
IET Research Journals

Submission Template for IET Research Journal Papers

A Linear Geometric Algebra Rotor
Estimator for Efficient Mesh Deformation

ISSN 1751-8644
doi: 0000000000
www.ietdl.org

Jin Wu1, Mauricio Lopez2∗, Ming Liu1, Yilong Zhu1

1Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, China
2Buenos Aires Computer Corporation, Argentina
J. Wu and M. Lopez contributed equally to the content of this paper.

Abstract: We solve the problem of estimating the best rotation aligning two sets of corresponding vectors (also known as Wahba’s
problem or point cloud registration). The proposed method is among the fastest methods reported in recent literatures, moreover
it is robust to noise, accurate and simpler than most other methods. It is based on solving the linear equations derived from
the formulation of the problem in Euclidean Geometric Algebra. We show its efficiency in two applications: the As-Rigid-As-
Possible (ARAP) Surface Modeling and the more Smooth Rotation enhanced As-Rigid-As-Possible (SR-ARAP) mesh animation
which is the only method capable of deforming surface modes with quality of tetrahedral models. Mesh deformation is a key
technique in games, automated construction and robotics. The ARAP technique along with its improved variants, although have
been extensively studied, can still not be achieved efficiently. Linear geometric algebra based rotor solution proposed in this paper
gives another perspective of the kernel problem. This, however, not only improves the real performance of the 3-dimensional mesh
deformation, but also provides a brand new computationally efficient solution to the Wahba’s problem and point cloud registration,
which has been closely related to the automation science and engineering.

1 Introduction

The concept of mesh deformation arises from the emerging needs
of the highly dynamic 3-dimensional (3-D) computer animation,
which has been extensively employed in computer games, visual-
ization, computer aided design (CAD) and intelligent manufacturing
[1]. Another similar terminology i.e. the surface flattening has also
been widely studied in automated construction [2]. In principle, the
target of these approaches is using 2-D meshes to construct specific
3-D models. As complex 3-D models own quite abundant surface
details, the deformation process is time consuming. The As-Rigid-
As-Possible (ARAP, [3]) models such process by introducing various
local rigid transformations. This determines that the mathematical
model of ARAP is similar with the form of point-point matching,
i.e. a classical problem aligning two vector sets (may be of different
numbers of points) [4]. This problem is renowned as the Wahba’s
problem [5] and point cloud registration [6] in aerospace engi-
neering and robotics, respectively. Since the proposal of Wahba’s
problem in 1965, many robust and computationally efficient algo-
rithms have been proposed. Early efforts have been paid by Shuster,
Markley, Mortari who developed different solvers based on various
attitude representations like quaternion, rotation matrix, Rodrigues
vector and etc. [7–9]. Recently, Wu et al. studied fast results for
online determination of attitude using quaternion formulation of
the Wahba’s problem [10, 11]. Related applications like registration
using iterative closest point (ICP) also highly relies on the efficiency
of matching [12].

Historically, representative solutions mainly cover the single-
point batch processing of point-set alignment. However, it is required
in many applications that the solution should be either accurate,
robust or continuous, so that the animated meshes can be smoothly
placed. A recent method using the gradient descent algorithm (GDA)
of the Wahba’s problem solves this problem but is not linear [13]. It
has also been proposed in [14] that some sub-optimal filters can pro-
duce continuous results but the accuracy is not optimal. The target of
ARAP-based mesh deformation is similar to Wahba’s problem but as
the amount of meshes are usually huge. Therefore the practitioners
require a new method that is not only accurate, robust, continuous
but also, ARAP-friendly. Guided by this requirement, in the paper,
the main contributions are:

1.A geometric algebra based formulation of the kernel problem in
ARAP has been proposed, which is intuitive, linear and simple.

2.It is able for us to construct continuous Newton algorithm to
converge to the ideal solution within only several simple iterations.

3.ARAP and its improved variants are combined with the proposed
method in a friendly manner allowing real-time performance of
accurate mesh animation.

We thus study the analytical forms of all the operations required.
Through derivations we are able to give linear solutions with simple
matrix manipulations. It has been compared with representatives of
Wahba’s problem and point cloud registration and has shown that it
owns the same accuracy but less computational burden. The perfor-
mance of the mesh animation also proves that the accuracy belongs
to the optimal ones while the computational efficiency is the highest.

This paper is then structured as: Section II provides the details of
the proposed derivations and solution. Section III investigates the
application of the method to the ARAP and its variants. Section
IV gives experimental results and comparisons and the concluding
remarks are drawn in Section V.

2 Fast Rotor Estimation Algorithm

2.1 Preliminaries

All the rotation matrices belong to the space of special orthog-
onal groups, i.e. for 3× 3 case, the 3-dimensional SO(3) :={
R|R ∈ R3×3,R>R = I, det(R) = 1

}
. The geometric algebra

allows for the geometric product of two 3× 1 vectors a and b such
that

ab = a · b+ a× b (1)

in which · and × are inner (dot) and outer (cross) products. Note
that the outer product a× b = B forms a bivector B also in the
3-dimensional geometric algebra space G3. This further gives a nor-
malized version within the scope of the even subalgebra G+

3 , which
produces a group of rotor (spin) vectors

SP (3) =
{
R|R ∈ G+

3 , RR̃ = R̃R = 1
}

(2)

IET Research Journals, pp. 1–8
c© The Institution of Engineering and Technology 2015 1

where R̃ = b× a gives the reverse of R supposing that R = a× b.
We use < R >k to extract the k-th element of R.

