-varying learning intensity
(TLI) learning observer (LO). It has the advantage of inheriting
the valuable properties of conventional LOs with a simple struc-
ture, i.e., the uncertainty estimation is achieved using simply one
algebraic equation with low computational costs. The foremost
difference in comparison with conventional LOs is the utilization
of the TLI approach, which attenuates the overshooting response
in the case of large estimation errors and obtains decent perfor-
mance improvement. Simulations for constant and time-varying
signals demonstrate a notable performance boost of TLI-LO.

Index Terms—Learning observer, time-varying learning inten-
sity, uncertainty estimation.

I. INTRODUCTION

A. Background and Motivation

THE dynamical model of a general linear system with
system uncertainty is described by [1]

ẋ(t) = Ax(t) +Bu(t) + Ef(t) (1a)
y(t) = Cx(t) (1b)

where x(t) ∈ Rn×1 denotes the system state, and y(t) ∈ Rp×1
denotes the measurable output; A ∈ Rn×n, B ∈ Rn×m,
E ∈ Rn×q , and C ∈ Rp×n are constant matrices; u(t) ∈
Rm×1 denotes the input signal; f(x) ∈ Rq×1 represents the
uncertainty signal induced by internal and external distur-
bances (also called faults). Using an observer is an efficacious
technique to estimate the state and uncertainty in (1) [2].
The estimation results are utilized to participate in the control
design, improving the controller’s robustness to cope with the
system’s unpredictable uncertainty item and thus improve the
control performance. Compared with the adaptive approach
estimating the perturbation’s upper bound to compensate in
the controller, the observer approach reduces the controller’s
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conservativeness. Among various observer designs, the LO is
an attractive research topic, with the advantages of simple
structure with low computational demands and without the
need for derivatives of the estimated signal to be available
everywhere [3]. In this brief, we are interested in designing
an effective LO with TLI for a system given by (1).

B. Related Work

The structural simplicity and low computational demand
of the LO come from the fact that it only uses a single
algebraic equation to estimate the uncertainty, without any
other operations such as derivatives, integrals, or other more
complex computations. For example, in [3, Eq. (2)], the
uncertainty term is estimated by

f̂(t) = K1f̂(t− τ) +K2(y(t)− ŷ(t)) (2)

with estimations f̂(t) for f(t) and ŷ(t) for y(t) in (1); both
K1 and K2 are constant matrices. The first item in (2) on
the right side of the equals sign can be called the learning
item, representing the learning of previous information, which
is the most apparent feature of the LO; τ > 0 is called the
learning interval; K1 = diag(k1,1, ..., k1,q) is called the learn-
ing intensity, which represents the weight of the information
f̂(t−τ) updated to the latest estimate f̂(t); the second item to
the right of the equals sign is called the updating item, which
represents the update of the latest output error information into
the estimation.

This simple and effective strategy is so effective that various
investigations have been published, for example, [3]–[6] used
this approach to explore different systems fruitfully. Neverthe-
less, there is a quite noticeable problem that has not yet been
explored in-depth, which is that, the K1 in existing investiga-
tions has been defined as fixed values. This has resulted in the
learning intensity being the same for all observers regardless
of the situation. This leads to the problem that fast signal
reconstruction cannot be achieved when the learning intensity
is low. In contrast, when the learning intensity approaches
100%, although the estimation can be accomplished swiftly,
it incurs notable chattering responses (or overshooting) in the
case of large output errors. There are some evident problems
related to the results, such as [5, Figs. 1-3], [4, Figs. 5 and 6],
[3, Figs. 1-4], [7, Figs. 11-14]. The choice is made to select
a high learning intensity for fast estimation purposes in these
current results.
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Therefore, further attenuating the chattering response will
significantly enhance the LO’s performance, which becomes
the exploration key-point in this work.

C. Contributions

The main contributions of the novel TLI-LO are threefold.
1) A novel TLI-LO is designed that employs a TLI approach

to tune the observer’s update weights when the output
error varies. Compared with the fixed learning intensity
approaches in [3]–[8], the chattering phenomenon is
significantly attenuated.

