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See the Future: A Semantic Segmentation Network
Predicting Ego-Vehicle Trajectory With a Single

Monocular Camera
Yuxiang Sun , Member, IEEE, Weixun Zuo , and Ming Liu , Senior Member, IEEE

Abstract—Ego-vehicle trajectory prediction is important for au-
tonomous vehicles to detect collisions and accordingly avoid acci-
dents. Recent approaches employ prior-known or on-line acquired
road topology or geometries as motion constraints for their predic-
tive models. However, the prior-known information (e.g., pre-built
maps) might become unreliable due to, for example, temporal
changes caused by road constructions. Whereas on-line perception
may require high-cost sensors, such as large filed-of-view laser
scanners, to get an overview structure of the local environment,
making the prediction difficult to afford, especially for driving assis-
tance systems. So in this letter, we provide a solution without using
road topology or geometries for ego-vehicle trajectory prediction.
We formulate this problem as a two-class semantic segmentation
problem and develop a novel sequence-based deep neural network
to predict the trajectory. The only sensor we need during runtime is
a single front-view monocular camera. The inputs to our network
are several consecutive images, and the output is the predicted tra-
jectory mask that can be directly overlaid on the current front-view
image. We create our datasets with different prediction horizons
from KITTI. The experimental results confirm the effectiveness of
our approach and the superiority over the baselines.

Index Terms—Trajectory prediction, ego-vehicle, semantic
segmentation, ADAS, autonomous vehicles.

I. INTRODUCTION

R ECENT decades have witnessed the prosperity of Ad-
vanced Driver Assistance Systems (ADAS) and au-

tonomous vehicles. Ego-vehicle trajectory prediction is an im-
portant task for them. It estimates the vehicle positions several
seconds into the future (i.e., the so-called prediction horizon). In
the context of ADAS, the predicted trajectory could be integrated
with obstacle detection algorithms to forecast and alert potential
collisions. In the context of autonomous vehicles, ego-vehicle
trajectory prediction and obstacle detection could be further
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integrated with autonomous control mechanisms to realize active
collision avoidance.

Assuming that human drivers obey traffic rules and follow
the road flawlessly [1], many recent approaches for ego-vehicle
trajectory prediction employ prior-known or on-line acquired
road geometries or topology as motion constraints for their
predictive models [2]–[6]. However, this assumption might not
always be satisfied in real traffic scenarios due to the uncertain
intentions of human drivers. Moreover, in urban environments
prior-known road information could become unreliable. For
instance, temporal changes of road geometries caused by road
constructions may be not updated timely in pre-built maps. Even
though this issue could be addressed, the accuracy of the widely
used GPS positioning systems are prone to be degraded in urban
environments [7], making vehicles difficult to locate themselves
in the maps. Some methods resort to on-line environmental
perception, such as building local maps with Simultaneous Lo-
calization and Mapping (SLAM) techniques. However, on-line
mapping may require deploying high-cost sensors, such as large
field-of-view laser scanners, on vehicles to get a global overview
for the structure of the local environment [6], making the system
difficult to afford, especially for ADAS. In addition, the perfor-
mance of on-line mapping might suffer from dynamic objects,
such as moving vehicles or pedestrians in traffic environments.
Robustly building maps in dynamic environments is still an open
problem [8]–[10]. Low-cost visual sensors, such as monocular
cameras, have been successfully used for SLAM tasks, but
visual SLAM might be less suitable for this application due
to not only the dynamic-environment issue but also the limited
filed-of-view.