2.2 Proposed Work

Given two sets of n points in P = {pj}nj=1, Q = {qj}nj=1 we try
to minimize the following error:

E(R) = min
R∈SP (3)

n∑
j=1

cj‖qj −RpiR̃‖2 (3)

where {cj}nj=1 are scalar weights such that
∑n
j=1 cj = 1. In that

form, the minimization is nonlinear in R. Following some manipu-
lations, we can make it linear by multiplying by R on the right

qjR−Rpj = 0 (4)

so the constraint RR̃ = 1 is implicit in the energy E(R), although
we will need to project R back to the manifold through normaliza-
tion. Let F be a column vector of functions which square amounts
to the energy E(R).

F =

 F 1

...
Fn

 (5)

The energy E(R) can be expressed as the matrix product:

E(R) = F>F (6)

where:
F j(R) =

√
cj(Rpj − qjR) (7)

F j is producing a multivector with the basis {e1, e2, e3, e123}.
The critical points of the energy E(R) where it is minimized can

be found solving∇E(R) = 0. Where the gradient has the following
form:

g = ∇E(R) = ∇(F>F) = 2J>F (8)

where J is the Jacobian matrix of F . Since the energy E(R) is
purely quadratic in R, the solution for ∇E(R) = 0 can be found
by solving a linear system of equations. An optimal rotor is in the
null space of a particular matrix derived from J>F = 0. An easy
way to obtain a solution in the null-space is using one iteration of
Newton’s method. Due to linearity of the equation J>F = 0 w.r.t.
R one iteration suffice for obtaining a solution. The optimal incre-
ment for E(R) is given by the Newton formula ∆R = H−1∇E,
provided that the inverse of Hessian matrix H−1 exists. Noting that
J does not depend on R, i.e. is constant, the Hessian matrix H takes
the simple form:

H =
∂(2J>F)

∂R
= 2J>

∂F

∂R
= 2J>J (9)

whereH is independent ofR. An optimal solution can then be found
by solving a linear system.

R∗ = R0 −H−1g(R0) (10)

WhereR0 is an initial rotor and g(R0) is the gradient ofE evaluated
atR0. Of course, the choice of initial rotorR0 has a particular effect
on finding a local minimum. The energy E(R) is non-convex, its
shape is similar to a sinusoidal wave with infinitely many points at
minimum energy value, each one at rotor Ri = e−(θ+iπ)B for i ∈
N, being B the optimal unique attitude bivector and θ an optimal
angle with minimal absolute value. The choice of R0 leads to find
a local solution close to it, the choice R0 = [1, 0, 0, 0]> is optimal
from the computational point of view and is also desirable because
lead us to find solutions close to the identity rotor. Since there are

infinite solutions, H is a singular matrix. A simple and efficient way
to find its pseudo-inverse is to add a very small regularization term
to E(R). Our strategy is to introduce a new constant rotor Ri within
a new term ε‖R−Ri‖2, which we can express as matrix product
F>2 F2:

F2 =
√
ε(R−Ri) (11)

with Jacobian

J2 =
∂F2

∂R
=
√
εI (12)

where I is the 4× 4 Identity matrix. The energy now looks like this:

E(R) = min
R∈SP (3)

n∑
j=1

cj‖Rpj − qjR‖2 + ε‖R−Ri‖2 (13)

where 0 < ε < 1 is constant but small (we use ε = 10−6). The term
ε‖R−Ri‖2 is a regularization term that helps on finding a solution
biased towards Ri, so one can think Ri as a constant rotor which is
pointing R toward a given minimum point. With this regularization
strategy we can not only find the pseudo-inverse of H but also we
can make sure to obtain a stable R that is not stuck when the min-
imal point is close to some far angle such ±π radians. For instance
by taking Ri as the previous rotor calculated with Newton iteration,
we can check that R is at some minimum point, because in the next
iteration we should obtain the same R. In the edge cases near to ±π
where the R may not be at minimum, the previous solution Ri will
direct the next solution to a minimum, commonly in one to three iter-
ations. So regularization term can be seen as a feedback for reaching
a stable minimal R. We will see this more clearly in the algorithm.
Keep in mind that we are solving the linear system just once (i.e.,
we are inverting H once) because the Ri term is affecting only the
gradient. The gradient and Hessian are now:

g = ∇(F>F + F>2 F2) = 2(J>F + J>2 F2) (14)

H = 2
∂(J>F + J>2 F2)

∂R
= 2(J>J + εI) (15)

The optimal rotor is as before:

R∗ = R0 −H−1g(R0) (16)

The Hessian matrix H resembles now a form of Tikhonov regu-
larization, whose inverse H−1 approaches to the Moore-Penrose
pseudo-inverse as ε approaches to zero. We now need to determine
how to obtain Ri. An stand alone algorithm can take Ri as the pre-
vious rotor calculated with Newton iteration. But we also can take
Ri to be a previous solution in a simulation. We have used both
choices in our experiments, with excellent results in both cases. We
noticed in a simulation that the previous rotor helps to get the next
one preserving the same sense of rotation. We now proceed to lie
down our algorithm taking Ri from previous rotor calculated with
Newton iteration.

