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Abstract—In robotic applications, many pose problems involve
solving the homogeneous transformation based on the special
Euclidean group SE(n). However, due to the non-convexity of
SE(n), many of these solvers treat rotation and translation
separately and the computational efficiency is still unsatisfactory.
A new technique called the SE(n) + + is proposed in this
paper that exploits a novel mapping from SE(n) to SO(n+ 1).
The mapping transforms the coupling between rotation and
translation into a unified formulation on the Lie group and
gives better analytical results and computational performances.
Specifically, three major pose problems are considered in this
paper, i.e. the point-cloud registration, the hand-eye calibration
and the SE(n) synchronization. Experimental validations have
confirmed the effectiveness of the proposed SE(n) + + method
in open datasets.

Index Terms—Pose Estimation, Point-Cloud Registration,
Hand-eye Calibration, SE(n) Synchronization

I. INTRODUCTION

A. Motivations

ACCURATE robotic navigation, mapping and control re-
quire precision pose estimation from multiple kinds of

measurements, which mostly comprise the visual, inertial and
laser-scan data from heterogeneous sensors [1], [2]. Pose
estimation is also important for human motion tracking and
video analysis, which may be achieved via deep learning
techniques [3], [4]. The pose referred to in this paper means
the homogeneous transformation that contains both rotation
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and translation. The pose estimation problems in this paper
mainly cover:

1) Point-cloud registration (PCR): Estimate the optimal
rigid transformation between two noisy point clouds. It
is rather useful for pose estimation from sensors like
camera and laser scanners.

2) Hand-eye calibration (HEC): Estimate the extrinsic pa-
rameter between the robotic gripper (hand) and the at-
tached camera (eye). Extended HEC also simultaneously
computes the gripper-camera pose and the robot-world
pose.

3) SE(n) synchronization: Estimate the optimal pose se-
quence, provided that some relative transformations be-
tween them are known. It is a basic technique for pose
refinement in simultaneous localization and mapping
(SLAM), such as the pose-graph optimization (PGO).

Each of them has been extensively studied in the robotics
community and even has received wide industrial applications.
Since there are various frame transforms, some pose estimation
problems may be highly non-convex [5]–[7]. Then the global
searching will undergo long periods to converge to a satisfac-
tory solution, such as the SE(n) synchronization. Moreover,
internal coupling mechanisms of rotation and translation also
add up such non-convexity in practice.

The main contribution presented in this paper is that, a
novel pose representation tool has been developed. It follows
a simple mapping from the special Euclidean group SE(n)
to the special orthogonal group SO(n + 1), which will cast
previous sophisticated problems into refined ones with rotation
optimization only. The designed scheme is thus named as the
SE(n)++ technique. The major advantages of the SE(n)++
are

1) It may deal with many kinds of homogeneous pose
estimation problems e.g. PCR, HEC and SE(n) syn-
chronization.

2) It reduces the pose estimation to high-order rotation esti-
mation, and the computational efficiency is significantly
improved.

3) It combines rotation and translation in a unified form
and thus the coupling of them are fully considered,
which leads to simultaneous optimal estimation of the
two parts.

The proposed SE(n)++ theory is based on the classical Lie
theory and does not require extended motion parameterization
theory. The rotation-matrix based form of SE(n) + + also
makes it neat and intuitive when invoked for pose estimation.
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It is noted that we aim at solving deterministic pose estimation
problems i.e. the unknown correspondences using matching
and learning techniques are regarded as resolved issues.

B. Related Works
1) Point-Cloud Registration: Since 1980s, with the rapid

development of industrial visual instruments, the PCR has
become practical in 3-D reconstruction. Arun et al. established
the optimal theory of rigid pose estimation from two point
clouds using singular value decomposition (SVD) in 1987 [8].
The classical PCR can only deal with the registration of two
point clouds with the same dimension. When it comes to the
reality, there is no guarantee of such requirement. The iterative
closest point (ICP) has then been invented to iteratively find
the best pose by matching the two point clouds with outlier
rejection [9], [10]. ICP optimization is not convex in general
and recently many efficient variants have been developed to
give globally optimal estimates based on geometric analysis
of SE(3) or the branch-and-bound (BnB) strategy [11], [12].

PCR has revealed a very basic relationship between point
correspondences. Therefore, it is potentially useful for some
advanced pose estimation problems. For instance, in the ef-
fective perspective-n-point (EPnP) algorithm [13], the camera
pose estimation problem has been solved via the PCR. An
early study by Park et al. also shows the feasibility of the
PCR for solution of hand-eye calibration [14]. PCR has
also recently been employed for the time-offset determination
between asynchronous visual and inertial measurements [15].
In theory, PCR owns almost the same structure as the Wahba’s
problem for spacecraft attitude determination [16]. As PCR is
highly related to many other problems, it will be treated in
this paper as the first introductory example for extension to
other sophisticated problems.