Different from the previous work, we provide a solution for
ego-vehicle trajectory prediction without using road topology or
geometries. Moreover, unlike most of approaches that represent
trajectories on bird-view maps, we overlay trajectories on 2-D
front-view images as shown in Fig. 1. As we can see, the
trajectory in this work is not represented as lines in 2-D or 3-D
maps. It is represented as car-width pixel-wise trajectory labels
projected from the 3-D space to the 2-D image plane [11]. With
such data representation, human-drivers could see the future
trajectory intuitively on a Head Up Display (HUD). More im-
portantly, this kind of data representation allows us to formulate
the prediction problem as an end-to-end two-class semantic
segmentation problem (i.e., the trajectory class and background
class), so that we can take as input only the raw images streamed
by a single front-view camera and output the predicted trajectory
masks. In this letter, we develop a novel sequence-based deep
neural network to achieve this goal.
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Fig. 1. The overall pipeline of our approach. At the off-line training stage, we
need a monocular camera and a GPS positioning system. At the on-line inference
stage, we only need a monocular camera. We formulate the trajectory prediction
problem as a two-class semantic segmentation problem. The two classes are
coloured as blue (background) and green (trajectory), respectively. The predicted
trajectory could be displayed on a head-up display, allowing drivers to see the
future straightforwardly. The shown prediction horizon in this figure is 3 s. The
figure is best viewed in color.

The main idea of designing our network is that we believe
the future trajectory could be inferred from the current and
past visual information. So we take as input several consecutive
front-view images, and supervisely train the network with the
current ground-truth trajectory mask. The experimental results
confirm the effectiveness of our idea. We summarize the main
contributions of this letter as follows:

1) We develop a novel end-to-end sequence-based deep se-
mantic segmentation network that predicts ego-vehicle
trajectories with a single monocular camera.

2) We create datasets with different prediction horizons from
the KITTI dataset [12]. The evaluation results confirm the
effectiveness of our approach.

3) We build baselines based on convolutional LSTM [13] and
Deeplab v3+ [14]. The comparative results demonstrate
the superiority of our network.

II. RELATED WORK

A. Trajectory Prediction

As aforementioned, many methods on ego-vehicle trajectory
prediction use road information for their predictive models.
Their mainstream predictive models are built on vehicle phys-
ical states (e.g., position, velocity, yaw rate, acceleration) or
human-diver maneuvers (e.g., brake, speed up, turn left or right).
Acquiring these information usually needs vehicle dynamic
sensors (e.g., wheel speed sensor, steering angle sensor, brake
pressure sensor, yaw rate and acceleration sensors) or extero-
ceptive sensors (e.g., Lidar, RTK GPS). Moreover, maintaining
synchronization between different sensors needs extra devices
and efforts. Our method that relies only a monocular camera

is a low-cost solution, and allows the prediction system to be
deployed easily.

Houenou et al. [2] built local parabolic models for road center
lines by visual detections of road markings. A maneuver recogni-
tion module was designed for long-term trajectory prediction by
combining the road information and the vehicle physical states.
Kim et al. [3] measured vehicle physical states and road geome-
tries from a commercial RTK GNSS/INS system and a commer-
cial Mobileye visual system. They developed two Kalman filters
to recursively estimate the physical states and road geometries.
Note that vision-based road geometry estimation suffers from
the occlusions caused by other traffic participants. Guo et al. [4]
predicted the longitudinal trajectory in the Frenet frame. They
classified vehicle states into non-maneuvering and maneuvering.
For the non-maneuvering sate, the constant acceleration model
was used with the physical states to predict trajectories. For the
maneuvering state, the quintic polynomial model was employed
with the context information to predict trajectories. Raipuria
et al. [5] modelled vehicle motion in a function of road structures.
They used 6 laser scanners to get the relative vehicle position,
velocity and heading angles. The relative positions obtained
from the laser scanners are transformed to prior-known maps via
GPS. The road geometries can be inferred from the coefficients
of the qubic functions.

There are also works that predict trajectories of other traffic
participants on a moving vehicle. One of the seminal works
was proposed by Geiger et al. [15]. They employed various
visual cues to infer 3-D layout of traffic scenes as well as vehicle
locations and orientations. Recently, Kim et al. [16] proposed to
use the Recurrent Neural Network (RNN) to predict the future
positions, which were represented probabilistically on local grid
maps.

B. Semantic Segmentation

Badrinarayanan et al. [17] introduced the Encoder-Decoder
architecture that is widely used nowadays. Chen et al. [14]
proposed Deeplab v3+ by taking their previous Deeplab v3
as the encoder. Specifically, they incorporated the dilated con-
volutions into a feature extractor backbone (e.g., ResNet) and
a spatial pyramid pooling module [18]. The encoder outputs
a low-level feature map and a high-level feature map, which
are concatenated and up-sampled in a decoder. Luc et al. [19]
proposed a batch-based method and an autoregressive method
to predict more than one video frames and their semantic labels.
The former one predicts all future frames at once, while the
latter makes predictions sequentially. Instead of first estimating
future frames then semantic labels like [19], Chiu et al. [20]
observed that future frames are not necessary for future semantic
reasoning. So they proposed an end-to-end network that takes as
input several preceding frames and directly outputs the semantic
labels of the next frame.