2.2.1 Optimal Computation of Jacobians: Lets recall that
each term of the sum

∑n
j=1 cj‖Rpj − qjR‖

2 can be expressed in
matrix form as function F jTF j where:

F j(R) =
√
cj(Rpj − qjR) (17)

F j is producing a multivector with the basis {e1, e2, e3, e123}.
Jacobian of F j is ∂F

j

∂R :

Jj =
[
∂F j

∂w
∂F j

∂e12
∂F j

∂e13
∂F j

∂e23

]
(18)

Solution to H∆R = g(R0) looks like this: n∑
j=1

JjT Jj

∆R = −
n∑
j=1

JjTF j

R∗ = R0 + ∆R

(19)

IET Research Journals, pp. 1–8
2 c© The Institution of Engineering and Technology 2015

Hj = JjT Jj = cij

D2

1 +D2
2 +D2

3 D1S2 −D2S1 D1S3 −D3S1 D2S3 −D3S2
D1S2 −D2S1 S2

2 + S2
1 +D2

3 S2S3 −D3D2 D3D1 − S1S3
D1S3 −D3S1 S2S3 −D3D2 S2

3 + S2
1 +D2

2 S1S2 −D2D1

D2S3 −D3S2 D3D1 − S1S3 S1S2 −D2D1 S2
3 + S2

2 +D2
1

 (25)

where we should normalize the rotor R∗ for sending it back to the
manifold.

2.2.2 Form of the Jacobians: The Jacobian Jj is 4× 4 which
four columns are the directional derivatives of F j =

√
cj(Rpj −

qjR)

∂F j

∂w
=
√
cj(pj − qj) =

√
cj

 (pj − qj) · e1
(pj − qj) · e2
(pj − qj) · e3

0

 (20)

∂F j

∂e12
=
√
cj

 (pj + qj) · e2
−(pj + qj) · e1

0
(pj − qj) · e3

 (21)

∂F j

∂e13
=
√
cj

 (pj + qj) · e3
0

−(pj + qj) · e1
−(pj − qj) · e2

 (22)

∂F j

∂e23
=
√
cj

 0
(pj + qj) · e3
−(pj + qj) · e2
(pj − qj) · e1

 (23)

Thus the leading symmetric matrixHj = JjT Jj has a simple form.
The symmetric matrix Hj = JjT Jj has a simple form in (25)
provided that

S1 = (qj + pj) · e1 , S2 = (qj + pj) · e2 , S3 = (qj + pj) · e3
D1 = (pj − qj) · e1 , D2 = (pj − qj) · e2 , D3 = (pj − qj) · e3

(24)
Since Hj is symmetric only 10 out of 16 elements need to be
actually computed. The system now looks like this:

 n∑
j=1

Hj

∆R = −
n∑
j=1

JjTF j (26)

Solving just one iteration of the Newton suffice for solving the sys-
tem i.e. 19. In the iteration the symmetric matrix H =

∑n
j=1H

j is
constant, but the gradient at right-hand-side depends on R since F j

depends on it.
We now can proceed to optimize a little more our method. We

incorporate the fixed initial guess R0 = 1 into the gradient.

F j =
√
cj(R0pj − qjR0)F j =

√
cj(pj − qj) (27)

gj = JjTF j = cij

 D2
1 +D2

2 +D2
3

D1S2 −D2S1
D1S3 −D3S1
D2S3 −D3S2

 (28)

Notice that the first row of Hj is equal to gj , so gj does not need to
be explicitly calculated. Now we introduce the regularization term

F2 and proceed to replace again R0 on it, which look like this:

F2 =
√
ε(R0 −Ri)F2 =

√
ε(1− < R >i) (29)

d = J>2 F2 = ε

 1− < R >i
−Ri · e12
−Ri · e13
−Ri · e23

 (30)

The final iteration is reduced to: n∑
j=1

Hj + εI

∆R = −
n∑
j=1

gj − d (31)

Notice that all terms are constant except d which depends on the
previous iteration. Note that the matrix

∑n
j=1H

j + εI does not
depend on R and its inverse can be precomputed. Since the matrix
(
∑n
j=1H

j + εI)−1 and the vector
∑n
j=1 g

j are constant, the inner
loop amounts to compute a cheap matrix-vector multiplication. Also
notice that since the matrix

∑n
j=1H

j is symmetric, only 10 com-
ponents of J need to be actually computed and since the matrix∑n
j=1H

j + εI is symmetric its inverse is symmetric and also cheap
to compute.

3 Applications

3.1 ARAP

Given two meshes P and Q consisting of vertices pi and qi respec-
tively, and directed edges pij = pj − pi and qij = qj − qi , the
discrete ARAP energy is defined as:

E(P,Q) =

m∑
i=1

∑
(i,j)∈Ei

cij‖qij −Ripij‖2 (32)

where R1, ...,Rm ∈ SO(3) are optimal local rotations, E1, ..., Em
are their corresponding set of 1-ring edges and cij are weighting
coefficients, typically the familiar cotangent weights.

The main idea of this method is breaking the surface into overlap-
ping cells Ei and seek for keeping the cells transformations as rigid
as possible in the least squares sense. Overlap of the cells is neces-
sary to avoid surface stretching or shearing at the boundary of the
cells. The vertices of mesh P are in original position while vertices
of mesh Q are the deformed vertices and the matrix Ri is the best
rigid transformation, in the least squares sense, relating the original
and the deformed vertices. This is a non-linear optimization problem
that can be efficiently solved by a simple iterative method that solves
two linear least squares sub-problems on each iteration.

