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Visuomotor Reinforcement Learning for Multirobot
Cooperative Navigation
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and Hesheng Wang , Senior Member, IEEE

Abstract— This article investigates the multirobot cooperative
navigation problem based on raw visual observations. A fully
end-to-end learning framework is presented, which leverages
graph neural networks to learn local motion coordination and
utilizes deep reinforcement learning to generate visuomotor
policy that enables each robot to move to its goal without the
need of environment map and global positioning information.
Experimental results show that, with a few tens of robots, our
approach achieves comparable performance with the state-of-
the-art imitation learning-based approaches with bird-view state
inputs. We also illustrate our generalizability to crowded and
large environments and our scalability to ten times number of
the training robots. In addition, we demonstrate that our model
trained for multirobot case can also improve the success rate in
the single-robot navigation task in unseen environments.

Note to Practitioners—With the development of intelligent
industrial and logistic systems, robotic transportation systems are
widely implemented. However, existing multirobot path coordina-
tion and navigation approaches are basically under some unrea-
sonable assumptions, which are very hard to be implemented in
practical scenarios. This article aims to greatly promote the real
application of learning-based multirobot cooperative navigation
approach, in order to achieve the following. First, we introduce
an end-to-end reinforcement learning framework instead of the
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commonly used imitation learning strategy, as the latter one
needs exhaustive training data to cover all the scenarios and
does not have the required generalizability. Second, we directly
use the raw sensor data instead of the commonly used bird-
eye-view semantic observations, as the latter one is generally
not representative of practical application scenario from the
robot perspective and cannot solve the occlusion issue. Third,
we interpret our learned model to illustrate which parts of the
input and shared observations contribute most to the robots’ final
actions. The above interpretability ensures predictability (thus
safety) of our visuomotor policy in practical applications. Our
learned visuomotor policy has the ability to coordinate dozens
of robots by only using raw visual observations in unknown
environments without map nor global localization information,
this is the first time in the literature. Our future work includes
solving the sim-to-real issue and conducting physical experiments.

Index Terms— Cooperative navigation, multirobot system,
reinforcement learning (RL), visuomotor.

I. INTRODUCTION

MULTIROBOT cooperative navigation, which requires
each robot to navigate to its goal position autonomously

while ensuring motion coordination (i.e., collision avoidance)
with other robots, is of great importance in several application
scenarios, such as multirobot cooperative transportation [1],
multiagent navigation [2], [3], drone and robot swarm forma-
tion control [4], [5], and multivehicle platoon control [6], [7].
Traditional approaches include the centralized approach [8],
decentralized approach [9], and hierarchical approach [10].
Centralized approach aims at finding out the optimal multi-
robot spatiotemporal trajectories with as lower computational
complexity as possible, and however, it can only be used in
a deterministic environment and its scalability to large-scale
problems cannot be ensured [10]. The decentralized approach
utilizes local traffic rules or motion coordination strategies
to achieve flexibility in robot scales, and however, it cannot
handle the local crowded space and generalizes poorly to var-
ious environments [11]. In order to combine the advantages of
the above two categories, the hierarchical approach introduces
a high-level planner to optimize overall system performance
and utilizes local motion coordination to ensure safety. How-
ever, their high computational complexity and the requirement
of high-frequency global information storage/retrieval greatly
limit their applications.

More recently, learning-based approaches have been investi-
gated to solve the multirobot cooperative navigation problem,
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which learns fully distributed local action policies by aggre-
gating local observations and shared information from neigh-
boring robots [3], [12], [13]. Learning-based approaches have
achieved promising performances, especially under system
uncertainties and dynamics. However, current models are
trained on datasets that assume complete state observability
of the local environment from the bird-eye view. These are
generally not representative of real-world application scenario
from the robot perspective and cannot be achieved when
onboard sensors are occluded. In addition, they have implicitly
divided the raw perception, state estimation (bird-view state
observation), and navigation policy learning into separate
functional modules, which prohibits any potentially direct
feedback between the raw sensor data and the final navigation
policy and also cannot be learned in a fully end-to-end manner
in practical implementations.

In this article, we utilize the first-person-view raw observa-
tions as system input and learn visuomotor policy for multi-
robot cooperative navigation tasks in unknown environments.
Our main contributions can be summarized as follows.

1) To the best of the authors’ knowledge, this article builds
the first reinforcement learning (RL) framework for the
multirobot cooperative navigation task with first-person-
view visual data. The proposed system is fully distrib-
uted and only local observations are required, i.e., each
robot does not need the environment map nor any global
location information. These move a big step to achieve
the real implementation in practical applications.

2) A fully end-to-end learning framework is presented to
bridge the semantic gap from the raw perception data to
the end decision-making. First, deep learning techniques
are utilized to extract high-dimensional features from
raw visual observations and compact them into efficient
representations. Second, graph neural networks (GNNs)
are implemented to learn information sharing and aggre-
gation among neighboring robots for efficient local
motion coordination. Third, the RL strategy is imple-
mented to generate a proper visuomotor policy for
robot control. In contrast to imitation learning (IL)-based
works, our approach does not need exhaustive expert
data and scales well to unseen scenarios.