2) Hand-eye Calibration: Shiu et al. were the first endeav-
ors to develop the HEC between the robot gripper and camera
[17]. They convert the HEC problem into a mathematical
form of the type AX = XB with A,B known and X the
unknown extrinsic parameter [18]. Almost at the same time,
this technique has also been studied by Tsai in a quite different
approach [19]. Early researches on the HEC focus on solving
the problem analytically via different pose parameters like
quaternion, dual quaternion, screw parameters and etc. [20]–
[22]. Besides, a new framework of HEC has been proposed
by Zhuang et al. that formulates the relationship of the type
AX = Y B where X the gripper-camera transformation, Y
the robot-world transformation are to be figured out with the
known poses A and B [23]. It is pointed out in [14] that, apart
from some special cases, general AX = XB HEC problems
are non-convex. Further study also shows the nonlinear cou-
pling between the rotation and translation would be vital to
the eventual accuracy for the type AX = Y B [24]. Thus the
simultaneous solution of rotation and translation is a crucial
problem. This leads to some developments for more accurate
solutions using global optimization methods like Lie-group
gradient descent (LGD) [25], alternate linear programming
(ALP) [26], stochastic global optimization (SGO) [6], BnB
[5] and etc. These algorithms have high complexity and thus
are not suitable for real-time applications.

3) SE(n) Synchronization: The PGO problem forms the
key step in graph-based SLAM [27], [28], which is also
very important for loop closure in the visual-inertial odometry
(VIO) [29]. The PGO also has its application in localization
of sensor networks with relative measurements [30], [31].
In mathematical research, the PGO problem is formulated
as the SE(n)-Sync one i.e. only the relative transformations
are known for the global estimation of poses for each vertex
on the pose graph [32]. This is according to the fact that,
in most circumstances, there is no a posteriori information
of the nearby environment and only relative transformation
can be acquired from successive keyframes. When the graph
is in 2-D and contains few poses, the global optimization
can be simply achieved via the direct Jacobian-based update
[33], [34]. However, when the dimension increases, evaluating
the Jacobian will consume huge load of time which may
significantly affect the real-time performance. Carlone et al.
have studied the diverse relaxation techniques for rotation
optimization in PGO [35]. Carlone et al. also developed the
2-D PGO with guaranteed performance [36]. In a recent work,
they paid more attention to the robust convex relaxation of 2-
D PGO in the presence of outliers [37]. This work employs
the maximum likelihood estimation (MLE) with probability
density of Fisher-von-Mises (FVM) distribution (also called
the Langevin distribution). This has been recently extended
to the SE(n) space by Rosen et al. where the semidefinite
programming (SDP) on the Riemannian manifold has been
invoked, such is called the SE-Sync algorithm [38]. Introduc-
ing a specific Cartan motion group, the Cartan-Sync algorithm
aims to improve the computational efficiency of the SE-Sync
[39]. However, Cartan-Sync inherits most characteristics of the
SE-Sync, like to the Riemannian staircase. Thus the estimation
is still sometimes time-consuming. The general pros and cons
of these methods are summarized in Table I.

TABLE I
PROS AND CONS OF REPRESENTATIVE METHODS

• R and t Separated (e.g. [14], [17], [19]–[24]):
Pros: Computationally Efficient, Accurate when Measurement Noise Level is Low;
Cons: Not Optimal, Not Accurate when Measurement Noise Level is High.

• R and t Coupled (e.g. [5], [6], [25], [26], [32], [37], [38]):
Pros: Accurate;
Cons: Time-Consuming and Sometimes Hard to Converge

C. Organization of Our Works
Based on the aforementioned shortcomings of existing algo-

rithms for multiple pose estimation problems, in the remainder
of this paper, we introduce our new design of SE(n) + + in
the Section II. The detailed solutions to the three main kinds
of problems are then presented. The experimental evaluation
and comparisons with representatives on various datasets are
shown in Section III. The Section IV finally draws the con-
cluding remarks and some future works.

II. PROPOSED SE(n) + + THEORY

A. Notations and Preliminaries
All n-dimensional rotation matrices belong to the special or-

thogonal group SO(n) := {R ∈ Rn×n|R>R = I,det(R) =
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1} where I denotes the identity matrix with proper size. The
special Euclidean space is composed of a rotation matrix R
and a translational vector t such that

SE(n) :=

{
T =

(
R t
0 1

)
|R ∈ SO(n), t ∈ Rn

}
(1)

with 0 denoting the zeros matrix with adequate dimensions. As
SO(n) belongs to the Lie group [40], the logarithmic mapping
can be expressed by x× = logR where x× is the mapping
from the n(n − 1)/2 × 1 vector x to the n × n dimensional
skew-symmetric matrix as presented in (2) where ∗ denotes
the skew symmetry.

x× =

0 −xn(n−1)
2

xn(n−1)
2

−1
· · · (−1)n−2x2n−3 (−1)n−1xn−1

∗ 0 −xn(n−1)
2

−2
· · · (−1)n−3x2n−4 (−1)n−2xn−2

∗ ∗
. . . · · ·

.