The first step is to consider the vertices of P and Q constant and
obtain the best rigid transformation Ri for each cell Ei. The sec-
ond step is to consider the rotations Ri constant and computing the
optimal deformed vertices qi in the least squares sense. This can be
achieved by taking the gradient ofE(P,Q) w.r.t.Q and equating the
result to zero, which leads to formulate a linear system of equations
which can be solved by constraining the position of at least two ver-
tices of Q. The main source of inefficiency in this method is that the
first step typically involves solving a series of singular value decom-
position (SVD) problems, which is slow even using the optimized
solver for 3× 3 matrices of McAdams et. al.. We show how a Geo-
metric Algebra approach can speedup the technique. We first change

IET Research Journals, pp. 1–8
c© The Institution of Engineering and Technology 2015 3

the energy E(P,Q) for using rotors instead of rotation matrices:

E(P,Q) =

m∑
i=1

∑
(i,j)∈Ei

cij‖qij −RipijR̃i‖2s.t. RiR̃i = 1, ∀i

(33)
We first solve the for the best rotors incrementally first by applying
the algorithm developed above. That is an incremental version of our
algorithm that only require to solve a linear system for computing the
next best rotor.

The second step is computing the optimal vertices qi. Taking the
partial derivatives ofE(P,Q) w.r.t. qi and equating the result to zero
we obtain:∑

(i,j)∈Ei

cijqij =
∑

(i,j)∈Ei

cij
2

(RipijR̃i +RjpijR̃j) (34)

(34) can be expressed in matrix form as LQ = C, where L is the
symmetric Laplace-Beltrami operator, Q is the column of target
positions and C is the right hand side of (34). That is, a Pois-
son equation. Constraints of the form qi = ci are incorporated into
the system by substituting the corresponding variables i.e., erasing
respective rows and columns from L and updating the right-hand
side with the values ci. The system is then solved in the least squares
sense:

(L>L) Q = L> C (35)

Mesh deformations are achieved by repositioning the constrained
vertices qi = ci, solving the linear subproblem for rotors Ri, updat-
ing the right-hand-side of (34) and solving the LLS system for qi.
Having a good initial guess, the convergence is typically achieved
in less than 10 iterations (three to four iterations already provides
compelling results).

The performance improvements over the ARAP Surface Mod-
eling technique are significant as can be seen in the comparison.
The Euclidean rotors are as efficient as quaternions (indeed they
are quite the same). Rotors requires less storage than rotation matri-
ces (just four numbers) and operations such as scalar multiplication,
composition of transformations, and addition are more efficient than
matrices.

3.2 SR-ARAP Energy

The smooth-rotation ARAP (SR-ARAP, [15]) energy for a smooth
map between two 2-manifolds f : P 7→ Q is:

ESR(f) =

∫
P

min
R∈SO(3)

(‖df −R‖2F + αÂ‖dR‖2F) (36)

The first term in the integral is a membrane energy, and the second
term is a bending energy that penalizes the difference between rota-
tions. αÂ is a weighting scalar, where Â is the area of the whole
surface. Normally, the differential of a mapping of a 2-manifold
is a 2× 2 matrix, which maps tangent vectors from the paramet-
ric domain to a tangent plane at a surface point. Here, df is a
3× 3 matrix, which maps the 3D embedding of the tangent vectors
from one surface to another (which is simply the Jacobian matrix of
f : R3 7→ R3). The discretization is:

ESR(P,Q) = min
R1,...,Rm∈SO(3)

m∑
i=1

(
∑

(i,j)∈Ei

cij‖qij −Ripij‖2

+αÂ
∑

(i,j)∈Ei

wij‖Ri −Rj‖2F)

(37)
where R1, ...,Rm ∈ SO(3) are optimal local rotations associated
with the vertices; Ei is the set of 1-ring edges which are neighbors of
i-th vertex; wij are scalar weights; and Â is the triangle mesh area,
which is used to make the energy scale invariant. Here the regulariza-
tion is conducted in the form of the chordal distance ‖Ri −Rj‖2F

between Ri and Rj . The first term, the membrane energy, is sim-
ilar to the ARAP discretization, and the second term, the bending
energy, penalizes the difference between an edge set rotation and the
rotations of neighboring edge sets. The objective of the membrane
term is to lower the distortion of an edge set (resists stretching and
shearing), by keeping the map differential close to rigid. The objec-
tive of the bending term is to keep the variation in the rotations in
an edge set neighborhood low, such that the neighborhood would
transform as a unit, as much as possible.

3.3 GA SR-ARAP Energy

The geometric-algebra SR-ARAP (GA SR-ARAP) energy is shown
as follows

ESR(P,Q) = min
R1,...,Rm∈SP (3)

m∑
i=1

(
∑

(i,j)∈Ei

cij‖qij −RipijR̃i‖2

+αÂ
∑

(i,j)∈Ei

wij‖Ri −Rj‖2)

(38)
Notice that we are expressing rotations using Rotors instead of

3× 3 rotation matrices, also notice that in the second term, the bend-
ing energy, we are using the Euclidean (L2) norm instead of the
Frobenius norm. Those changes are not affecting the resulting sur-
face deformation in any noticeable way but are very convenient since
the resulting optimization problem can be solved with a much more
efficient algorithm as we will show.