3) Comprehensive validation results show that, for a
few tens of robots, our RL-based visuomotor policy
achieves a comparable performance with the state-of-
the-art IL approaches with bird-view state observations.
We demonstrate our scalability to large-scale robot net-
works (ten times number of the training robots) and
crowded and large environments (25 times crowdedness
of the training case). In addition, we demonstrate that
our multirobot visuomotor training can also benefit the
single-robot RL navigation ability in unknown environ-
ments.

II. BACKGROUND AND RELATED WORK

A. Traditional Approaches

As mentioned above, traditional multirobot cooperative nav-
igation approaches can be classified into centralized, decen-

tralized, and hierarchical approaches. Centralized approaches,
represented by the conflict-based search (CBS) [8], ensure
completeness and optimality under some certain metrics
such as makespan or flowtime [8]. The main shortage of
these approaches is that they assume that the deterministic
environment, dynamics, and uncertainties in the execution
stage will greatly degrade the actual robot navigation per-
formance [10]. Decentralized approaches, represented by the
priority-based [14] and time-window-based [15] approaches,
introduce motion priority, local traffic rule, or velocity coor-
dination mechanism [9] to solve local conflicts. Decen-
tralized approaches scale well to large robot groups, and
however, due to their incompleteness and the need of pre-
defined strategies, their performance declines in crowded
local spaces and generalizes poorly to various scenarios [11].
Hierarchical approaches, represented in [10], [16], optimize
system-level performance such as the traffic flow and working
throughput in a centralized manner and coordinate robots’
spatiotemporal trajectories locally, thus improving the optimal-
ity and scalability simultaneously. However, as a centralized
information-sharing system is required for high-level schedul-
ing and multiple decentralized local planning centers are typi-
cally implemented for coordination [10], both the high system
synchronization requirements and the frequent global informa-
tion storage/retrieval need greatly limit their applications.

B. Learning-Based Approaches

Pioneered by PRIMAL [3], both the IL and RL approaches
have been studied for solving the multirobot navigation and
motion coordination problems [11]–[13], [17]. Basically, com-
pared to RL-based works, IL-based approaches have advanced
successful rate and scale well to hundreds or even thousands
of robots [3], [13]. However, they rely on supervised learning
with expert planners and exhaustive data that are hard to be
obtained, especially to cover all the unexpected scenarios.
In order to let the model to explore more potential solutions,
RL-based approaches become more and more popular in most
recent days, which have better generalizability and are more
adaptive to various environments [18]. However, RL-based
approaches commonly suffer from the reward sparsity and
sample in-efficiency issues, especially in the initial train-
ing stage. Almost all the existing learning-based approaches
assume complete observability of the local environment and
input the abstract state observation from the bird-eye view.
These are typically not representative of real-world scenarios
from the robot’s own perspective. In addition, in order to
achieve this, they need to divide the raw perception, state esti-
mation, and navigation policy learning into separate functional
submodules with several preprocessing operations and intro-
duce hand-tuned parameters. In this article, we directly utilize
raw visual sensor data as the network input and implement a
fully end-to-end framework to learn visuomotor policy.

C. Visuomotor Learning for Robot Navigation

Visuomotor policy learning has been investigated for drone
navigation [19], mobile manipulation [20], and self-driving
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Fig. 1. System formulation of the visuomotor learning for multirobot
cooperative navigation. (a) Multirobot cooperative navigation system and the
coordinates system definition. (b) Input observation of each robot, where
we transfer the goal direction information into a virtual image and then
concatenate it with the omnidirectional RGB image to form the multichannel
input observation.

applications [21] for several years. In order to efficient fea-
ture representation learning, autoencoders [19] and auxiliary
tasks [21] are commonly used. Goal information can be intro-
duced by 2-D global map [22], target images [23], or relative
distances to several scenario landmarkers [21]. In addition,
progressive net [24] and adversarial approach [20] can be
further utilized to achieve sim2real domain transfer. Note
that all the above works focus on the single-robot case. For
a multirobot case, a vision-based drone formation control
approach is presented in [4], which uses a behavior-based
flocking controller as the expert to train the vision-based
control policy. This method can only imitate the expert con-
troller to achieve some simple swarm behaviors in obstacle-
free spaces. Similarly, Hu et al. [25] provided a vision-based
perception network to learn the required state estimation,
which is not end-to-end and also needs an expert dataset
for supervised learning. To sum up, end-to-end visuomotor
learning for multirobot cooperative navigation in unknown
environments is still an open challenge.

III. PROBLEM FORMULATION AND SYSTEM DESIGN

In this article, we consider the 3-D continuous environment
space W ⊆ R

3, which contains a set of Ns static obstacles
S = {s1, . . . , sNs } randomly located on the ground. As shown
in Fig. 1, a set of Nr mobile robots R = {r1, . . . , rNr } navigate
on the ground plane of the free space W \ S. The robot goal
positions G = {g1, . . . , gNr } are also randomly located on the
ground plane of the free space W \ S. Let pi(t) denote the

position of ri at time step t , and the objective of the multirobot
cooperative navigation can be defined as: for a maximum time
step tm , ∀i , pi(tm) = gi , and ∀i, j, t , we require pi(t), p j (t) ⊂
W \ S and pi(t) �= p j(t), i.e., each robot ri should reach its
goal position gi without any collisions with static obstacles or
other robots.