.

.

.

.

.

∗ ∗ ∗
. . . −xn x2

∗ ∗ ∗ ∗ 0 −x1
∗ ∗ ∗ ∗ ∗ 0


(2)

x here is called the Lie algebra of R. The inverse of the
× operator is denoted as ∧ such that x∧× = x. The inverse
of the logarithmic mapping is the exponential mapping such
that elogR = R. The operation orthonormalize denotes the
orthonormalization of an arbitrary real square matrix.

B. SE(n) + + Mapping

The kernel innovation in this paper is that, the SE(n)
problems are mapped to the SO(n + 1) ones by means of

T =

(
R t
0 1

)
F←→
F−1

RT ,SO(n+1) =

(
R εt

−εt>R 1

)
(3)

in which ε denotes a tiny positive number for approximation
on SO(n+1). The mapping in (3) is called as the SE(n)++
for extending the SE(n) transformation to the SO(n + 1)
manifold. This formulation is based on the mapping from
the SE(3) to SO(4) using the Caylay transform via the
biquaternion dynamics [41]. The translation integration in (3)
is different from that in [41] since our formulation achieves
much better performance in practice (see our recent hand-eye
calibration work [42]). In theory, the mapping from SE(n) to
SO(n + 1) is not unique and some nonlinear methods have
been proposed [43]. Historically, the pose estimation problems
on SO(4) can be solved by either dual quaternions or double
quaternions [44], [45]. However, when we generalize the
problem on higher dimensional space SO(n), these attitude
parameterization approaches vanish. Therefore the proposed
SE(n) + + problem is a novel one with mathematical chal-
lenges. (3) allows for the kinematics F(T1T2) = F(T1)F(T2)
which coincides with the Lie group isomorphism. Note that the
RT ,SO(n+1) in (3) is not strictly orthonormalized. Therefore,
when taken into computation, RT ,SO(n+1) should be first
orthonormalized to SO(n+1), which can be achieved via the
SVD. The inverse mapping F−1 aims to extract the optimal

R and t from a coupled SO(n+ 1) rotation matrix. Suppose
the such rotation on SO(n+ 1) can be written in the form of

RSO(n+1) =

(
X x
y> c

)
(4)

Then the following relationship can be obtained

orthonormalize(X) = R

εt = −Ry, εt = x
(5)

Since ε is very small, we have c ≈ 1, det (X) ≈ 1. The
least-square closed-form solution indicates that t = x−Ry

2ε .
The selection of ε in SE(n) + + is quite important. The
strategy for choosing this parameter is empirical in the current
study. The ε should be tiny enough to decrease the effect
of orthonormalization but should not be too small to loose
adequate word length. Then the following rule is applied to
choose: ε = γ/‖t‖ where γ > 0 is a scaling factor for the
purpose shown above.

C. Uncertainty Descriptions of SE(n) + +

The special orthogonal group SO(n) is a subspace of
the Stiefel manifold Sn that includes all the orthonormal
matrices with determinant 1. Due to orthonormality constraint,
the proper uncertain description of the matrices on Stiefel
manifold can be given by the Fisher-von-Mises (FVM) or
the Langevin distribution. A branch of the FVM is called
the isotropic FVM distribution that can well characterize
the probabilistic distribution of matrices on SO(n), whose
probability density function is given by

p (X,M , κ) =
1

cn(κ)
exp

[
κ tr

(
M>X

)]
(6)

with M ∈ SO(n) the mode i.e. the mean of X and κ ≥ 0
the concentration parameter. cn(κ) plays an role of the prob-
ability normalization and is related to the dimension n. For
instance, for SO(2), SO(3), we have c2(κ) = I0(2κ), c3(κ) =
eκ [I0(2κ)− I1(2κ)] where I0, I1 denote the modified Bessel
functions of the first kind. Given a rotation variable R with
mode MR and concentration parameter of κR, combining
with a translation t ∼ N (µt,Σt), we are able to give the
following manipulations

MRT ,SO(n+1)
=

(
MR εµt

−εµ>tMR 1

)
⇒ tr

(
M>
RT ,SO(n+1)

RT ,SO(n+1)

)
≈ tr

(
M>
RR

)
+ 1

(7)

This result reveals that the translation has very tiny impact
on the probability density of the mapped rotation on SO(n+
1). This also indicates that the normalized FVM probability
density function of the SE(n) + + is

p (X,M , κ) =
1

cn(κ) exp(κ)
exp

[
κ tr

(
M>X

)]
(8)

where 1
cn(κ) exp(κ) acts as a new normalization factor for the

derived probability density.
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D. Generalized Homogeneous Pose Estimation

The homogeneous pose estimation allows for computing
one pose or two poses from a set of equations of similar
forms. Generally, any problem consisting of two unknown
homogeneous poses can be formulated by AX = Y B with
A,B ∈ SE(n) known and X,Y the unknown variables
also on the SE(n). Such type of equation can be utilized for
multiple purposes as presented in Table II. We give the closed-
form solution to these problems in the following contents.