C. Trajectory Prediction via Semantic Segmentation

Baumann et al. [6] used a Lidar to build local grid maps of
the surrounding static environment, which were then converted
to bird-view gray-scale images. The past path estimated from
Lidar odometry were plotted on binary bird-view images. They
concatenated the two types of images and fed it into a semantic
segmentation network (e.g., SegNet [17]). The network was
trained with future trajectory images. The work [6] and ours
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mainly differ in three-fold. Firstly, path in [6] is represented in
bird-view grid maps, while our method projects car-width future
trajectory on the current front-view image. Secondly, [6] requires
road topology including lanes as input, which are encoded by
local grid maps built with a Lidar, while our method does not re-
quire such information. We only need a low-cost camera during
runtime. Lastly, [6] is not end-to-end. Lidar scans are firstly
employed to compute local grid maps and path (odometry),
which serve as the input to the model. The predicted path is
also not directly obtained from the output. The model firstly
outputs a prediction map. Then a mechanism was developed to
extract the predicted path from the prediction map. While our
method is end-to-end, it directly takes as input raw front-view
camera images and outputs the predicted trajectory overlaid on
the current image.

Barnes et al. [21] and Zhou et al. [22] proposed drivable path
segmentation methods with front-view images. They assumed
that human-driven paths are drivable and derived the car-width
ego-vehicle path using the odometry from stereo vision or
IMU/wheel encoder. The future ego-vehicle path was projected
on the current front-view image and refined with obstacle detec-
tion, which was used as the ground-truth image. They trained
the off-the-shelf single image-based semantic segmentation net-
works, such as SegNet [17] and ENet [23], given the current
single front-view image as input. We believe that the work of [21]
and [22] can be also seen as ego-vehicle trajectory prediction,
because they both used the future trajectory as the ground truth.
The major difference between ours and [21] or [22] would
be that our method is sequence-based, while they are single
image-based. To the best of our knowledge, ours is the first
sequence-based semantic segmentation work for ego-vehicle
trajectory prediction.

III. THE PROPOSED APPROACH

A. The Approach Overview

Fig. 1 shows the two stages of our overall pipeline: the off-
line training stage and the on-line inference stage. During the
training stage, we employ camera and GPS to generate training
images. Specifically, we use the odometry information from a
GPS positioning system to plot future car-width trajectory on
the current image, which serves as the ground truth for training.
Although we use GPS, odometry computed with other sensor
data can be replaced here [24]. During the on-line inference
stage, we only need a single camera to stream the front-view
images. The input to our network is a set of three consecutive
images captured at time t− 2, t− 1 and t. The output is the
predicted trajectory mask that can be directly overlaid on the
current image captured at time t.

B. Generating Ground-Truth Car-Width Trajectory Images

This work uses the KITTI dataset [12], because the positions
of the Wheel-Ground Contact (WGC) points in the vehicle
coordinate are publicly given. We define the trajectory as the
filled area bounded by the time-evolving WGC points of the
two front wheels. We project the future trajectory on the current
front-view image as the ground truth.

Let g0 denote the GPS coordinate frame at the start; gt and ct
denote the GPS and camera frames at current time t, respectively;
gt+k denote the future GPS frame at time t+ k; pt+k denote the
3-D WGC points at time t+ k. The task is to project the 3-D

point pt+k to 2-D pixel coordinate I in camera frame ct, which
can be calculated by:
ctIpt+k

= K × ctgtT
︸ ︷︷ ︸

Calibration

× (g0gtT )
−1 × g0gt+kT

︸ ︷︷ ︸

GPS

× gt+kpt+k
︸ ︷︷ ︸

Calibration

(1)

where K, ctgtT and gt+kpt+k respectively represent the camera
intrinsic matrix, the transformation from the GPS frame to the
camera frame, the coordinate of the WGC point with respect to
the GPS frame. They can be considered as constant variables
in each day of the KITTI dataset. We get them from the KITTI
calibration files. g0gtT and g0gt+kT respectively represent the
transformations from the current and future GPS frames to the
start point. They are read from the GPS odometry. The projected
pixels are formed as convex polygons and then filled as the
car-width trajectory. The parameter k in (1) is measured in
milliseconds. We adjust different k to generate different datasets
with different prediction horizons.