In our system formulation, we make the following assump-
tions. First, each robot ri can communicate with its neighbors
r j ∈ Ni(t) = {r j |D(pi(t), p j (t)) < Cr }, where D(·, ·)
represents the Euclidean distance and Cr is the communica-
tion range. Second, we do not consider additional dynamic
obstacles except for the moving robots in the environment.
Third, each robot can obtain rough direction information of
its goal during movements. Please note that here, we do not
assume the specific coordinates (exact location) of the goal
relative to the robot. In addition, except for this direction
information, we do not need any other global location nor
relative distance information of the goal and neighboring
robots, also we do not need the global environment map. This
aims to ensure the implementation of our multirobot coopera-
tive navigation approach in any unseen environments. Fourth,
the robots have no orientation and their visual observations
are omnidirectional, and the coordinate system of each robot
is defined in the bottom right of Fig. 1(a). The omnidirectional
observation and movement assumptions aim to facilitate each
robot to learn the relative positioning information of the
communicated neighbors as well as their motion intentions.
Note that this assumption can be easily alleviated in practical
implementations by using the “rotate-move-rotate” strategy in
each moving step of each robot, and only a compress sensor
is required.

As shown in Fig. 1(b), at each time step t , each robot
ri obtains the local observation Oi

t , which contains four
input channels, the first three channels are the omnidirectional
RGB image of its surrounding environment with the size of
384 × 54, and the last channel is a virtual image with the same
size that contains the goal direction information. Similar to the
omnidirectional image, the leftmost and rightmost columns in
the goal channel correspond to 0o and 360o in the coordinates
system defined in Fig. 1(a), and then, the column (with a width
of 20) corresponded to the goal direction φi is highlighted with
the white color and all the other columns are with the black
color.

We consider the velocity control of the robot in the con-
tinuous environment space. As shown in Fig. 1(a), the robot
action set is defined as A = {v f , vb, vl , vr , v∅}, i.e., at each
time step t , each robot can move front, back, left, or right with
a constant velocity or stay in its current location.

Based on the above formulations, we now build our multi-
robot cooperative navigation framework. For each robot, our
end-to-end learning framework includes three main modules
as follows.

1) Observation Feature Learning: As shown in Fig. 2,
the input tensor of each robot’s network is a time series
of the multichannel observations {Oi

t , Oi
t−1, . . . , Oi

t−Nt
}.

Then, we utilize a series of convolution layers fol-
lowed by a fully connected (FC) layer to extract
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Fig. 2. Network structure of the observation feature learning module,
where we input time series observations and utilize convolution layers to
extract high-dimensional features for the input observation of each robot. Cov:
convolution layer. BN: batch normalization. FC: fully connected layer.

high-dimensional features Fi
C from the input tensor. For

simplification, we remove the time dimension t here.
2) Local Coordination Information Learning: Inspired

by [13], [25], we share the learned observation features
among neighboring robots and introduce GNN layers
to aggregate the shared messages for learning the local
coordination information. For each robot ri , a high-
dimensional coordination feature Fi

G is obtained by
aggregating the visual observation as well as motion
intention of local neighbors.

3) Visuomotor Policy Learning: Finally, we concatenate Fi
G

and Fi
C to form the input of visuomotor policy learning

module and use a series of FC layers to estimate the
value function and the quality of each state–action pair.
The action with the best quality will be chosen with the
highest probability.

Our main principle in the above system design is to keep our
network structure as parameter economic as possible, in order
to make the network easy training and ensure the real-time
performance. Please note that, if necessary, one can always
introduce more complex network structures in each of the
above three modules to further improve model capacity and
performance.

In the following, we will describe our coordination infor-
mation learning and visuomotor policy learning modules.

IV. LOCAL COORDINATION INFORMATION LEARNING

In order to achieve cooperative navigation, the learned
observation feature of each robot can be shared locally among
neighboring robots. Sharing the observation features helps the
robots to learn their relative positions and enables the robots
to extend perception range by fusing neighbors’ observation
features. In addition, as the goal direction information is also
contained in the observation features, each robot can also
obtain the moving intentions of its neighbors, thus facilitating
the learning of local motion coordination and conflict avoid-
ance. In this article, we introduce the GNN module to achieve
the above local coordination information learning.

We first define �d = {ψ i j
d } ∈ R

Nr ×Nr as the adjacency
matrix, which describes the neighboring relations, i.e., if robot
r j ∈ Ni (t), then ψ

i j
d = ψ

j i
d = 1; otherwise, ψ i j

d = 0
(here, the subscript d represents the direct communication).
In our preliminary testings, we find that only aggregating
the information from the direct neighbors is not adequate
for local motion coordination, as each robot should consider

the motion intentions of more distant robots in advance to
plan its future motions and avoid potential future collisions.
Fortunately, through multihop routing [26] or multiround
information sharing [13], each robot can obtain its multi-
hop neighbors’ information while still maintaining the fully
distributed framework. In order to balance the complexity
and performance, we consider two-hop neighbors’ information
in local coordination information learning. We define �e =
{ψ i j

e } ∈ R
Nr ×Nr is the adjacency matrix of the extended

communication graph, i.e., for three robots ri , r j and rk ,
if ri ∈ Nk(t) and r j ∈ Nk(t) simultaneously but r j /∈ Ni (t),
then ψ i j

e = ψ
j i

e = 1, otherwise ψ i j
e = 0. We further define

�̃d = {ψ̃ i j
d } = �d + INr , �̃e = {ψ̃ i j

e } = �e + INr , which
introduce the self-loop information.