TABLE II
SETUP OF DIFFERENT POSE ESTIMATION PROBLEMS

1) If X = I , the problem becomes the compressed point-cloud registration
of the form A = Y B.

2) If X = Y , the problem turns out to be the gripper-camera HEC of the
type AX = XB.

3) If the variables hold their forms, the problem is cast to the simultaneous
gripper-camera and robot-world HEC of the type AX = Y B.

4) If A = I , the problem will be the SE(n) synchronization that follows
X = Y B where B is the known relative transformation between the
unknown X and Y .

The least-square estimation of X and Y is achieved by

arg min
X,Y ∈SE(n)

N∑
i=1

wi ‖AiX − Y Bi‖2 (9)

where Ai,Bi are sequences of known i-th pair of transfor-
mations with relative positive weight wi of the sum 1. The
SE(n) + + mapping allows an equivalent form

arg min
X,Y ∈SO(n+1)

L =

N∑
i=1

wi ‖AiX − Y Bi‖2 (10)

with Ai,Bi being mapped SO(n+ 1) rotations from original
transformations on SE(n). The optimization loss function
follows that

L =

N∑
i=1

wi tr
[
(AiX − Y Bi)

>
(AiX − Y Bi)

]
= 2N(n+ 1)− 2

N∑
i=1

wi tr
(
X>A>i Y B

>
i

) (11)

Let θ =
[
θ>X ,θ

>
Y

]>
where θX = (logX)

∧, θY = (logY )
∧,

we have the Jacobian of L with respect to θ

∂L
∂θ

= −2

N∑
i=1

wi
∂ tr

(
X>A>i Y Bi

)
∂θ

(12)

Some new matrix results are required to obtain the analytical
form of the Jacobian, which are introduced herein.

For arbitrary squared matrices A and B with the same
dimension of θ×, we have the following type of differentiation

d tr (Aθ×B)

dθ
=

tr (Adθ×B)

dθ
=

tr (BAdθ×)

dθ
= Z(BA, n)

(13)

provided that the Z function is defined by Z(A, n) =
tr[A dθ×]/dθ. In conclusion, we can obtain the compact form

Z(A, n) =
tr[A dθ×]

dθ
=
(
A> −A

)∧
(14)

Note that, for brevity, Z(A, n) may be replaced by Z(A)
where n is inferred from the dimension of A. Then it follows
that

d tr
(
Aθp×

)
dθ

=

p−1∑
i=0

Z
(
θi×Aθ

p−i−1
×

)
(15)

where the additivity of Z function is invoked, such that Z(A+
B) = Z(A) + Z(B). So it gives

d tr
[(
θp×
)>
Aθq×B

]
dθ

=
d tr

[
B
(
θp×
)>
Aθq×

]
dθ

= (−1)p
d tr

(
Bθp×Aθ

q
×
)

dθ
= (−1)p

tr
[
d
(
Bθp×Aθ

q
×
)]

dθ
= (−1)p U (B,A, p, q)

(16)
with

U (A,B, p, q) :=
tr
[
d
(
Aθp×Bθ

q
×
)]

dθ

=

p−1∑
i=0

Z
(
θi×Bθ

q
×Aθ

p−i−1
×

)
+

q−1∑
i=0

Z
(
θi×Aθ

p
×Bθ

q−i−1
×

)
(17)

Since eθ× = I + θ× +
θ2
×

2! + · · · , defining

M (A,B, p, q) :=

p∑
j=0

q∑
k=0

(−1)j

j!k!
U
(
B,A>, j, k

)
(18)

the closed form of the Jacobian when X = Y is

∂L
∂θ

= −2

N∑
i=1

wiM (Ai,Bi, p, q) (19)

where θ = (logX)
∧ and p, q are maximum order of the

matrix exponentials. For (12), it is able to construct the
following function based on the form of U :

Ũ (A,B, p, q) :=
tr
[
d
(
AθpX,×Bθ

q
Y ×

)]
dθ

=


p−1∑
i=0

Z
(
θiX,×Bθ

q
Y ,×Aθ

p−i−1
X,×

)
q−1∑
i=0

Z
(
θiY ,×Aθ

p
X,×Bθ

q−i−1
Y ,×

)


(20)

Likewise, defining

M̃ (A,B, p, q) :=

p∑
j=0

q∑
k=0

(−1)j

j!k!
Ũ
(
B,A>, j, k

)
(21)

we have

∂L
∂θ

= −2

N∑
i=1

wiM̃ (Ai,Bi, p, q) (22)
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Then the local estimation of θ can be achieved via the steepest
descent algorithm

θk = θk−1 − γ
∂L

∂θk−1
(23)

in which γ > 0 denotes the descending step length and k is
the iteration index.