2) Compared with existing studies such as [4, Assumption
4], [7, Assumption 1] and [6, Assumption 3], we provide
a more general form of the demands on the signal to be
estimated, i.e., conventional assumptions can be directly
derived from its bounded properties.

3) The proposed TLI-LO maintains the advantages of the
learning-type observers with a simple structure, low com-
putational demands, and fast estimation of uncertainty.
Moreover, the globally asymptotic stability w.r.t. a set
can be guaranteed.

II. PRELIMINARIES

The system investigated is given by (1). Furthermore, we
have added the following Assumptions.

Assumption 1. rank(E) = q and (A,C) is detectable.
Assumption 2. ‖f(t)‖ is bounded, i.e., ‖f(t)‖ ≤ ε.
From ŷ(t), f̂(t) in (2), define the estimation (identification)

errors for y(t) and f(t),

ey(t) := y(t)− ŷ(t) (3a)

ef (t) := f(t)− f̂(t). (3b)

Define an aided variable

f̃(t) := f(t)−K(t)f(t− τ) (4)

with τ > 0 and ‖K(t)‖ is bounded.
From Assumption 2, we have f(t) = β(t)f(t − τ) where

obviously β(t) ∈ [−1, 1]. Therefore, we have ‖f̃(t)‖ =
‖f(t) − K(t)f(t − τ)‖ = ‖f(t − τ)(β(t)I − K(t))‖ ≤
ε‖β(t)I−K(t)‖ < ε(‖βI‖+‖K(t)‖) < ϑ. Then, the Lemma
1 can be a corollary, and is a general form of the conditions
described in studies [4, Assumption 4], [6, Assumption 3].

Lemma 1. ‖f̃(t)‖ is bounded if Assumption 2 holds, with
‖f̃(t)‖ < ϑ.

Lemma 2 [6]. For two vectors a and b with proper dimen-
sions, a positive parameter α exists such that

a>b + b>a ≤ 1

α
a>a + αb>b. (5)

Remark 1. Note that Assumption 2 is a sufficient condition.
A weak requirement is that f̃(t) is bounded, which can be
obtained if f(t) satisfies the Lipschitz condition. However,
the Lipschitz condition requires a function to be smooth,
while the bounded condition does not require the derivative to
exist everywhere. That is, Lipschitz condition is conservative.
Since uncertainty signals are mostly induced by modeling
uncertainties, assembly errors, and actuator failures in practice,

they are bounded in engineering. Hence the requirement in
Assumption 2 is reasonable.

Remark 2. Some adaptive observers require that the uncer-
tainty signal and its time derivative are bounded [4, Remark
4]. This paper does not require that the derivatives exist
everywhere i.e., only ‖f(t)‖ is bounded, which is a much less
constrained necessity. Lemma 1 shows that we can obtain the
assumptions needed in conventional LOs via Assumption 2.

Remark 3. The more general meaning of Lemma 1 is that
it does not hold in relation to K1 as stated in [4] and [6], i.e.,
as long as f(t) is bounded, Lemma 1 naturally holds.

III. TIME-VARYING LEARNING INTENSITY LO DESIGN

A. Observer Design

The proposed TLI-LO is described by

˙̂x(t) = Ax̂(t) +Bu(t) + Ef̂(t) + Ley(t) (6a)
ŷ(t) = Cx̂(t) (6b)

f̂(t) = K(t)f̂(t− τ) +K2ey(t) (6c)

with estimation x̂(t) for x(t). Define

ex(t) := x(t)− x̂(t), (7)

and (3b) becomes

ey(t) = C(x(t)− x̂(t)) = Cex(t), (8)

L ∈ Rn×p and K2 ∈ Rq×p are the gain and updat-
ing intensity matrices; K(t) is the learning intensity ma-
trix, which is a time-varying matrix defined by K(t) =
diag(k1(t), ..., ki(t), ..., kq(t)) where i ∈ {1, ..., q} and each
element in K(t) is given by

ki(t) = exp
[
−λ1(‖ēf,i‖+ ‖ēy‖)λ2 − γ

]
(9)

where λ1 > 0, λ2 > 0 and γ > 0 are constants; ēy :=
1
τ [e (t)− e (t− τ)]; ēf,i = 1