As shown in Fig. 3, the local coordination information
learning module inputs each robot’s observation features Fi

C
extracted by the observation feature learning module and two
GNN layers are implemented to aggregate neighbors’ features.
More specifically, the input feature matrix of the first GNN
layer is H (0) = [F1

C , . . . , F Nr
C ]T , where the i th row is the

feature vector of the robot ri . The output of the first GNN
layer is

H (1) = [
σ
(
Fd

(
H (0), �̃d,W (1)

d

))
, σ

(
Fe

(
H (0), �̃e,W (1)

e

))]
(1)

where Fd(·, ·, ·) and Fe(·, ·, ·) represent the graph convolution
operation on the direct communication graph �̃d and extended
communication graph �̃e, respectively, W (1)

d and W (1)
e rep-

resent learnable weight matrices, and σ(·) represents the
elementwise nonlinear activation function. Then, we introduce
the second GNN layer to fully exploit the feature aggregation
and extraction ability of GNN and the final output of the local
coordination information learning module is

H (2) = [
σ
(
Fd

(
H (1), �̃d ,W (2)

d

))
, σ

(
Fe

(
H (1), �̃e,W (2)

e

))]

= [
F1

G; F2
G; . . . ; F Nr

G

]
(2)

where Fi
G represents the feature vector of robot ri .

In this article, we utilize the following two kinds of GNN
to formulate the graph convolution operation F◦(H ∗, �̃◦,W �◦ )
in each graph convolution layer (where ◦ can be e or d , ∗ can
be (0) or (1), and � can be (1) or (2)).

1) Graph Convolution Network (GCN): Define the diagonal
degree matrix M̃◦ = {m̃ii◦ } ∈ R

Nr ×Nr where m̃ii◦ =∑
j ψ̃

i j◦ , and then, GCN has the following formulation:
F◦(H ∗, �̃◦,W �

◦ ) = M̃
− 1

2◦ �̃◦M̃
− 1

2◦ H ∗W �
◦ . (3)

Normalizing the adjacency matrix by using the diagonal
degree matrix contributes to unify the scale of each
robot’s feature vector. The above GCN is based on the
graph Fourier transform theory and is well simplified
by using the first-order Chebyshev polynomial approx-
imation, which can prevent the gradient vanishing or
exploding problem.

2) Graph Attention Network (GAT): We compute a con-
volution similar to GCN introduced above but use the
attention mechanism [27] to weight the adjacency matrix
instead of using the normalized adjacency matrix

F◦(H ∗, �̃◦,W �
◦ ) = α�◦ H ∗W �

◦ + b�◦ (4)
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Fig. 3. Network structures of the neighbor information aggregation and
control policy generation modules. In the neighbor information aggregation
module, graph convolution operation is conducted on different hop neighbor
sets and multilayer graph aggregation is introduced. In the control policy
generation module, a series of FC layers is used to learn action policy with
RL strategy.

where b�◦ is the trainable bias and

{α�◦}i j =
exp

(
LR

(
aT

[(
H ∗W �◦

)
i
,
(
H ∗W �◦

)
j

])))
∑

ψ̃ ik◦ =1 exp
(
LR

(
aT

[(
H ∗W �◦

)
i
,
(
H ∗W �◦

)
k

]))) .

(5)

LR represents the LeakyReLU activation function, a ∈ R
2 Nr

is a trainable attention kernel, and (X)i represents the i th row
in X .

V. VISUOMOTOR POLICY LEARNING

Based on the observation features and coordination informa-
tion learned above, in this section, we describe our visuomotor
policy learning approach for cooperative navigation.

A. Visuomotor RL

As shown in Fig. 3, we concatenate the output feature
vectors of the observation feature learning module and local
coordination information learning module, i.e., Fi

C and Fi
G ,

and use a series of FC layers to build the visuomotor policy
network, which generates robot action ai

t . Concatenating Fi
C

and Fi
G aims to integrate each robot’s own visual observation

and goal information and also the neighbors’ observation and
moving intentions, thus helping the robot to navigate to its
goal while coordinating motions with others.

In this article, we use the RL strategy for visuomotor policy
learning. The reward function ϒ i

t of each robot is defined as
follows.

1) A small negative step reward ϒ i
t = −(γ1/Nm) < 0 to

drive the robot to reach the goal as soon as possible,
where Nm is the maximum moving step;

2) An extra-large negative reward −γ2 if the robot col-
lides with other robots or static obstacles, i.e., ϒ i

t =
−(γ1/Nm)− γ2 < 0.

3) An extra positive reward (γ3/Nm) if the robot’s action
aligns to the optimal path from its current position to
its goal, then ϒ i

t = (γ3 − γ1/Nm) > 0. In each step,
we calculate the optimal path and compare the robot
action direction with the first step on the optimal path,
if they are aligned (choosing the same moving direction

Fig. 4. Training environments for curriculum learning, where a simple
structured environment is considered in the first stage and a more complex
environment is considered in the second stage. Similar to Fig. 1, the blue and
yellow blocks represent the current and goal location of each robot, and the
white blocks represent static obstacles. (a) Simple environment. (b) Clutter
environment.

from the four directions in A), and we give the extra
positive reward (γ3/Nm).

