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Abstract— The joint detection of drivable areas and road
anomalies is a crucial task for ground mobile robots. In
recent years, many impressive semantic segmentation networks,
which can be used for pixel-level drivable area and road
anomaly detection, have been developed. However, the detection
accuracy still needs improvement. Therefore, we develop a novel
module named the Normal Inference Module (NIM), which can
generate surface normal information from dense depth images
with high accuracy and efficiency. Our NIM can be deployed
in existing convolutional neural networks (CNNs) to refine the
segmentation performance. To evaluate the effectiveness and
robustness of our NIM, we embed it in twelve state-of-the-
art CNNs. The experimental results illustrate that our NIM
can greatly improve the performance of the CNNs for drivable
area and road anomaly detection. Furthermore, our proposed
NIM-RTFNet ranks 8th on the KITTI road benchmark and
exhibits a real-time inference speed.

I. INTRODUCTION

Ground mobile robots, such as sweeping robots and
robotic wheelchairs, are playing significant roles in improv-
ing the quality of human life [1]–[3]. Visual environment
perception and autonomous navigation are two fundamental
components for ground mobile robots. The former takes
as input sensory data and outputs environmental perception
results, with which the latter automatically moves the robot
from point A to point B. Among the environment perception
tasks for ground mobile robots, the joint detection of drivable
areas and road anomalies is a critical component that labels
the image as the drivable area or road anomaly at the pixel-
level. In this paper, the drivable area refers to a region where
ground mobile robots can pass through, while a road anomaly
refers to an area with a large difference in height from the
surface of the drivable area. Accurate and real-time drivable
area and road anomaly detection could avoid accidents for
ground mobile robots.

With the great advancement of deep learning technologies,
many effective semantic segmentation networks that could be
used for the task of drivable area and road anomaly detection
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Fig. 1: The overview of our proposed CNN architecture
for detecting drivable areas and road anomalies, where our
proposed NIM can be deployed in existing single-modal or
data-fusion CNNs to refine the segmentation performance.

have been proposed [4], [5]. Specifically, Chen et al. [4]
proposed DeepLabv3+, which combines the spatial pyramid
pooling (SPP) module and the encoder-decoder architecture
to generate accurate semantic predictions. However, most of
the networks simply use RGB images, which suffer from
degraded illumination conditions [6]. Recently, some data-
fusion convolutional neural networks (CNNs) have been
proposed to improve the accuracy of semantic segmentation.
Such architectures generally utilize two different types of
sensory data to learn informative learning representations.
For example, Wang et al. [5] proposed a novel depth-aware
CNN to fuse depth images with RGB images, which has
improved the performance of semantic segmentation. Thus,
the fusion of different modalities of data is a promising
research direction that deserves more attention.

In this paper, we first introduce a novel module named
Normal Inference Module (NIM), which generates surface
normal information from dense depth images with high accu-
racy and efficiency. The surface normal information serves as
a different modality of data, which can be deployed in exist-
ing semantic segmentation networks to improve performance,
as illustrated in Fig. 1. To validate the effectiveness and
robustness of our proposed NIM, we use our previous ground
mobile robots perception (GMRP) dataset1 [1] to train twelve
state-of-the-art CNNs (eight single-modal CNNs and four
data-fusion CNNs) with and also without our proposed NIM
embedded. The experimental results demonstrate that our
proposed NIM can greatly enhance the performance of the

1https://github.com/hlwang1124/GMRPD

https://github.com/hlwang1124/GMRPD


aforementioned CNNs for the task of drivable area and road
anomaly detection. Furthermore, our proposed NIM-RTFNet
ranks 8th on the KITTI road benchmark2 [7] and exhibits
a real-time inference speed. The contributions of this paper
are summarized as follows:
• We develop a novel NIM and show its effectiveness on

improving the semantic segmentation performance.
• We conduct extensive studies on the impact of different

modalities of data on semantic segmentation networks.
• Our proposed NIM-RTFNet greatly minimizes the trade-

off between speed and accuracy on the KITTI road
benchmark.

II. RELATED WORK

In this section, we briefly overview twelve state-of-the-
art semantic segmentation networks, including eight single-
modal networks, i.e., fully convolutional network (FCN)
[8], SegNet [9], U-Net [10], DeepLabv3+ [4], DenseASPP
[11], DUpsampling [12], ESPNet [13] and Gated-SCNN
(GSCNN) [14], as well as four data-fusion networks, i.e.,
FuseNet [15], Depth-aware CNN [5], MFNet [16] and
RTFNet [17].