E. Maximum Likelihood Estimation

The maximum likelihood estimation (MLE) aims to give the
optimal estimates based on the probability density functions of
the measurements. Given N pairs of Ai,Bi with associated
rotation concentration parameter of κi, the likelihood function
is expressed as follows

p (X,Y ) =

N∏
i=1

exp
[
κi tr

(
X>A>i Y Bi

)]
cn(κi) exp(κi)

(24)

It is noticed that here the likelihood function is differentiable
according to the fact that SO(n + 1) space is compact
and smooth [46]. Defining the negative-logarithm-likelihood
function J (θ) = − log p (X,Y ) the optimum meets

∂J
∂θ

= 0⇒ ∂J
∂θ

= −
N∑
i=1

κi
∂tr
(
X>A>i Y Bi

)
∂θ

(25)

which coincides with the least-square estimation shown in
(12). That is to say, the least-square estimation also corre-
sponds to the optimal probabilistic solution. Therefore, the
uncertainty descriptions of X,Y can be precisely obtained
by computing the inverse of the Hessian of J . Note that
commonly MLE algorithms suffer from overfitting problems.
It is commonly feasible to include regularization, maximum
a posterior (MAP) estimation to overcome such problem. In
the presented pose estimation problems, there is no such an
overfitting problem since the relationship between the data and
optimization target is deterministic which means the less the
loss function is, the better the pose will be. Also note that a
case of multiple solutions does not exist for N ≥ 2, which
has been shown in [6] and [22].

A new computationally efficient strategy is presented as
follows. First, we need to guarantee that the solution is close
to the true value i.e. the global optimum. The following
procedure is performed for the global optimum searching.
For the problem AX = Y B, if we obtain an approximated
solutions Xg,Yg using the g as the maximum orders of p and
q, we can conduct the following manipulations:

AX = Y B ⇒

{
AXX−1

g = Y BX−1
g

⇒ Y −1
g AXX−1

g = Y −1
g Y BX−1

g

(26)
Now using Ã = Y −1

g A, X̃ = XX−1
g , Ỹ = Y −1

g Y and
B̃ = BX−1

g , since Xg,Yg approximate X,Y respectively,
X̃ and Ỹ will be closer to the identity matrix I . The new task
will be the induced ÃX̃ = Ỹ B̃. By recursively doing so, the
norm of θ will be very tiny and the required maximum orders
of p and q can be very small to reach the desired accuracy. The
similar technique also applies to the problem AX = XB.
Since X̃ and Ỹ are close to I after several iterations, their

Lie algebra θX̃ and θỸ will be close to 0. In such condition,
the HessianH of J can be precisely restored by the first-order
approximation of matrix exponentials, such that

H =
∂2J
∂θ2

≈ −
N∑
i=1

κi
∂2 tr

(
θ>
X̃,×Ã

>
i θỸ ,×B̃i

)
∂θ2

(27)

where Ãi, B̃i are equivalent matrices coming from the
manipulation in (26). For instance, when the error angle is
10◦ i.e. 0.17453 rad, the equivalent approximation rate is
(1 + 0.17453)/ exp(0.17453) = 98.64% and for 5◦ it reaches
99.64%. The closed-form of H can be given by the following
differentiation

∂

∂θ

∂ tr (AθX,×BθY ,×C)

∂θ
=

[
Z
(
−Bθ>Y ,×CA, n

)
Z
(
−B>θ>X,×A>C>, n

)]
(28)

Thus

∂2 tr (AθX,×BθY ,×C)

∂θ2

=


∂Z>(−Bθ>Y ,×CA,n)

∂θX

∂Z>(−Bθ>Y ,×CA,n)
∂θY

∂Z>(−B>θ>X,×A
>C>,n)

∂θX

∂Z>(−B>θ>X,×A
>C>,n)

∂θY


=

[
0 DZ (−B,CA)

DZ
(
−B>,A>C>

)
0

]
(29)

which belongs to the following type

DZ(A,B) =
∂Z>

(
Aθ>×B

)
∂θ

=
Z>

[
d (Aθ>×B)

]
dθ

(30)

The internal differentiation is given by

∂(Aθ>×B)ij

∂θk
= (−1)

k [
A(i)(n)B(n−k)(j) −A(i)(n−k)B(n)(j)

]
(31)

which finally gives the analytical form of H and thus presents
the covariance of θ

Σθθ = H−1 (32)

The method for evaluating the covariance of the rotation
and translation from θ can be categorized into the high-
dimensional registration problem, which is discussed in [47].