4) An extra-large positive reward γ4 if the robot arrives its
goal, i.e., ϒ i

t = −(γ1/Nm)+ γ4 > 0.

The optimal path can be calculated by using the Dijstra or
A∗ method. An implementation problem is that we consider
continuous environment space in this article, and however,
the optimal path does need to be carried out in the discrete
environment with topology graphs. In order to address this
issue, we temporally discretize the free space W \S to obtain
a grid topology map and the discretization step is set to one
unit length. During training, the current and target position
of each robot will be approximated to the nearest nodes in
the discretized map, based on which the optimal path will be
generated. Introducing the optimal path information aims to
provide each robot a dense reward at each step. Please note
that the optimal path information is only used in the training.
In addition, in order to decrease the computational complexity,
an event-triggered strategy is introduced, i.e., we only update
the optimal path when the robot’s position in the discretized
map changes in this time step.

B. Curriculum Learning Strategy

Although we provide a dense reward function for each
robot, the model training of multirobot cooperative navigation
is still very challenging, as we build a fully end-to-end RL
framework with raw visual inputs. In this article, we utilize
the curriculum learning strategy to increase sample efficiency
and accelerate the training speed. More specifically, we first
train our model in a simple and structured environment [as
shown in Fig. 4(a)] and then transfer the trained network to a
more complex and clutter environment [as shown in Fig. 4(b)]
for further training. Both of the environments are with the size
of 60 × 60 and contain five robots. The obstacle density in
the second environment is about 1%.

We first use the simple and structured environment shown
in Fig. 4(a), and the robots’ initial and goal positions are
generated more frequently in the open area located at the
center of the environment so that robots can learn the visual
characteristics of the goal more easily during the early training
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TABLE I

NETWORK STRUCTURE OF THE OBSERVATION FEATURE
LEARNING MODULE

stage. At the same time, a few robots’ goal positions will also
appear behind the obstacles, which allows the robots to have
some basic obstacle-avoidance capabilities. The first stage
training will automatically stop when the following conditions
are met.

1) Reward curve is stable (evaluated by its variance) for
more than 100 thousand steps.

2) Average episode reward is above Ne for more than
100 thousand steps.

3) The average number of collisions in the past five rounds
is less than Nc for each robot.

We then transform the trained model into a complex and
crowded environment, as shown in Fig. 4(b). The robot
cannot always see its goal directly at the initial position,
and the distance from the robot’s initial location to the
goal is also enlarged. Due to the preliminary navigation and
obstacle-avoidance capabilities learned in the previous stage,
the robots can navigate to their goal location in the complex
environment, but with an unskilled manner (large detours).
The second stage of training can further strengthen the robots’
navigation and obstacle-avoidance abilities and shorten the
time of goal searching in the complex environment.

VI. IMPLEMENTATION

A. Model Parameters

We use proximal policy optimization [28] as the RL algo-
rithm in our implementation, which is an actor–critic method
based on a combination of policy and value gradient. The
default parameters are set as follows: the reward parameters
γ1 = 10, γ2 = 1, γ3 = 20, γ4 = 10, Ne = 20, Nc = 3,
and Nm = 400. The observation feature learning module is
described in Table I followed with a flatten operation and an
FC layer with 512 unit. The activation functions are ReLU.
For the local coordination information learning module, Fi

C ∈
R

512, Fi
G ∈ R

512, H (0), H (1), H (2) ∈ R
Nr ×512, W (1)

d ,W (2)
d ∈

R
512×256, and W (1)

e ,W (2)
e ∈ R

512×256. In the visuomotor policy
learning module, we use three FC layers with 512, 256, and
64 units, respectively.

B. Training and Testing

We train our model with Intel i7-8700K CPU and one
NVIDIA GTX 1080Ti GPU, Python 3.7 with TensorFlow 2.3.
The initial learning rate is 4 × 10−5 and will linearly decay
to 4 × 10−6 in one million steps. The training optimizer is
Adam. We use curriculum learning strategy to help robots

TABLE II

COMPUTATIONAL COMPLEXITY OF EACH BASELINE MODEL

converge to a reasonable strategy faster, which has been
explained in detail in Section V-B. During the training process,
episode switching conditions include: 1) all agents reach there
own goal and 2) simulation step of current episode reaches
a maximum number defined as 300, which is smaller than
maximum simulation steps Nm in testing, as we expect the
robot to collect more representative data and filter out invalid
and failed cases during training. If one of the above conditions
is satisfied, we will end the current episode and start a new
one. In training, the static obstacles in the environments shown
in Fig. 4 are fixed in different episodes, but the robots’ initial
and goal locations are changed.

We introduce a different number of robots (1, 5, 10, 30,
and 50), static obstacle densities (4%, 8%, and 12%), and
environment sizes (40 × 40, 60 × 60, and 100 × 100) to build
the various of testing environments. We will comprehensively
test the generalizability and scalability of different model
structures in different environments, which will be introduced
in detail in the following. The following metrics are used for
performance evaluation.

1) Success Rate: As mentioned before, we set a maximum
step Nm = 400 for all the tests and count the number
Nra of the robots that reach their goal within this time.
Then, we calculate the successful rate (Nra/Nr ) of each
evaluation.