A. Single-modal CNN Architectures

FCN [8] was the first end-to-end semantic segmentation
network. Of the three FCN variants, FCN-32s, FCN-16s and
FCN-8s, we use FCN-8s in our experiments. SegNet [9] first
presented the encoder-decoder architecture, which is widely
used in current networks. U-Net [10] was designed based on
an FCN [8], and adds skip connections between the encoder
and decoder to improve the information flow.

DeepLabv3+ [4] was designed to combine the advantages
of both the SPP module and the encoder-decoder archi-
tecture. To make the feature resolution sufficiently dense
for autonomous driving, DenseASPP [11] was proposed to
connect a set of atrous convolutional layers in a dense way.

Different from the networks mentioned above, DUpsam-
pling [12] adopts a data-dependent decoder, which exploits
the redundancy in the label space of semantic segmentation
and has the ability to recover the pixel-wise prediction from
low-resolution outputs of networks. ESPNet [13] employs a
novel convolutional module named efficient spatial pyramid
(ESP) to save computation and memory cost. GSCNN [14]
utilizes a novel architecture consisting of a shape branch and
a regular branch to focus on the boundary information.

B. Data-fusion CNN Architectures

FuseNet [15] was proposed for the problem of semantic
image segmentation using RGB-D data. It employs the pop-
ular encoder-decoder architecture, and adopts element-wise
summation to combine the feature maps of the RGB stream
and the depth stream. Depth-aware CNN [5] introduces two
novel operations: depth-aware convolution and depth-aware
average pooling, and leverages depth similarity between
pixels to incorporate geometric information into the CNN.

2www.cvlibs.net/datasets/kitti/eval_road.php

MFNet [16] was proposed for semantic image segmenta-
tion using RGB-thermal images. It focuses on retaining the
segmentation accuracy during real-time operation. RTFNet
[17] was developed to enhance the performance of semantic
image segmentation using RGB-thermal images. The key
component of RTFNet is the novel decoder, which includes
short-cuts to keep more detailed information.

III. METHODOLOGY

Our proposed NIM, as illustrated in Fig. 2, can generate
surface normal information from dense depth images with
both high precision and efficiency. The most common way of
estimating the surface normal n = [nx, ny, nz]> of a given 3D
point pC = [x, y, z]> in the camera coordinate system (CCS)
is to fit a local plane: n>pC+ β = 0 to Q = [pC, q1, . . . , qk]>,
where q1, . . . , qk are a collection of k nearest neighboring
points of pC. For a pinhole camera model, pC is linked with
a pixel pI = [u, v]> in the depth image Z by [18]:
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1
z
= −

1
β

(
nx

u − uo

fx
+ ny

v − vo

fy
+ nz

)
. (2)

Differentiating (2) with respect to u and v leads to

∂1/z
∂u
= −

1
β fx

nx ≈
1

Z(pI + [1, 0]>)
−

1
Z(pI − [1, 0]>)

= gu,

∂1/z
∂v
= −

1
β fy

ny ≈
1

Z(pI + [0, 1]>)
−

1
Z(pI − [0, 1]>)

= gv .

(3)

Rearranging (3) results in

nx ≈ −β fxgu, ny ≈ −β fygv . (4)

Given a pair of qi and pC, we can work out the corresponding
nz i as follows:
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)
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where qi − pC = [∆xi,∆yi,∆zi]>. Therefore, each neighbor-
ing point of pC can produce a surface normal candidate as
follows [21]:
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The optimal surface normal
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Fig. 2: Illustration of our proposed NIM, where the numbers within parentheses denote the corresponding equations. We
first use two kernels to compute volumes, and then solve an optimization problem to generate surface normal images.

can, therefore, be determined by finding the position at which
the projections of n̄i =

ni

| |ni | |2
= [n̄xi , n̄yi , n̄zi ]> distribute

most intensively [6]. The visual perception module in a
ground mobile robot should typically perform in real time,
and taking more candidates into consideration usually makes
the inference of n̂ more time-consuming. Therefore, we only
consider the four neighbors adjacent to pI in this paper. n̂
can be estimated by solving [6]

arg min
φ,θ

4∑
i=1
−n̂ · n̄i, (8)

which has a closed-form solution as follows:

φ = arctan
(∑4

i=1 n̄yi∑4
i=1 n̄xi

)
, (9)

θ = arctan
(

1∑4
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( 4∑
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n̄xi cos φ +
4∑
i=1
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))
. (10)

Substituting (10) and (9) into (7) results in the optimal
surface normal inference, as shown in Fig. 2.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Dataset Preparation and Experimental Setup

We recently published a pixel-level drivable area and road
anomaly detection dataset for ground mobile robots, named
the GMRP dataset [1]. Different from existing datasets, such
as KITTI [7] and Cityscapes [22], our GMRP dataset covers
the scenes and road anomalies that are common for ground
mobile robots, e.g., sweeping robots and robotic wheelchairs.
We refer readers to our previous paper [1] for the details of
the dataset.