III. EXPERIMENTAL RESULTS

In this section, three categories of experiments are con-
ducted, including point-cloud registration, hand-eye calibration
and SE(n) synchronization problems. Different problems cor-
respond to different situations shown in Table II. The general
algorithm table of the proposed SE(n) + + method is shown
in Algorithm 1. For the case of PCR, we use MATLAB
on a MacBook Pro 2017 i7-3.5GHz laptop for computation
and demonstration. For HEC problems, C++ programming
language of standard 2011 has been utilized. For SE(n)
synchronization, C++ standard 2014 (C++14) is invoked for
advanced features. Note that for AX = XB HEC problem,
various methods are implemented using on MacBook laptop
while for AX = Y B one, algorithms are deployed on a
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Algorithm 1 Algorithmic procedures of proposed SE(n)++.
1. Preparation: From Table II, select the problem type and
then prepare matrices Ai,Bi for i = 1, 2, · · · , N . Determine
an adequate parameter ε for SE(n)++ and a proper gradient-
descent step length γ.
2. Conduct SE(n) + + Mapping: Map all matrices Ai,Bi

for i = 1, 2, · · · , N from SE(n) space to SO(n + 1) space
using (3).
3. Gradient Descent: Perform gradient descent searching
using Lie-algebra formulae (12)-(23).
4. Global Refinement: Transform the problem using (26) to
find the global optimum.
5. Inverse SE(n) + + Mapping: Once the global optimum
is reached, map all solutions X and Y back from SO(n+ 1)
to SE(n) using (3).

mobile computer on an unmanned aerial vehicle. Codes of
the proposed SE(n) + + transform will be accessible at
https://github.com/zarathustr/SEnpp.

A. Point-Cloud Registration

The open-source KITTI dataset is employed for validation
of PCR [48]. We use the laser-scan measurements logged
in this dataset from the Velodyne HDL-64E 64-beam rotat-
ing 3D laser scanner. The serial number of the dataset is
2011_09_29_drive_0071_sync. The 57-th and 58-th
laser scans are taken for rigid registration using the ICP.
The ICP utilized here consists of the initial rotation guess of
identity matrix, the matching strategy of kd tree and multiple
rigid pose estimation kernels using representatives including
SVD, eigen-decomposition (EIG), fast symbolic 3-D registra-
tion (FS3R), fast analytical 3-D registration (FA3R) and the
proposed SE(n) + +. The rigid transformation between the
two scans has been estimated by these different algorithms.
The results of the SE(n) + + are shown in Fig. 1, where
the ε has been determined by the empirical law. Convergence
rates of the selected five kernels are shown jointly in Fig. 2.

Fig. 1. The scene registration using SE(n) + + with KITTI dataset.

In Fig. 1, the ’original’ one indicates the 57-th scan while
the ’transformed’ is the restored one from 58-th one using
the obtained rigid transformation. The 3-D points of the two
successive scans are well matched and the SE(n) + + also

Fig. 2. The convergence rates of ICP with multiple kernels.

achieves the same convergence rate and final accuracy as that
of other representatives. This indicates the correctness of the
SE(n) + + for PCR problem.

Fig. 3. The industrial hand-eye calibration setup.

B. Hand-eye Calibration

First, an industrial HEC problem is considered. The exper-
imental setup is shown in Fig. 3. A UR5 industrial robot is
utilized as the robotic manipulator. An Intel Realsense D435i
camera is firmly attached to the robot. There is also a robot
gripper installed on the robot aiming to conduct precision
grasping tasks. HEC problem considers estimating relative
extrinsic parameter between camera and robot gripper so the
frames of camera and gripper can be aligned. To perform
HEC operations, relative motions must be generated. We
estimate the camera pose by using a 12x9 chessboard on the
table. Several algorithms reviewed in the Introduction part are
compared, including method of Tsai [19] and the BnB method
[5]. We evaluate various algorithms by the root mean squared
error (RMSE) of the mean loss function

RMSE =

√√√√ 1

N

N∑
i=1

‖AiX −XBi‖2 (33)
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20 repeated calibration tasks are conducted using the experi-
mental platform. We compute the mean RMSE values using
these 20 cases. The results are shown in Table III. One may

TABLE III
RMSES OF VARIOUS ALGORITHM FOR HAND-EYE CALIBRATION

AX = XB (AVERAGED)

Algorithms RMSE

Proposed SE(n) + + 0.16922
Tsai [19] 0.33281
BnB [5] 0.16923

observe that the proposed SE(n) + + method can estimate
the hand-eye parameter X with high accuracy. Tsai’s method
is analytical one so it can not solve the nonlinear coupling
between R and t in X . The BnB method has been regarded
as a highly accurate one in industrial processing. Thus the
results verify that SE(n) + + is capable of dealing with such
HEC problems.