C. The Proposed End-to-End Sequence-Based Network

Fig. 2 displays the overall architecture of our proposed end-to-
end prediction network. We need three consecutive front-view
images (i.e., t− 2, t− 1 and t) for each inference.

Firstly, two consecutive images are taken as input for an op-
tical flow network to extract motion features of the ego-vehicle.
We use FlowNet 2.0 [25] in this work. However, any network
with the ability to generate optical flow can be embedded here.
The motion features are fused with the current image from time
t (taking t− 1 and t as an example) by tensor concatenation.

Secondly, the fused feature map is pixel-wisely converted
to embedding vectors through a backbone feature extraction
module and an embedding head. In this work, we borrow the
Atrous CNN and Spatial Pyramid Pooling (ASPP) from Deeplab
v3+ [14] to serve as the backbone feature extraction module. The
extracted base features from the backbone feature extraction
module are sent to the embedding head, which consists of a
single convolution layer. The structure of the embedding head
is shown in the right part of Fig. 2.

Thirdly, we fuse the embedding vectors from t− 2 and t− 1
(named as the previous embedding vectors) with the embedding
vectors from t− 1 and t (named as the current embedding
vectors) by element-wise addition. Then, the fused embedding
vectors are sent to a matching module to compute matching
scores, which measure the similarity between the previous and
current embedding vectors. The structure of the matching mod-
ule is shown in the right part of Fig. 2. It consists of a convo-
lutional layer and a Sigmoid layer. The output of the matching
module is a single-channel feature map (with the same resolution
of the base feature map), in which each element ranges from
0 to 1.

Lastly, the base feature map is weighted by the matching
scores through element-wise multiplication. The weighted base
features are sent to a convolutional block (named as Interpreta-
tion block) to interpret the visual trajectory. The configurations
of the convolutional layers are similar to those of Deeplab v3+
decoder. Then, the visual trajectory feature map is up-sampled
through bilinear interpolation to the original resolution. A soft-
max layer is added as the last layer for training.

Note that all the modules in our network, including the back-
bone feature extraction module, the embedding head, the match-
ing module and the interpretation block, share their individual
weights at different times. In addition, we infer the trajectory at
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Fig. 2. The structure of our proposed end-to-end sequence-based deep network for trajectory prediction. The detailed structures of each module are displayed in
the right part of the figure. Our network takes as input three consecutive front-view images from t− 2 to t, and outputs the predicted trajectory mask that can be
overlaid on the current image at time t. We make the matching module, the interpretation block, the up-sampling layer and the softmax layer in the left box opaque
to indicate that the trajectory is only predicted at time t. The figure is best viewed in color.

time t, so the predicted trajectory mask is overlaid on the current
front-view image at time t.

IV. THE EXPERIMENTAL RESULTS AND DISCUSSIONS

A. The Generated Dataset

We use the City, Road and Residential sequences (recorded
with the camera No. 2) from the KITTI raw dataset to create our
dataset. The Person and Campus sequences are not used because
they are not real driving scenarios or the length of the sequences
are too short. We require that the length of sequences can at
least support 5 s prediction horizon. So some short sequences in
the City, Road and Residential categories are also not used. We
select sequences with relative good GPS signals from the three
categories, because we need good GPS signals to obtain reliable
odometry to draw ground-truth trajectory images. Our dataset
is split into train (15578 frames), validation (3980 frames) and
test (3922 frames), taking the ratios around 66%, 17% and 17%,
respectively. In the train set, the numbers of the selected training
images from the three categories (City, Road and Residential)
are 1632, 1897, 12049, respectively. Note that we use entire
sequences for training, validation and testing. In other words,
all the images in a sequence are used either for training or
validation or testing. So the validation and testing images are
ensured not from the sequences that are used for training. We
also checked that the driving routes, driving behaviours and
the visual appearances along driving are not the same between
training and testing, which could avoid over-fitting to a particular
driving scenario. To evaluate the prediction performance for
different horizons, we made 5 datasets with different prediction
horizons ranging from 1 s to 5 s. The number of images in
the 5 datasets varies a little bit, because the images in the last
prediction horizon in each sequence are abandoned due to the
unavailability of the future GPS data.