τ [f̂i (t)− f̂i (t− τ)].
Combining (3b) and (6c) yields

ef (t) = f(t)− f̂(t)

= f(t)−K(t)f(t− τ) +K(t)f(t− τ)

−K(t)f̂(t− τ)−K2ey(t)

= K(t)ef (t− τ)−K2ey(t) + f̃(t)

= K(t)ef (t− τ)−K2Cex(t) + f̃(t). (10)

From (1), (8), and (6c), it yields

ėx(t) = Aex(t) + Eef (t) + Ley(t)

= Eef (t) + (A− LC)ex(t). (11)

Remark 4. From (9), we know that ki(t) is monotonically
decreasing with respect to ey(t). In (9), γ ensures that ki(t) 6=
1 at ‖ēf,i‖ + ‖ēy‖ = 0, and ki(t) → 0 only at ‖ēf,i‖ +
‖ēy‖ → ∞, hence ki(t) ∈ (0, 1). Therefore ‖K(t)‖ is obvious
bounded. λ1, λ2, and γ together shape the VLI function, which
is bell-shaped. λ1 affects the decay rate away from 0, and the
larger it is, the faster the function decays; λ2 determines the
degree of flatness of ki(t) near 0, and the larger it is, the flatter
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the function is in this neighborhood; γ limits the maximum
ki(t) and prevents it from reaching 1.

Remark 5. The symbol ēy is used to describe the intensity
of its variation, which approximates the derivative’s definition.
By this arrangement, we can see that the proposed TLI
approach reduces the learning intensity when the estimation
error and variability are large. Using this approach, we expect
to obtain a smoother estimation result.

Remark 6. Eq. (9) presents our proposed TLI method for
LO, which is the most significant distinction between the TLI-
LO designed in this paper and those in [3]–[6]. We have
advanced the learning intensity in a way that varies with
respect to the estimation errors. Clearly (9) shows that the
learning intensity will be strengthened when the estimation
error tends to zero and be weakened when the estimation error
is large. The TLI approach will significantly improve the fixed
learning intensity issues in conventional approaches, i.e., when
the learning intensity is close to 1, but chattering occurs when
the error is in a large situation. Using this approach, we expect
LO to estimate state and uncertainty signals more smoothly
when the error is large but still maintain a high estimation
accuracy when the error becomes small.

B. Stability Analysis

Proposition 1. For the system described by (1) and satisfy-
ing Assumptions 1 and 2, the TLI-LO given by (6) can achieve
the simultaneous estimation of state and uncertainty as long
as the following conditions hold:
C1) ΩE = µ(K2C)

>;
C2) (A− LC)>Ω+Ω(A−LC)−(µ−φ2)(K2C)

>
K2C < 0;

C3) Ξ− (µ− φ1)K>(t)K(t) > 0;
where Ω ∈ Rn×n and Ξ ∈ Rq×q are positive definite matrices;
µ = (ξ + 1)λmax(Ξ), and λmax(·) is the maximum eigenvalue
of corresponding matrix; ξ > 0, φ1 > 0, φ2 > 0.

Proof: Select the following positive definite function for
TLI-LO

V (t) = e>x (t)Ωex(t) +

t∫
t−τ

e>f (χ)Ξef (χ)dχ (12)

such that V (t) ≥ 0 holds. Then its time derivative satisfies

dV (t)

dt
=e>f (t)E>Ωex(t) + e>x (t)(A− LC)>Ωex(t)

+ e>x (t)ΩEef (t) + e>x (t)Ω(A− LC)ex(t)

+ e>f (t)Ξef (t)− e>f (t− τ)Ξef (t− τ)

=e>x (t)
[
(A− LC)

>
Ω + Ω(A− LC)

]
ex(t)

+ 2e>x (t)ΩEef (t) + e>f (t)Ξef (t)

− e>f (t− τ)Ξef (t− τ)

=e>x (t)Πex(t) + 2e>x (t)ΩEef (t) + e>f (t)Ξef (t)