Next, the robot-world/hand-eye calibration problem AX =
Y B is deployed for experimental study. A DJI S800-EVO
hexarotor unmanned air vehicle (HUAV) is used as the general
carrying platform (see Fig. 4). This HUAV integrates a DJI
Zenmuse Z15 gimbal that stabilizes a high-resolution Sony
NEX-7 camera. A fisheye camera is firmly installed to the
body of the HUAV and all the data has been processed at 20Hz
with an onboard Nvidia TX1 computer. The data transmission
of the two cameras is synchronous in the hardware level.
The HEC involved in this system is dynamic, i.e. it aims to
dynamically compute the transformation between the fisheye
and gimbaled camera. The gimbaled camera follows the mo-
tion by an automatic tracking applet on the TX1 computer
and thus the pose to the fisheye camera is time-varying. The
HUAV has been remotely operated by a 2.4GHz wireless
transmitter and the gimbaled camera tracks one checkerboard
in the experimental environment. The pose estimation of the
gimbaled camera has been conducted via the EPnP algorithm
[13]. For the fisheye camera, the pose estimation has been
conducted via the ORB-SLAM algorithm [49]. Among many
experiments, one section has been selected, whose camera
poses are shown in Fig. 5. The ALP [26] and the SGO [6]
have also been applied to solve the AX = Y B HEC problem
and for SE(n) + + the ε is determined using the empirical
law. The RMSE is defined as

RMSE =

√√√√ 1

N

N∑
i=1

‖AiX − Y Bi‖2 (34)

In the problem AX = Y B, the rotation and translation are
highly coupled. An analytical solution to such problem has
been conducted to give an initial guess and multiple iterative
algorithms are invoked for global solutions, including methods
like LGD [25], ALP [26] and SGO [6]. For the steepest descent
algorithm, the step length γ has been chosen as γ = 1×10−3,
which is the same for the gradient descent in LGD and SGO.
The algorithms are implemented on the computer of the HUAV
platform. The in-run statistics are summarized as follows in
Table IV.

Fig. 4. The haxarotor platform for HEC of the type AX = Y B.

Fig. 5. The reconstructed poses from fisheye and gimbaled cameras.

The results show that the SE(n)++ method is able to reach
the best performance of ALP among all algorithms. However,
as ALP seeks the optimum via nonlinear programming, the
consumed computational resources are much higher than that
in SE(n) + +, which is the common characteristic for other
global solutions. The reason is that the designed solving
process using SE(n) + + has neat form of the Jacobians and
evaluating them can be much easier. Also, the manipulation in
(26) allows the error converging with the rate on SO(n+ 1),
which also guarantees the accuracy.

C. SE(n) Synchronization

The SE(n) synchronization problem considers estimating
N group elements on SE(n) X1,X2, · · · ,XN , with given
relative transformations Xij = X−1

i Xj for i 6= j. Such
problem can be characterized by the following optimization

arg min
Xi∈SE(n)

∑
(i,j)∈~Υ

wij ‖Xj −XijXi‖2 , i = 1, 2, · · · , N

(35)
where ~Υ denotes the edge of a directed graph describing the
availability and directions of the relative transformations; wij
denotes the weights of the connection (i, j) and could be
given by the distribution of the relative transformation Xij ,
e.g. the Langevin distribution for uncertainty description of
orthonormal matrices. By using the proposed SE(n) + +
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Fig. 6. The 3-D PGO results of garage with different values of ε.

technique, the new optimization is formulated as

arg min
Xi∈SO(n+1)

∑
(i,j)∈~Υ

wij
∥∥Xj −Xij,SO(n+1)Xi

∥∥2
(36)

which can be directly solved via the rotation-only estimation

arg min
X∈SO(n+1)N

tr
(
QX>X

)
(37)

with X = (X1,X2, · · · ,XN ) ∈ SO(n + 1)N ⊂
R(n+1)×(n+1)N and Q denotes the Laplacian matrix of the

measurements Xij whose details are given in [38]. Optimiza-
tion (37) can be solved via the semidefinite programming in
[38]. However, in [38], the rotation and translation parts of
SE(n) elements are independently solved and in fact the ro-
tational and translational factors contribute to each other in the
SE(n) synchronization problem. The developed SE(n) + +
problem can therefore couple the two effects together in the
form of SO(n + 1) and the synchronization accuracy can be
potentially increased. Another merit of the SE(n) + + for
SE(n) synchronization is that the computational efficiency
has been significantly improved. The reason is that SO(n)
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TABLE IV
RUN-TIME AND RMSE STATS OF VARIOUS ALGORITHM FOR

ROBOT-WORLD/HAND-EYE CALIBRATION AX = Y B (AVERAGED)

Algorithms RMSE CPU Load RAM Occupation

Proposed SE(n) + + 0.08932 5.732% 31.79%
LGD [25] 0.13325 12.44% 39.82%
ALP [26] 0.08881 27.93% 38.80%
SGO [6] 0.09739 22.46% 34.16%

Fig. 7. The 3-D PGO results of sphere with different values of ε.

manifold has higher convexity than the SE(n) manifold.
Therefore, when solving such problem using the SDP, SO(n)
method will show much faster convergence. It is also noted
that, the convergent gradient-descent optimizer on SO(3) has
also been well-developed [25]. The research on the convex
hull of SO(n) also verifies this point [50].