B. Training Details

We implement our network using PyTorch 1.1 with CUDA
10.1 and cuDNN 7.0 libraries. Our network is trained on a PC
with an Intel i7 CPU and an NVIDIA 1080 Ti graphics card.
We resize all the images from the original resolutions (i.e.,
375× 1242, 370 × 1226 and 376 × 1241) to 193 × 640 for
efficiency and accordingly adjust the batch size to fit for the
11GB graphics memories. For the Atrous CNN, we use the
ResNet-101 as the backbone. We train our network with the
pre-trained weight of ResNet-101 provided by PyTorch. Other
layers in our network are initialized with the Kaiming normal
scheme [26]. For the FlowNet 2.0, we only use the forward
inference with the given pre-trained weight.

We employ the Stochastic Gradient Descent (SGD) [27]
as our optimization solver, in which the initial learning rate,
momentum and weight decay are set to 0.01, 0.9 and 0.0005,
respectively. The input training images are randomly shuffled
in each sequence before training. Note that the shuffle does not
influence the order of the 3 consecutive images in each input
image set. It shuffles between image sets. The learning rate
is decayed exponentially at each epoch. We train the network
until the validation loss converges. As the pixels of the two
classes (i.e., background, predicted trajectory) are out of balance
in our dataset, we use the focal loss [28] to down-weight the
contributions from the easy class and focus the model on the
hard one.

C. Ablation Study

1) Ablation for Optical Flow: We firstly check whether the
optical flow module benefits our trajectory prediction. To this
end, we make a variant of our network without optical flow.
The input to this variant is the concatenation of two consecutive
images. We name this variant as NOF (NO optical Flow). To
observe the impacts caused by different optical flow networks,
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TABLE I
THE ABLATION STUDY RESULTS FOR DIFFERENT OPTICAL FLOW

ALGORITHMS. WE COULD FIND THAT USING FLOWNET 2.0 OUTPERFORMS

THE OTHERS. MOREOVER, THE RESULTS SHOW THAT USING OPTICAL FLOW

WOULD BE A BENEFIT HERE

TABLE II
THE ABLATION STUDY RESULTS FOR DIFFERENT FUSION STRATEGIES. WE

COULD FIND THAT OUR FUSION STRATEGY GIVES THE BEST PERFORMANCE

IN GENERAL

we compare two variants of our network using TVNet [29] and
HD3Net [30], respectively. They are named as TVF (TVNet
optical Flow) and HD3F (HD3Net optical Flow). We think that
the 3 s prediction horizon could be representative because of
the average 1.5 s for humans to be able to react and avoid an
accident [31]. The 3 s prediction horizon is chosen to double
the reaction time [32] considering the vehicle speed. So we train
and test all the variants on the dataset with the 3 s prediction
horizon in this section.

In this work, we use the Acc and IoU metrics that are defined
in [33] to measure the segmentation accuracy of the predicted
trajectory. Table I displays the comparative results. As we can
see, the NOF variant presents the worst performance, indicating
that using optical flow would be able to boost the performance
for our network. The reason might be that optical flow provides
well described ego-motion features, which helps to detect the
movement tendency of the ego-vehicle. From the comparison,
we also find that our network using FlowNet 2.0 presents the
best performance.