3.4 Local Step

In the local step we consider vertices of P and Q as constants
and solve for the best rotation of each cell Ei independently by
minimizing:

arg min
Ri∈SP (3)

∑
(i,j)∈Ei

cij‖RipijR̃i − qij‖2

+αÂ
∑

(i,j)∈Ei

wij‖Ri −Rj‖2, s.t. RiR̃i = 1
(39)

Like in the Wahba problem, in the first term the minimization
is nonlinear in Ri. Following Perwass, we can make it linear by
multiplying by Ri on the right.

qijRi −RipijR̃iRi = 0

qijRi −Ripij = 0
(40)

This amounts to minimize:

E(Ri) =
∑

(i,j)∈Ei

cij‖qijRi −Ripij‖2 + αÂ
∑

(i,j)∈Ei

wij‖Ri −Rj‖2

(41)
where the constraint RiR̃i = 1 is now implicit, although we will
need to project Ri back to the rotor manifold through normaliza-
tion. Let F (R) be the vector of functions which square equals to
the energy E(R) = F>F . The column vector F can be split in two
blocks so that:

F =
[

(F 1
1)>, · · · , (F 1

1)>, (F 1
2)>, · · · , (Fn2)>

]>
(42)

where n is the degree of the i-th vertex i.e., n = |Ei|. The energy
E(R) can be expressed as the matrix product:

E(R) = F>F (43)

where F j1 (Ri) =
√
cij(Ripij − qijRi)

F j2 (Ri) =
√
wij(Ri −Rj) in which the factor wij is absorbing

IET Research Journals, pp. 1–8
4 c© The Institution of Engineering and Technology 2015

Hj = JjT1 Jj1 = cij

D2

1 +D2
2 +D2

3 D1S2 −D2S1 D1S3 −D3S1 D2S3 −D3S2
D1S2 −D2S1 S2

2 + S2
1 +D2

3 S2S3 −D3D2 D3D1 − S1S3
D1S3 −D3S1 S2S3 −D3D2 S2

3 + S2
1 +D2

2 S1S2 −D2D1

D2S3 −D3S2 D3D1 − S1S3 S1S2 −D2D1 S2
3 + S2

2 +D2
1

 (49)

the whole factor αÂ
n wij for the sake of notation simplicity. F j1 is

producing a multivector with the basis {e1, e2, e3, e123} and F j2 is
producing a rotor in the basis {1, e12, e13, e23}. The critical points
of E(R) are solutions of the equation∇E(R) = 0

∇E(R) =
∂(F>F)

∂R

= 2

n∑
j=1

JjT1 F j1 + 2

n∑
j=1

JjT2 F j2

(44)

Since J1 and J2 are constant, the equation ∇E(R) = 0 is linear
in R and the solution amounts to solve the null-space of a linear
system. As before, we can solve it using only one iteration of Newton
method. The Newton increment is given by ∆R = −H−1∇E(R).
The Hessian matrix H is:

H = 2
∂(
∑n
j=1 J

jT
1 F j1 +

∑n
j=1 J

jT
2 F j2)

∂R

= 2

n∑
j=1

JjT1 Jj1 + 2

n∑
j=1

JjT2 Jj2

(45)

So the full system looks like this:

 n∑
j=1

JjT1 Jj1 +

n∑
j=1

JjT2 Jj2

∆R = −
n∑
j=1

JjT1 F j1 −
n∑
j=1

JjT2 F j2

R∗ = R0 + ∆R
(46)

For some initial guess R0, that we will choose to be R0 = 1 as in
the previous section. The rest of the work focuses on the computa-
tion of Jacobian and Hessian which is in the similar form shown in
aformentioned contents. Here we define

gj = JjT1 F j1 = cij

 D2
1 +D2

2 +D2
3

D1S2 −D2S1
D1S3 −D3S1
D2S3 −D3S2

 (47)

dj = JjT2 F j2 = wij

 1− < Rj >0
−Rj · e12
−Rj · e13
−Rj · e23

 (48)

Notice that the first row of Hj is equal to gj , so gj does not need to
be calculated. Now the right-hand-side is does not depend on Ri.
The final system to solve is:

∆R = −

 n∑
j=1

Hj + αÂI

−1 (
n∑
j=1

(gj + dj))

R∗ = R0 + ∆R

(50)

3.5 Global Step

The global step is computing the optimal vertices {qi} ∈ Q.

ESR(P,Q) = min
R1,...,Rm∈SP (3)

m∑
i=1

(
∑

(i,j)∈Ei

cij‖qij −RipijR̃i‖2

+αÂ
∑

(i,j)∈Ei

wij‖Ri −Rj‖2)

(51)
Taking the partial derivatives of ESR(P,Q) w.r.t. qi and equating
the result to zero lead us to obtain the linear system of (34):∑

(i,j)∈Ei

cijqij =
∑

(i,j)∈Ei

cij
2

(RipijR̃i +RjpijR̃j) (52)

which can be expressed in matrix form as LQ = C, where L is
the symmetric Laplace-Beltrami operator, Q is the column of tar-
get positions and C is the right hand side of (34). Constraints of the
form qi = ci are incorporated into the system by substituting the cor-
responding variables i.e., erasing respective rows and columns from
L and updating the right-hand side with the values ci. The solution
is (L>L) Q = L> C, as described previously.

3.5.1 Local Relaxation: In the SR-ARAP method, mesh defor-
mations are obtaining by repositioning the constrained vertices qi =
ci, solving local step subproblem for rotors Ri, updating the right-
hand-side of (34) and solving the global step subproblem system
for qi. Unlike the ARAP surface, the optimized rotations in the local
step for SR-ARAP are codependent. Since we optimize each rotation
independently, while fixing the others, the local step can be consid-
ered as a relaxation, thus more than one local iteration should be
executed before performing the global step. At least two steps of
local relaxations should be done for each global iteration, although
for better convergence we should perform more local relaxations for
each global iteration.