The open-source datasets of multiple pose graphs by Car-
lone et al. have been studied in this sub-section [32]. Three
representatives i.e. garage, sphere and city10000 are
investigated. The garage originates from the 3-D SLAM
test in the Stanford parking garage. The dataset sphere
consists of relative poses over a 3-D spherical trajectory while
city1000 includes the information of the 2-D mapping
in a city. The purpose of experimental studies in this sub-
section is three-fold: 1) Understanding the effects of different
selections of ε for SE(n) + +; 2) Validate the effectiveness
of the SE(n) + + with various dimensions n; 3) Study the
superiority of the proposed SE(n) + + on computational
efficiency. We use the SE-Sync [38] results as the reference
where the parameters are consistent with the original one in
[38]. The details are shown in the red color in the following
figures. In contrast, The pose reconstruction results of the
SE(n) + + are presented in the color of blue. First, let us
see the performances of the SE(n) synchronization in Fig. 6.
There are three values for ε ranging from 10−2 to 10−5. From
the first two sub-figures, we are able to observe that, for large

Fig. 8. The 2-D PGO results of city10000 with ε = 1× 10−6.

TABLE V
COMPUTATIONAL EFFICIENCY OF POSE-GRAPH OPTIMIZATION FOR

DIFFERENT ALGORITHMS

3-D Datasets TORO SE-Sync Cartan-Sync Proposed SE(n) + +

sphere 6.92s 4.79s 7.55s 1.95s
torus 12.77s 9.31s 6.18s 3.10s
grid 57.83s 43.94s 22.32s 9.98s

garage 18.26s 12.93s 19.3s 1.065s
cubicle 24.70s 12.66s 18.13s 3.59s
rim 68.41s 42.12s 47.19s 9.13s

2-D Datasets TORO SE-Sync Cartan-Sync Proposed SE(n) + +
CSAIL 4.53s 3.32s 1.29s 1.76s

manhattan 9.32s 9.20s 2.76s 4.53s
city10000 12.24s 12.35s 14.96s 5.34s
intel 4.06s 3.18s 2.38s 1.31s
ais 233.9s 169.4s 104.47s 28.88s

ε, the orthonormalization errors are also large, leading to the
incomplete descriptions of the rotation-translation coupling.
When ε continuously decreases to 10−5, the SE(n) + + can
well model the pose so the results are quite accurate. The
same behaviour also repeats for the sphere dataset, which is
shown in Fig. 7. The sphere is able to be recovered very close
to the reference when ε reaches a relatively small value. This
shows that, adequate selection of ε leads to complete descrip-
tions of rotation and translation by the proposed SE(n) + +.

The computational efficiency have been compared with
recent representatives including the TORO [33], SE-Sync [38]
and Cartan-Sync [39]. We compare all the algorithms on the
laptop appeared in the Section III.A and the methods are
implemented using the C++ programming language with stan-
dard C++14 with support of g2o and eigen libraries, com-
piled with the apple-darwin clang-1000.11.45.5
compiler where no optimization options have been enabled,
which leads to non-parallelization of program execution and
thus guarantees fairness of comparison. The run-time stats of
various algorithms are shown in Table V. The results show that
although SE(n) + + is not always the best one, it achieves
fast computation speed for all 3-D cases and most 2-D cases.
This is because the convexity of SO(n+1) is still simpler than
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that of the SE(n). As SE(n) couples R and t separately, the
global searching will require more computational resources.
The advance in the computation time can enhance the real-
time performance of the in-run robotic PGO. For graph-based
SLAM, with the increasing dimension of the pose graph, the
complexity catastrophe becomes more and more serious. The
proposed SE(n) + + method can then give an effective way
for balancing the accuracy and execution time.

D. Discussion

From the experimental results presented above, we may see
that the proposed SE(n) + + mapping is effective for related
pose estimation problems. In particular, it transforms original
SE(n) problems into those on SO(n + 1) and thus makes
the new problems much easier to solve. As shown in Table
IV and V, the computational efficiency has been significantly
improved while the developed method reaches good accuracy
for pose reconstruction as shown in Fig. 6 to Fig. 8. Results
for solving real-world industrial HEC problems also show that
the proposed SE(n) + + method is capable of decoupling R
and t in a computationally efficient manner.

IV. CONCLUSION

A new mapping called the SE(n) + + has been proposed
in this paper that maps the homogeneous transformation on
SE(n) to the SO(n + 1). This technique allows for trans-
forming previous highly nonlinear problems on SE(n) into
new ones on SO(n + 1) and thus decreases the difficulty
of globally optimal searching. Neat generalized Lie algebra
solutions for homogeneous pose estimation problems are de-
rived and related uncertainty descriptions have been found out
through the maximum likelihood estimation. The point-cloud
registration, hand-eye calibration and SE(n) synchronization
problems are extensively studied in the experimental part.
The final performances indicate that the newly developed
SE(n)++ is not only feasible, but also quite computationally
efficient, compared with recent important representatives. The
SE(n) + + has provided a new perspective for the pose
estimation. In future works, it is expected to be used for
advanced control problems considering rotation and translation
simultaneously.
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