2) Ablation for Fusion Strategies: There are two fusion op-
erations in our network. The first is the fusion of image and
optical flow data. The second is the fusion of the previous and
current embedding vectors. In our network, we use concatena-
tion and element-wise addition for the two fusion operations,
respectively. To validate the effectiveness of this fusion strategy,
we create three variants: 1) First Addition and Second Concate-
nation (FASC); 2) Both Concatenation (BC); 3) Both Addition
(BA). Note that the number of channels for the optical flow and
image data are 2 and 3, respectively. To allow the element-wise
addition for the optical flow and image data in the BA variant,
we apply a convolutional layer on the image data to reduce the
number of channels to 2. The comparative results are shown
in Table II. We find that the Acc values are not sensitive to
different fusion strategies, but IoU exhibits notable degradations
for other variants. This indicates that the false positives increase
significantly. Many pixels from the background are incorrectly
classified as the predicted trajectory. The reason might be that the
concatenation operation is more suitable for heterogeneous data
(e.g., flow and image), while the addition is more suitable for
the homogeneous data (e.g., previous and current embedding
vectors). The comparative results demonstrate the superiority
and confirm the effectiveness of our fusion strategy.

Fig. 3. The network structure of the convolutional LSTM baseline. Conv
stands for Convolutional. The LSTM network consists of three convolutional
LSTM cells, which take as inputs the images at t−2, t−1 and t, respectively. The
structures of the Backbone Feature Extraction module and Interpretation Block
are shown in Fig. 2.

D. Baseline Methods

1) The Baseline Based on Convolutional LSTM (ConvLSTM
Baseline): Long Short Term Memory (LSTM) networks [34]
are designed to process sequential information, and has been
successfully used for trajectory prediction. We build a baseline
based on LSTM. The network structure is shown in Fig. 3. We
firstly extract the backbone features from the input. Then, the ex-
tracted feature maps are sent to a LSTM network that consists of
three convolutional LSTM cells [13]. Thirdly, the hidden states
of the last LSTM cell are sent to the Interpretation Block and
Up-sampling module. We finally apply a softmax layer on the
feature maps to get the output. To ensure fair comparison, we use
the same Backbone Feature Extraction module, Interpretation
Block and Up-sampling module that are used in our network,
except modifications for the channel numbers. Note that the
reason why we use convolutional LSTM is that convolutional
LSTM replaces the fully connected layers in the vanilla LSTM
with convolutional layers, so the input to LSTM accepts feature
maps, allowing the baseline to avoid extensive loss of spatial
information.

2) The Baseline Without Sequential Information (No-Seq
Baseline): To check whether the sequential information (i.e., the
consecutive images) benefits the prediction, we build a baseline
without using sequential information. We train a semantic seg-
mentation network given merely the current image from time t
(not the three consecutive images). Here we use Deeplab V3+
[14]. This baseline can be seen as an enhanced version of [21]
and [22], because Deeplab V3+ is in general more powerful than
SegNet [17] and ENet [23].

E. Comparative Results

1) Quantitative Results: We compare our network with the
baselines on the datasets with different prediction horizons
(i.e., 1 s–5 s). Table III displays the quantitative comparative
results. In general, we can see that our network achieves the best
performance across all the prediction horizons, which demon-
strates the superiority of our network. Especially, we find that
our network significantly outperforms the baselines on the IoU
metric. Comparing ours with the ConvLSTM baseline, there
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TABLE III
THE COMPARATIVE RESULTS ON THE DATASETS WITH DIFFERENT PREDICTION HORIZONS. BEST RESULTS ARE HIGHLIGHTED IN BOLD FONT. OUR NETWORK

ACHIEVES THE BEST PERFORMANCE OVER ALL THE PREDICTION HORIZONS

Fig. 4. Some acceptable prediction examples. The top to bottom rows respectively show the optical flow computed from the last and the current images, our
results, the uncertainty estimation of our results, the ConvLSTM baseline results and the No-Seq baseline results. The red, green and yellow colors in the trajectory
images respectively denote the ground truth, the prediction results and the intersection between them. The uncertainties increase from blue to red. The figure is
best viewed in color.

could be less true positives or more false negatives leading to
the lower IoU for the ConvLSTM baseline, because our network
also surpasses it significantly on the Acc metric. For the No-Seq
baseline, as it achieves comparable Acc values with ours, we
think that there could be more false positives leading to the lower
IoU. We conjecture that the absence of sequential information
in the No-Seq baseline makes the network feel like doing a road
segmentation task, hence causing many false positives.