3.6 Real-time SR-ARAP

The local relaxation used to be a serious bottleneck for the SR-
ARAP method. However our fast rotor estimation SR-ARAP can be
used to compute as many local relaxation step as needed at the same
cost as the simple ARAP method (i.e., without slowing down the
solver). Also we show how real-time performance can be achieved
on SR-ARAP by adding a simple multiresolution step.

3.6.1 Rotor Relaxation: Recall that rotor estimation for SR-
ARAP amounts to solve one linear system:

R∗ = R0 −H−1(g + d) (53)

whereH =
(∑n

j=1H
j + αÂI

)
, g =

∑n
j=1 g

j and d =
∑n
j=1 d

j .

The only term involving the neighbor rotations is
∑n
j=1 d

j . So for
the entire local relaxation we can precompute H−1 and g. So the
computational cost of solving each relaxation step amounts to do a
matrix multiplication.

3.6.2 Multiresolution SR-ARAP: For achieving real-time per-
formance we optimize the SR ARAP energy in a low resolution
version of the input mesh and then we transfer that solution to the
full resolution mesh. To obtain the low resolution mesh we simplify
the mesh using half edge collapses (i.e., the simplified mesh is a

IET Research Journals, pp. 1–8
c© The Institution of Engineering and Technology 2015 5

triangulation of a subset of the original vertices) while minimizing
the Quadrics error metric. After we obtained the optimal deformed
shape on the simplified mesh we transfer the optimized rotations to
the full resolution mesh and solve the linear system of (34) using
as position constraints the optimized vertices of the low resolution
mesh.

The transference of rotations from the low-res mesh to the high-
res mesh is equivalent to clustering rotations in the high resolution
mesh. The clustering of rotations is based on the connectivity graph
of the simplified mesh. Having the a injective map f : Qlow → Qhi
that maps rotations from low-res mesh Qlow to hi-res mesh Qhi we
generate the surjective map c : Qhi → Qlow which is mapping sev-
eral (equal) rotations of Qhi to one corresponding rotation of Qlow .
Our algorithm to construct the surjection c is a simple diffusion pro-
cess: We start by mapping the rotations from low-res mesh to hi-res
mesh using the injection f , then we iteratively copy the assigned
rotations to the neighboring vertices that still does not have a rota-
tion, repeating the process until there are no vertices with neighbors
without a rotation assigned. That process is used to precompute the
surjection c : Qhi → Qlow which is used later for efficient transfer-
ring of rotations. Let f−1 denote the inverse image of the injection
f . So the range of f−1 is the entire set of vertices in Qlow and the
domain of f−1 is the image of f .

4 Experimental results

In this section, we use some datasets to conduct registration and
mesh deformation using our proposed method and other existing
algorithms. In the first study, we show the accuracy consistency
of the proposed method with representative methods. We use the
following model to generate the point cloud data:

L =

n∑
i=1

‖bi −Rri‖2 (54)

in which ri is the reference vector and bi stand for the measurement
vector in the body frame. We use the ground truth data of R and ref-
erence data as shown in Table III in [10]. Here various algorithms for
registration are employed for assembled test, they are SVD method
by Horn [16], Fast Linear Attitude Estimator (FLAE) [10], GDA
[13], Fast Symbolic 3D Registration (FS3R) [11], Fast Analytical
3D Registration (FA3R) [17]. Each of them has been proven to be
accurate, robust and computationally efficient. We evaluate various
representatives using the loss function valueL and computation time
on a personal computer of MacBook Pro 2017 with i7-CPU and
MATLAB environment. The required parameters of these algorithms
are:

• Proposed: relative stop criteria 1× 10−12.
• SVD: no parameter.
• FLAE: no parameter.

• GDA: descent step length 1× 10−3; relative stop criteria 1×
10−12; maximum iteration number 100.
• FS3R: singularity check factor: 1× 10−5.
• FA3R: relative stop criteria 1× 10−12.

With 12 classical cases in [10], we are able to generate the results
shown in Table 1. One may observe that the accuracy of compared
methods are almost identical. The reason is that these solutions are
all based on thee framework of (54) so the resulted analytical formu-
lations achieve equivalent mathematical errors.

The developed method has been combined with ARAP and its
variants in the aforementioned contents. Based on the energy func-
tions defined using the geometric algebra, we are able to implement
the proposed algorithm. Here, the libigl-2.1.0 library [18, 19]
has been invoked for high-efficiency implementation of the mesh
deformation via parallel computation through the BLASX library
[20]. We use the decimated-knight and cactus models to
evaluate the various ARAP variants under the kernel energy of the
proposed geometric-algebra solution.

The model of knight contains 1500 vertices and simulated con-
trol points are generated using ground truth rotation. Fig. 1 shows
the refined ARAP results of various algorithms. Gradient descent is
introduced for classical implementation where the descent factor is
set to 5× 10−2. Seen from the figure, it is observed that the geo-
metric algebra (GA) supervised ARAP can achieve quite accurate
deformation after 20 iterations. However, the GDA according to its
nature of convergence problem, can not fully converge to the ground
truth value. That is to say in engineering, we may need more iter-
ations or improved Newton methods to converge to a satisfactory
result. However, we need to note that this is not computationally effi-
cient and thus should be compared with the proposed GA algorithm.