2) Path Length:

Path Length = 1

Nra

Nra∑

i=1

Li

Li
opt

(6)

where Li is the actual moving distance of each robot
ri and Li

opt is the length of the optimal path between
the robot’s initial position and goal, which is defined
in Section V-A. Please note that in the multirobot path
planing case, the shortest path Li

opt typically cannot
be achieved, even for the optimal solution, each robot
should also take a detour or temporarily stop for locally
coordinating its motion with other robots.

3) Moving Step: This measure corresponds to the average
moving steps of the robots that arrive their goal success-
fully. For those robots which cannot reach their goal,
we use the maximum time step Nm .

C. Baseline Models

In the results, we consider the following five different
network structures and compare their performance for ablation
study.
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1) MRV-C: This is our complete model, which utilizes
GCN described in Section IV for the local coordination
information learning module. Here, MRV represents
multirobot visual-based cooperative navigation and C
represents GCN.

2) MRV-A: This is our complete model, which utilizes
GAT described in Section IV for the local coordination
information learning module. Here, A represents GAT.

3) MRV-C \w. SC: In this model, we utilize GCN in
the local coordination information learning module and
directly input the learned feature vector Fi

G to the
visuomotor policy learning module (do not concatenate
Fi

G with the observation feature Fi
C ). Here, \w. SC rep-

resents “without the skip connection of the observation
feature Fi

C .”
4) MRV-A \w. SC: In this model, we utilize GAT in

the local coordination information learning module and
directly input the learned feature vector Fi

G to the visuo-
motor policy learning module without concatenating the
observation feature Fi

C .”
5) SRV: In this model, each robot independently learns

its visuomotor policy without communicating with oth-
ers (treats other robots as noncommunicative dynamic
obstacles), i.e., we directly input the observation feature
vector Fi

C to the visuomotor policy learning module.
Here, SRV represents the single-robot visual navigation.

In Table II, we show the number of parameters and the real
runtime per step of each baseline model mentioned above.
The results show that most of the parameters (and also the
spent computation time) are in the observation feature learning
module. This implies that introducing the local coordination
feature learning module does not largely increase the storage
and computation complexity, and however, as will be shown
in Section VII, it will largely improve the performance.

VII. RESULTS

In this section, we conduct comprehensive validations and
comparisons to demonstrate the effectiveness, generalizability,
and scalability of our approach. All the validations are con-
ducted in Unity using ML-Agents toolkit [29].

A. Convergence Performance in Training

As mentioned in Section V-B, we introduce the curriculum
learning strategy to increase the sample efficiency, especially
in the initial training period. The cumulative reward of each
episode in each training stage is shown in Fig. 5(a), where the
dotted line indicates the actual switch time in the training of
each model. The average moving step of each model in each
episode is shown in Fig. 5(b). Please note that in training,
we set the time-out moving step as 300 and will terminate
this iteration at this time if any robot cannot reach its goal
within 300 steps.

The training curves in Fig. 5 show that the following
conditions hold.

1) Introducing the skip connection (i.e., the concatenation
of Fi

C and Fi
G ) in the input of the visuomotor pol-

icy learning module greatly improves the convergence

Fig. 5. Training performance of different baseline models. (a) Cumulative
reward in each episode. (b) Average moving step in each episode.

speed in the first training stage. In the presence of
skip connection, the GNN module can only focus on
the efficient feature sharing and aggregation task, while
it does not need to simultaneously learn to integrate
the visual features extracted by the observation feature
learning module. Fig. 5(a) shows that MRV-A \w. SC
even cannot converge in the first training stage, which
results from the great challenges of learning the per-
ception, attention policy, information aggregation, and
visuomotor control modules simultaneously. Please note
that each robot does not know what its goal looks like (in
our simulator, the goal of all the robots looks the same)
and it can only be learned after the robot receives the
responding reward, and this also increases the difficulty
of the initial learning stage.

2) SRV, MRV-C, and MRV-A converge quickly in the initial
stage. The introduced goal direction information and
the proposed dense reward help to increase the sample
efficiency during the initial training stages.

3) The switch times of MRV-C and MRV-A are earlier than
that of SRV. In addition, MRV-C performs better than
MRV-A as the latter one has more learnable parameters.

4) SRV has the best performance only in the very early
training stage, and the potential reason is that it has less
learnable parameters and obtains more rewards in simple
tasks in the initial training stage. However, as it is very
hard for SRV to learn the motion coordination ability,
its overall convergence speed is slower than MRV-C and
MRV-A.

B. Evaluation Results

In this section, we test different networks on testing envi-
ronments that have the same map size and robot number with
the training environments, but the testing environments have
a larger obstacle density (about 4%). The results in Table III
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TABLE III

COMPARISON RESULTS OF DIFFERENT NETWORKS

show that the following conditions hold. First, both the success
rates of MRV-C and MRV-A are higher than 95%, which are
similar to the results obtained by the state-of-the-art imitation
learning-based approach [13]. Note that we directly input the
first-person-view visual observations and do not need an expert
dataset for supervised learning, and thus, our approach is more
promising in real applications. Second, MRV-A performs better
than MRV-C since it has a very similar success rate but much
lower path length and moving step.