− e>f (t− τ)Ξef (t− τ) (13)

with Π = (A− LC)>Ω + Ω(A− LC). Since

ξe>f (t)Ξef (t) ≤ e>f (t)[ξλmax(Ξ)]ef (t) (14)

where ξ > 0 is a constant. Therefore, (13) satisfies

dV (t)

dt
≤e>x (t)Πex(t) + 2e>x (t)ΩEef (t)

+ (ξ + 1)e>f (t)λmax(Ξ)ef (t)

− e>f (t− τ)Ξef (t− τ)

− ξe>f (t)Ξef (t). (15)

Consider (10), we have

µe>f (t)ef (t) =µe>f (t− τ)K>(t)K(t)ef (t− τ)

+ µe>x (t)(K2C)>K2Cex(t)

− 2µe>x (t)(K2C)>K(t)ef (t− τ)

+ 2µf̃>(t)K(t)ef (t− τ)

− 2µf̃>(t)K2Cex(t). (16)

Furthermore,

2e>x (t)ΩEef (t) =2e>x (t)ΩEK(t)ef (t− τ)

− 2e>x (t)ΩEK2Cex(t)

+ 2e>x (t)ΩEf̃(t). (17)

Considering the inequalities (16) - (17), (15) yields

dV (t)

dt
≤e>x (t)

[
Π + µ(K2C)

>
K2C − 2ΩEK2C

]
ex(t)

− e>f (t− τ)
[
Ξ− µK>(t)K(t)

]
ef (t− τ)

+ e>x (t)
[
2ΩE − 2µ(K2C)

>
]
K(t)ef (t− τ)

+ e>x (t)
[
2ΩE − 2µ(K2C)

>
]
f̃(t)

− ξe>f (t)Ξef (t) + µf̃>(t)f̃(t)

+ 2µf̃>(t)K(t)ef (t− τ)

− 2µf̃>(t)K2Cex(t). (18)

According to Lemma 2, we get

2µf̃>(t)K(t)ef (t− τ) ≤ 1

φ1

(
µf̃>(t)

)>
µf̃>(t)

+ φ1e
>
f (t− τ)K>(t)K(t)ef (t− τ)

≤φ1e>f (t− τ)K>(t)K(t)ef (t− τ)

+
µ2ϑ2

φ1
(19)

and

−2µf̃>(t)K2Cex(t) ≤ 1

φ2

(
µf̃>(t)

)>
µf̃>(t)

+ φ2e
>
x (t)(K2C)

>
K2Cex(t)

≤ µ2ϑ2

φ2
+ φ2e

>
x (t)(K2C)

>
K2Cex(t) (20)

where φ1 > 0 and φ2 > 0 are constants. Consider condition
C3, i.e., ΩE = µ(K2C)

>, then we have

dV (t)

dt
≤e>x (t)

[
Π− (µ− φ2)(K2C)

>
K2C

]
ex(t)

− e>f (t− τ)
[
Ξ− (µ− φ1)K>(t)K(t)

]
ef (t− τ)

− ξe>f (t)Ξef (t) + µ2ϑ2
(
µ+

1

φ1
+

1

φ2

)
. (21)
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Let Q = (µ−φ2)(K2C)
>
K2C, H = Ξ−(µ−φ1)K>(t)K(t);

therefore, by considering C2 and C3, we obtain

dV (t)

dt
≤e>x (t) [Π−Q] ex(t)− e>f (t− τ)Hef (t− τ)

− ξe>f (t)Ξef (t) + δ (22)

with

δ = µ2ϑ2(µ+
1

φ1
+

1

φ2
) (23)

being a positive constant. Further, denote

η(t) = col[e>x (t), e>f (t), e>f (t− τ)], (24)

then (22) becomes

dV (t)

dt
≤ −π‖η (t)‖2 + δ (25)

where π = λmax(−Π +Q,H, ξΞ). It is clear that when
‖η(t)‖ >

√
δ/π, dV (t)

dt < 0. Besides, (25) defines a set:

A :=
{
` ∈ Rn+2q | − π‖`‖2 + δ > 0

}
. (26)