The cactus model is employed for mesh deformation and the
result of GA SR-ARAP is shown in Fig. 3. We can see that under
high noise level the algorithm is still capable of achieving good
deformation results. This indicates the accuracy of the GA-based
point cloud registration. Now we need to compare the computational
efficiency of various algorithms. All these algorithms are then imple-
mented in an unoptimized (compilation level) manner guaranteeing
the fairness of all the run-time results. The termination criteria of all
the algorithms is that the relative difference of the minimized energy
of two successive iterations reaches 1× 10−8. The details of the
execution time for the cactus model with different numbers of ver-
tices are summarized in Table 2. The GA-based ARAP and variants
are more time-efficient than other representatives. We need to point
out that although FLAE is analytical and computationally more effi-
cient than the iterative GA algorithm proposed in this paper, it is not
so friendly combing with ARAP. Therefore, the convergence of the
FLAE-based ARAP will require more computational burden.

Table 1 RMSE of Wahba’s Loss Functions L Using Various Methods

Case Proposed SVD Horn 1987 [16] FLAE 2018 [10] GDA 2018 [13] FS3R 2019 [11] FA3R 2020 [17]

1 4.9709× 10−13 4.9709× 10−13 4.9709× 10−13 4.9709× 10−13 4.9709× 10−13 4.9709× 10−13

2 2.4983× 10−13 2.4983× 10−13 2.4983× 10−13 2.4983× 10−13 2.4983× 10−13 2.4983× 10−13

3 5.0554× 10−05 5.0554× 10−05 5.0554× 10−05 5.0554× 10−05 5.0554× 10−05 5.0554× 10−05

4 2.4957× 10−05 2.4957× 10−05 2.4957× 10−05 2.4957× 10−05 2.4957× 10−05 2.4957× 10−05

5 5.0278× 10−13 5.0278× 10−13 7.1999× 10−10 5.0278× 10−13 5.0444× 10−13 7.1999× 10−10

6 4.9635× 10−13 4.9635× 10−13 4.9635× 10−13 4.9635× 10−13 4.9635× 10−13 4.9635× 10−13

7 2.4841× 10−13 2.4841× 10−13 2.4841× 10−13 2.4841× 10−13 2.4841× 10−13 2.4841× 10−13

8 4.7623× 10−05 4.7623× 10−05 4.7623× 10−05 4.7623× 10−05 4.7623× 10−05 4.7623× 10−05

9 2.5273× 10−05 2.5273× 10−05 2.5273× 10−05 2.5273× 10−05 2.5273× 10−05 2.5273× 10−05

10 1.5007× 10−12 1.5007× 10−12 1.7529× 10−12 1.5007× 10−12 1.5007× 10−12 1.7529× 10−12

11 4.9458× 10−13 4.9458× 10−13 9.5140× 10−13 4.9458× 10−13 4.9471× 10−13 9.5140× 10−13

12 5.0559× 10−13 5.0559× 10−13 3.4190× 10−11 5.0559× 10−13 7.5501× 10−11 3.4190× 10−11

IET Research Journals, pp. 1–8
6 c© The Institution of Engineering and Technology 2015

Fig. 1: Knight deformation: Left: reference model of the knight; Middle: deformation using the proposed method combining with ARAP;
Right: deformation using the GDA [13] combining with ARAP.

Table 2 Mesh Deformation Computation Time Using Various Methods

Case ARAP SR-ARAP GA-ARAP GA SR-ARAP GDA ARAP FLAE ARAP

100 1.234960× 10−02s 1.369739× 10−01s 7.786490× 10−03s 2.870024× 10−02s 8.915073× 10−01s 8.915073× 10−02s
199 3.714611× 10−02s 9.279175× 10−02s 1.155189× 10−02s 1.613069× 10−02s 1.144537× 10+00s 1.144537× 10−01s
398 5.528854× 10−02s 1.070500× 10−01s 2.611447× 10−02s 3.654026× 10−02s 1.647663× 10+00s 1.647663× 10−01s
794 1.889311× 10−01s 4.307448× 10−01s 5.891055× 10−02s 1.047712× 10−01s 6.138786× 10+00s 6.138786× 10−01s

1584 1.846733× 10−01s 3.815289× 10−01s 6.808507× 10−02s 8.913603× 10−02s 5.572538× 10+00s 5.572538× 10−01s
3162 3.787262× 10−01s 7.035758× 10−01s 1.392477× 10−01s 1.800131× 10−01s 1.169642× 10+01s 1.169642× 10+00s
6309 5.088200× 10−01s 8.757848× 10−01s 1.776170× 10−01s 2.162810× 10−01s 1.457190× 10+01s 1.457190× 10+00s

Fig. 3: GA SR-ARAP clusters: Left: Hi-res cactus model with Low-
res points marked. Clusters formed around vertices are colored with
same intensity. Middle and Right: deformation of Low-res model
transferred to Hi-res model.

For illustration of the proposed method for large numbers of
meshes, the Armadillo model has been chosen which contains over
43000 vertices and 80000 edges [21]. For ARAP, it is hard to imple-
ment real-time animation of the Armadillo model for satisfactory
update frequency. Using the proposed GA-ARAP, it is able to speed
up the mesh deformation to a large extent. Fig. 2 shows the details
of the reference and the deformation result from the proposed GA-
ARAP. The developed algorithm maintains good accuracy and can
achieve very high visualizatoin frequency of 60fps on a typical per-
sonal computer with i7-4core CPU. For conventional ARAP, since
the computational burden is relatively higher, it can only reach
the update rate of 12fps at most. The good computational behav-
ior of the proposed method provides the possibility of performing
highly real-time mesh deformation such as games and high-speed
visualization.

Fig. 2: Armadillo deformation: Left: Reference shape; Right: Shape from Proposed GA-ARAP after 10 iterations.