C. Scalability to Large-Scale Robot Networks

In this section, we directly use different models trained with
five robots to test their scalability to large-scale problems with
10, 30, and 50 robots. The testing environments have the
same map size (60 × 60) with the training maps but have
a larger obstacle density (about 4%). Combining the results
in Tables III and IV, we can find that the following conditions
hold.

1) By introducing the GNN with skip connection, success
rate can be largely improved in all the cases. Even for
the 50 robots case (ten times the training robot number),
MRV-C still has about 78% success rate. In addition,
the performance degradation of MRV-C and MRV-A in
large-scale problems is also lower than SRV.

2) The performance of MRV-C \w. SC declines largely
with the increasing robot number and is even much
worse than SRV. This indicates that, without skip
connection, the model cannot learn how to efficiently
aggregate the self-observation features and the shared
messages from others. In large-scale problems, each
robot receives a large number of shared messages, which
will dilute the perception signal of the robot itself,
so without an independent perception signal channel,
the navigation performance in complex tasks cannot be
maintained.

3) Comparing MRV-C with MRV-A, the former one has the
higher success rate, whereas the latter one has the lower
path length and moving step. This indicates that MRV-A
has better local coordination performance. In addition,
comparing SRV with MRV-C, we can find that the former
one has the slightly lower path length but much smaller
success rate (note that we only consider successful cases
in path length), which implies that when local motion
conflict occurs, SRV tends to wait in place, while MRV-C
has the stronger ability to avoid conflicts by introducing
local path detours.

TABLE IV

SCALABILITY RESULTS TO DIFFERENT ROBOT NUMBERS

TABLE V

GENERALIZABILITY RESULTS TO DIFFERENT OBSTACLE DENSITIES

D. Generalizability to Crowded and Large Environments

In this section, we first test different models in the 60 × 60
map with ten robots, and we increase the static obstacle density
to 8% and 12%. The results in Table V show that: 1) com-
pared with SRV, the success rate degradation of MRV-C and
MRV-A in crowded environments are much lower; 2) MRV-C
performs better in success rates, while MRV-A has the shortest
path length and moving step; and 3) comparing Tables IV
and V, the path length of all the models remains basically
unchanged, but moving step increases with the increase of the
static density. This implies that, in the crowded environments,
each robot is more likely to wait in place for local motion
coordination.

We then test different models in an extremely crowded
environment, i.e., the 40 × 40 map with 12% obstacle density
and 50 robots (about 25 times crowdedness than the training
case). In this environment, the multirobot cooperative navi-
gation task becomes very challenging as each robot should
handle frequent motion conflicts and the free space for local
motion coordination is also very limited. From the results
shown in Fig. 6(a), we can find that our approaches still have a
success rate higher than 50%, which is much better than SRV.
The differences between MRV-C and MRV-A in both metrics
are not obvious. The potential reason is that, since in such an
environment the space is very crowded, introducing attention
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Fig. 6. Generalizability to crowded and large environments. In each test,
the left subfigure shows the success rate (proportion of destination-arrived
robots) at each step of each model and the right one shows the histogram
(density distributions) of the sum of moving steps. (a) Results in the extremely
crowded environment. (b) Results in the large environment.

cannot largely improve model ability. In order to verify this
claim, we further test different models in a large environment,
i.e., the 100 × 100 map with the same 12% obstacle density
and 50 robots. The results in Fig. 6(b) show that MRV-A
outperforms MRV-C as there are enough local coordination
spaces, and thus, introducing attention will enable each robot
to find out a more efficient local path. In addition, the variance
of the density distribution of MRV-C and MRV-A in the large
environment is also lower than that in the extremely crowded
environment.

E. Interpretation Results

As shown in Fig. 7, we calculate the gradient of original
input observations on the final robot actions and visualize the
importance (heat value) of each pixel. The results answer the
following questions.

1) Which Parts of Each Robot’s Own Observation Con-
tribute Most to Its Final Action: As an example, Fig. 7(d)
visualizes the contribution of each pixel in the original input
of robot 3 to its own final action, which shows that the
area corresponded to the goal direction contributes most.
In addition, the directions that correspond to the movable
paths are also highlighted (note that we only mark directions
1–4 as examples, and other highlighted areas also correspond
to movable paths). The above results illustrate that the per-
ception module of each robot has successfully learned the

Fig. 7. Interpretation results, where we randomly choose one time step
during one test of the trained MRV-A model on the 60 × 60 map with ten
robots and show the current scenario, real robot input observations, and the
visualization results of the action policy interpretation. (a) Bird-eye view of
the current scenario. (b) Input observation of robot 3. (c) Input observation
of robot 7. (d) Visualization results: the contribution of each pixel in the
original input of robot 3 to the final action of robot 3 (red regions have the
largest influences, while blue regions contribute the least). (e) Visualization
results: the contribution of each part in the original input of robot 3 to the
final action of robot 6. (f) Visualization results: the contribution of each part
in the original input of robot 7 to the final action of robot 3.
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Fig. 8. Singe-robot navigation results. The left, middle, and right figures plot
the results of 40 × 40 map, 60 × 60 map, and 100 × 100 map, respectively.
In each map, different static obstacle densities, i.e., 4%, 8%, and 12%, are
considered.

goal information (main moving direction) and movable area
information (obstacle-free directions for potential local motion
coordination needs).