In order to evaluate the effectiveness and robustness of our
proposed NIM, we use our GMRP dataset to train twelve
CNNs as mentioned above, including eight single-modal
CNNs and four data-fusion CNNs. We train each single-
modal CNN with seven setups. Specifically, we first train
each one with input RGB, depth and HHA images (denoted
as RGB, Depth and HHA), separately, where HHA [15]
is a three-channel feature map computed from the depth.

Then, we train each one with input four-channel RGB-
Depth and six-channel RGB-HHA (denoted as RGB+D and
RGB+HHA), separately. Finally, we embed our proposed
NIM in each single-modal CNN and train it with input depth
images and four-channel RGB-Depth (denoted as NIM-
Depth and NIM-RGB+D), separately. Similarly, we train
each data-fusion CNN with three setups, separately denoted
as RGB+D, RGB+HHA and NIM-RGB+D.

The total 3896 images in our GMRP dataset are split
into a training set, a validation set and a testing set that
contains 2726, 585 and 585 images, respectively. We train
each network until the loss convergence and then select the
best model according to the performance of the validation
set. We adopt two metrics for the quantitative evaluations,
the F-score and the Intersection over Union (IoU) for each
class. We also compute the average values across two classes
for the F-score and the IoU. The experimental results are
presented in Section IV-B.

To validate the effectiveness and robustness of our pro-
posed NIM for autonomous cars, we also conduct experi-
ments on the KITTI dataset. Since we focus on the detection
of drivable areas and road anomalies, our task does not
match the KITTI semantic image segmentation benchmark.
However, our drivable area detection task perfectly matches
the KITTI road benchmark [7]. Therefore, we submit our best
approach to the KITTI road benchmark. The experimental
results are presented in Section IV-C.

B. Evaluations on Our GMRP Dataset
The performances of the single-modal and data-fusion

CNNs mentioned above are compared in Fig. 3 and Fig.
4, respectively. We can observe that the CNNs with our
proposed NIM embedded (NIM-Depth or NIM-RGB+D)
outperform those without NIM embedded. Fig. 5 presents
the sample qualitative results, where we can see that our
proposed NIM greatly reduces the noise in the semantic pre-
dictions, especially for road anomaly detection. Specifically,
for the networks with Depth and RGB+D setup, embedding
our proposed NIM increases the average F-score and IoU by
around 3.3-12.8% and 5.1-17.7%, respectively. Furthermore,
RTFNet [17] achieves the best overall performance.
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TABLE I: KITTI road benchmark results, where the best
results are in bold type.

Approach MaxF (%) AP (%) Runtime (s)

MultiNet [24] 94.88 93.71 0.17
StixelNet II [25] 94.88 87.75 1.20
RBNet [26] 94.97 91.49 0.18
LC-CRF [27] 95.68 88.34 0.18
LidCamNet [23] 96.03 93.93 0.15

NIM-RTFNet (Ours) 96.02 94.01 0.05

(a) (b)

(c) (d)

(e) (f)

Fig. 6: An example of testing images on the KITTI road
benchmark, where (a)-(f) shows the road prediction obtained
by MultiNet [24], StixelNet II [25], RBNet [26], LC-CRF
[27], LidCamNet [23] and our proposed NIM-RTFNet, re-
spectively. Correctly detected drivable areas are in green.
Red pixels correspond to false negatives, whereas blue pixels
denote false positives.

C. Evaluations on the KITTI Road Benchmark

As previously mentioned, we select our best approach,
NIM-RTFNet, and submit its results to the KITTI road
benchmark [7]. The overall performance of our NIM-RTFNet
ranks 8th on the KITTI road benchmark. Fig.6 illustrates an
example of KITTI road testing images, and Table I presents
the evaluation results. We can observe that our proposed
NIM-RTFNet outperforms most existing approaches, which
confirms the effectiveness and good generalization ability
of our proposed NIM. Additionally, although the MaxF of
LidCamNet [23] presents slight advantages over ours, our
NIM-RTFNet runs much faster than it, and therefore greatly
minimizes the trade-off between speed and accuracy.

V. CONCLUSIONS

In this paper, we proposed a novel module NIM, which
can be easily deployed in various CNNs to refine semantic
image segmentation. The experimental results demonstrate
that our NIM can greatly enhance the performance of CNNs
for the joint detection of drivable areas and road anomalies.
Furthermore, our NIM-RTFNet ranks 8th on the KITTI
road benchmark and exhibits a real-time inference speed.
In the future, we plan to propose a more feasible and
computationally efficient cost function for our NIM.
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