IET Research Journals, pp. 1–8
c© The Institution of Engineering and Technology 2015 7

5 Conclusion

In this paper, we solve the problem of estimating the best rota-
tion for the alignment of two sets of corresponding 3D points. It
is based on solving the linear equations derived from the formula-
tion of the problem in Euclidean Geometric Algebra. The method
is fast, robust to noise, accurate, simple and GPU friendly. Applica-
tions and experimental validation of mesh deformation are presented
for description of the performance of the proposed algorithm. The
results show that the slightly losing accuracy of the proposed method
leads to advance in execution time consumption. The designed algo-
rithms are ARAP-friendly and may be helpful for real-time mesh
deformation in related applications.

6 References
1 Yi, R., Wu, C., Liu, Y.J., He, Y., Wang, C.C.L.: ‘Delta DLP 3-D Printing of Large

Models’, IEEE Trans Autom Sci Eng, 2018, 15, (3), pp. 1193–1204
2 Zhang, Y., Wang, C.C.L.: ‘WireWarping++: Robust and flexible surface flattening

with length control’, IEEE Trans Autom Sci Eng, 2011, 8, (1), pp. 205–215
3 Sorkine, O., Alexa, M. ‘As-rigid-as-possible surface modeling’. In: Proceedings

of the fifth Eurographics symposium on Geometry processing. SGP ’07. (Aire-la-
Ville, Switzerland, Switzerland: Eurographics Association, 2007. pp. 109–116

4 Arun, K.S., Huang, T.S., Blostein, S.D.: ‘Least-Squares Fitting of Two 3-D Point
Sets’, IEEE Trans Pattern Anal Mach Intell, 1987, PAMI-9, (5), pp. 698–700

5 Wahba, G.: ‘A Least Squares Estimate of Satellite Attitude’, SIAM Rev, 1965, 7,
(3), pp. 409

6 Besl, P.J., McKay, N.D.: ‘A Method for Registration of 3-D Shapes’, IEEE Trans
Pattern Anal Mach Intell, 1992, 14, (2), pp. 239–256

7 Shuster, M.D., Oh, S.D.: ‘Three-axis attitude determination from vector observa-
tions’, J Guid Control Dyn, 1981, 4, (1), pp. 70–77

8 Markley, F.L.: ‘Attitude Determination using Vector Observations and the Singular
Value Decomposition’, J Astronaut Sci, 1988, 36, (3), pp. 245–258

9 Mortari, D., Markley, F.L., Singla, P.: ‘Optimal linear attitude estimator’, J Guid
Control Dyn, 2007, 30, (6), pp. 1619–1627

10 Wu, J., Zhou, Z., Gao, B., Li, R., Cheng, Y., Fourati, H.: ‘Fast Linear Quaternion
Attitude Estimator Using Vector Observations’, IEEE Trans Autom Sci Eng, 2018,
15, (1), pp. 307–319

11 Wu, J., Liu, M., Zhou, Z., Li, R.: ‘Fast Symbolic 3D Registration Solution’, IEEE
Trans Autom Sci Eng, 2018, PP, pp. 1–10

12 Ying, S., Peng, J., Du, S., Qiao, H.: ‘A scale stretch method based on ICP for 3D
data registration’, IEEE Trans Autom Sci Eng, 2009, 6, (3), pp. 559–565

13 Wu, J., Zhou, Z., Fourati, H., Li, R., Liu, M.: ‘Generalized Linear Quaternion
Complementary Filter for Attitude Estimation From Multisensor Observations: An
Optimization Approach’, IEEE Trans Autom Sci Eng, 2019, 16, (3), pp. 1330–1343

14 Wu, J., Zhou, Z., Fourati, H., Liu, M.: ‘Recursive linear continuous quaternion
attitude estimator from vector observations’, IET Radar, Sonar Navig, 2018, 12,
(11), pp. 1196–1207

15 Levi, Z., Gotsman, C.: ‘Smooth Rotation Enhanced As-Rigid-As-Possible Mesh
Animation’, IEEE Trans Visuliz Comput Graph, 2014, 21, (2), pp. 264–277

16 Horn, B.K.P.: ‘Closed-form solution of absolute orientation using unit quater-
nions’, J Optic Soc America A, 1987, 4, (4), pp. 629–642

17 Wu, J.: ‘Rigid 3D Registration: A Simple Free of SVD and Eigen-decomposition’,
IEEE Trans Instrum Meas, 2020,

18 Jacobson, A., Panozzo, D. ‘libigl: prototyping geometry processing research in
c++’. In: SIGGRAPH Asia 2017 courses. (, 2017. pp. 1–172

19 Jacobson, A., Panozzo, D., Schüller, C., Diamanti, O., Zhou, Q., Pietroni, N., et al..
‘libigl: A simple c++ geometry processing library’. (Retrieved 2017-10-18 from
http://libigl. github. io/libigl, 2016

20 Wang, L., Wu, W., Xu, Z., Xiao, J., Yang, Y. ‘BLASX: A High Performance Level-
3 BLAS Library for Heterogeneous Multi-GPU Computing’. In: Proceedings of
the 2016 International Conference on Supercomputing. (, 2016. pp. 1–11

21 Lavoué, G.: ‘A roughness measure for 3D mesh visual masking’, ACM Int Conf
Proceeding Ser, 2007, 253, pp. 57–60

IET Research Journals, pp. 1–8
8 c© The Institution of Engineering and Technology 2015