2) Which Parts of Neighboring Robots’ Input Observations
Contribute Most to the Robot’s Final Action: We provide two
examples here. First, Fig. 7(e) visualizes the contribution of
each pixel in the original input of robot 3 to the final action
of robot 6. Comparing Fig. 7(d) and (e), we can find that
the importance of the area corresponded to the robot 3’s goal
direction decreases in Fig. 7(e) (but is still highlighted), while
the importance of area 2 [as shown in Fig. 7(a)] increases
largely, especially the direction corresponded to the goal of
robot 6. The above results demonstrate that the GNN module
has successfully learned to obtain the information of the
interested areas from aggregating other robots’ observations.
Second, Fig. 7(f) visualizes the contribution of each pixel in
the original input of robot 7 to the final action of robot 3. From
Fig. 7(a), we can find that robots 3 and 7 should coordinate
their local motions as they move to the opposite directions and
the local space is very crowded for coordination. Compared
with Fig. 7(e), the goal information in Fig. 7(f) is more
important as this information is crucial for robot 3 to avoid
conflicts with robot 7. In addition, the importance of area 1
[as shown in Fig. 7(a)] is also highlighted, as robot 3 cannot
directly see this area (due to view occlusion); however, this
area’s information is very important for robot 3 to reach its
goal. The above results demonstrate that the local coordination
feature learning module has successfully learned to aggregate
the most important information for local motion coordination
and also learned to extend perception range by aggregating
other robots’ observation features.

F. Single-Robot Navigation

In this section, we test different models in the single-robot
visual navigation task to see whether training in the multirobot
case will also improve the single-robot navigation perfor-
mance. As in this case, MRV-C and MRV-A are exactly the
same, so we only compare SRV with MRV-C for evaluation.
As shown in Fig. 8, different map sizes with different obstacle
densities are considered and the success rate (proportion of

destination-arrived robots) at each step of each model is
plotted. The results show that the following conditions hold.

1) Comparing SRV and MRV-C, we can confirm that train-
ing in the multirobot case does improve the single-robot
navigation performance, even in this case, there is
not any shared messages in the testing. This implies
that training in the multirobot case will improve the
obstacle-avoidance ability and help robots to handle
more complex scenarios. The success rates of MRV-C
under both the 40 × 40 and 60 × 60 maps with 4%
obstacle density are 99.33%, which means that there is
only one failure case in the 150 tests.

2) With the increasing map size and obstacle density,
the robot needs more moving steps to reach its goal,
so the convergence speed of success rate decreases.
In addition, the final success rate at the time-out step
also decreases as the robot needs to travel a much longer
distance while avoiding more obstacles. The results
show that the degradation of success rate of MRV-C is
much lower than SRV.

G. Discussion

Based on the above results, we would like to provide a
preliminary discussion of the current ability boundary of the
IL-based versus RL-based models, and the first-person-view
versus bird-eye-view approaches. We choose the state-of-the-
art approaches [3], [13] for comparison, which inputs the
abstract state observation from the bird-eye view. The IL-based
GAT is utilized in [13], while the IL and RL combined
approach is used in [3]. As our system input and model
framework are totally different from those in [3], [13], we only
provide a rough comparison on the success rate.

Li et al. [13] said that their models trained with ten robots
can maintain the success rate above 92% even as they increase
the robot number from 10 to 60 on the 50 × 50 map. In [3],
success rate on the 80 × 80 map with 64 robots is higher
than 95%. In our experiments, success rate in 60 × 60 map is
95.87% for five robots, 94.27% for ten robots, and 87.13%
for 30 robots. The above results show that, in small-scale
problems, our model achieves comparable performance with
the IL-based approaches with bird-view state inputs. However,
we are also noticed that the scalability of our first-person-view
RL-based approach is worse than the IL-based approaches
with bird-view state inputs, as our success rate drops more
quickly in large-scale instances. In our testings, the maximum
robot number is set to 50 due to the hardware limitation and
the obtained success rate is about 77.92% on the 60 × 60
map; however, in [13], the success rate is above 80% even on
the 200 × 200 map with 1000 robots. The results in [3] also
show that the success rate is above 80% on the 80 × 80 map
with 256 robots. A potential reason is that in the crowded
environments with more robots, the raw visual observations
are much more complex. As we only train the model with five
robots, it is very hard for the perception network to handle the
unseen complex observations. In addition, without any expert
data, it is more challenging for RL model to learn the motion
coordination policy.
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VIII. CONCLUSION AND FUTURE WORK

In this article, we build the visuomotor learning system
for multirobot cooperative navigation using RL. The pro-
posed approach is fully distributed and end-to-end, which can
be implemented in unknown environments. Comprehensive
results demonstrate the effectiveness, scalability, and gen-
eralizability of our models. The obtained results are very
promising and move forward a large step to practical appli-
cations of multirobot cooperative navigation in industrial and
logistic scenarios. Due to hardware limitations, we only test
our models with no more than 50 robots in this article, as the
raw visual data are much storage and computational costly
compared with the state observation data used in the existing
works. In the future, we will try to further improve our models’
ability in solving large-scale problems with hundreds of robots
and also take the domain transfer issue into consideration to
conduct physical robotic experiments.
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