Denote the common point-to-set distance for A and η(t):

d(η,A) = inf
c∈A
‖η − c‖. (27)

Therefore, (25) also means that the TLI-LO (6) is globally
asymptotically stable w.r.t. the set A and then [9]

lim
t→∞

d(η(t),A) = 0. (28)

This completes the proof. �
Remark 7. Theoretically, the selection of τ affects the

quantity of ϑ in Lemma 1 and affects the radius of the ball
converged to; i.e., the result was shown by (26). A smaller τ
can accommodate faster-varying f(t). Since most of practical
systems are composed of digital circuits, in general, τ can be
chosen for one/multiple sampling intervals.

Remark 8. Since LO parameters must satisfy three condi-
tions in Proposition 1, we can first focus on C3 and choose
the appropriate Ξ, K(t), and then obtain a µ. Subsequently,
since no K(t) exists in C1 and C2, we can use the traditional
Linear Matrix Inequality tool to solve for them. Due to the
length of this process, we omit it here. Related methods can
be found in [4].

Remark 9. Resource efficiency is an important topic when
designing control system schemes [10]–[12]. Data-driven
method can be used when computing resources are sufficient
[13], [14]. LO is useful to achieve control purpose in sce-
narios with limited resources such as space vehicles, vessels,
unmanned surface vehicles and master-slave systems, [15]–
[19].

IV. COMPARATIVE EXAMPLES

The parameters are given by A = [0, 1;−1, 0], B =
[1, 0; 0, 1], C = [1, 1; 0, 1], E = [1, 1]>, L = [1, 0; 0, 2], and
K2 = [10, 10]. The initial observer state is x̂(0) = [0, 0]>. The
learning interval in (6) is τ = 0.01s. The initial system state
in (1) is x(0) = [0.1, 0.2]>. The TLI parameters in (9) are
λ1 = 4, λ2 = 2, and γ = 0.001. To verify the ability of TLI-
LO to cope with constant (case #1) and time-varying (case

#2) uncertainty signals and its superiority to existing studies,
we conducted two comparative simulations. The comparative
one should be when K is fixed using the abbreviation FTI-
LO in the simulation results presentation. Based on the law of
control variables, we chose the FLI-LO scheme with the same
parameters except for the fixed ki = 0.995 (typical setting
in [7, Section 5.1]). Figs. 1-5 present the comparative results.
Figs. 1-2 exhibit the results for a constant uncertainty (a step
signal of amplitude 0.1 appears at 2s), and Figs. 3-4 for a time-
varying uncertainty (using a sine-wave signal of amplitude
0.1). Simulation results in the upper part of each figure are
for TLI-LO and in the lower part for FLI-LO. From the above
figures, it is clear that a twofold conclusion can be made:

Fig. 1. State estimation errors in case #1 (constant uncertainty).

Fig. 2. Uncertainty estimation errors in case #1 (constant uncertainty).

Fig. 3. State estimation errors in case #2 (time-varying uncertainty).
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1) The chattering behavior of FLI-LO is significantly atten-
uated in TLI-LO; thus, the design goal is achieved.

2) The estimation accuracy of TLI-LO maintains a high level
for both constant and time-varying uncertain signals.

Fig. 5 provides the variation of TLI; it can be seen that the
learning intensity is small when the estimation error and its
variation are relatively large, and it converges to 1 when they
are small. Meanwhile, there is also a noticeable variation in
the learning intensity when the step signal appears at 2s.
Consistently, this corresponds to the fact that TLI-LO can
attenuate the chattering response.

Fig. 4. Uncertainty estimation errors in case #2 (time-varying uncertainty).

Fig. 5. Evolution of time-varying learning intensity in both simulations.

V. CONCLUSIONS

This brief paper presents a new TLI-LO for state and
uncertainty identification with a weakened chattering response.
The proposed TLI approach tunes the learning intensity with
different error conditions, attenuating the common chattering
issue in conventional LOs with FLI and thus enhancing the es-
timation performance. A noticeable performance improvement
can be seen from the simulation. The TLI approach shows
satisfactory results to improve LO designs, which will promote
our future exploration.
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