The comparative results show that our paradigm for sequential
information processing would be more suitable than LSTM
in this task. In addition, the sequential information (i.e., the
consecutive images) is necessary for prediction, otherwise the
network could treat the prediction task as a normal semantic
segmentation task and hence generate wrong predictions. We
observe from Table III that the prediction capabilities of all the
networks decrease with the increased prediction horizon. This is
expected because it would not make sense to predict very long
horizons without given other cues or prior-known information.
Nevertheless, we find that even in the worst case (i.e., 5s) our
network still gives around 90% Acc and 70% IoU, indicating
that our network would have the capability to predict relative
long horizons. For the ConvLSTM baseline, it works for shorter
horizons, but the performance drops notably when increasing
the horizon, making it not suitable for predicting long horizons.

2) Qualitative Demonstrations: The qualitative experiments
are performed on the dataset with 3 s prediction horizon. Fig. 4

displays some acceptable results of our network and the com-
parative results from the baselines. As we can see, our network
predicts the trajectory with the minimum false positives. From
the sub-figures (c) and (d), we find that the ConvLSTM base-
line may have weak capability for predicting turning cases.
Especially from (d), the ConvLSTM baseline totally fails to
predict the trajectory when turning at an intersection. From the
sub-figures (b) and (d), we find that there are many background
pixels wrongly classified as the trajectory (false positives) in the
results of the No-Seq baseline. Particularly in (b), even the pixels
from other lanes are labelled as the trajectory, indicating that
without using the sequential information the No-Seq baseline
might tend to treat the task as a normal road segmentation task.

Fig. 5 demonstrates some unacceptable results of our network
and the comparative results from the baselines. The sub-figure
(d) shows an intersection-turning case. Comparing Figs. 4(d)
and 5(d), we think the reason for our unacceptable prediction is
that the lateral movement of the vehicle at the moment has not
reached the extent sufficient for the prediction. This could be
observed from the optical flow results. In Fig. 4(d), the horizontal
components with almost one direction (coloured as blue) domi-
nate the optical flow map, indicating that the vehicle is behaving
large lateral movement at that moment. While the optical flow
map of Fig. 5(d) resembles the one that is going straight (e.g.,
left blue and right red), there is little lateral movement so the
network fails to predict. Fig. 5(b) and (c) show the cases that the
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Fig. 5. Some unacceptable prediction examples. The descriptions for the top to bottom rows, as well as the colors in the trajectory images and uncertainly maps
can be found in the caption of Fig. 4. The figure is best viewed in color.

vehicle is changing lane, we can see that our network is only able
to predict the majority of the trajectory, but our results are better
than the baselines in terms of the false positives, especially in
Fig. 5(c) the baselines seem to fail the prediction. Fig. 5(a) shows
a case that the vehicle is stopping at an intersection. In such a
case, the correct prediction is no output since the vehicle will not
move in the future. The optical flow values of the background
approach zero (coloured as white). We think that the reason for
our false output comes from the disturbances of the optical flow
of the moving object (i.e., the front moving vehicle), because
we observe that our network does not give output when the
moving vehicle is not in the field-of-view. However, the baselines
always output false positives no matter whether there exists the
moving vehicle. The supplementary video for the qualitative
demonstrations is shown here.1

As the semantic segmentation gives deterministic inference,
we use the Monte Carlo (MC) dropout technique [35] to estimate
the uncertainties of the segmentation results, which could be
seen as a probabilistic representation for the trajectory pre-
diction. Specifically, we insert several dropout layers in our
network. During testing, we run interference 50 times for each
prediction. The uncertainty is calculated using the entropy
function [36] with the averaged softmax outputs over the 50
inferences. The uncertainty maps are shown in Figs. 4 and 5. In
Fig. 5(a), although our network gives the incorrect prediction,
we can see that the model is actually really not sure about its
prediction. So the uncertainty map can be used as a probabilistic
indicator to compensate the negative impacts caused by potential
wrong predictions.

3) Inference Time: We evaluate the inference time on an
NVIDIA 1080Ti with the input resolution of 193 × 640. Ta-
ble IV displays the results. As our method consists of our
proposed network and optical flow, the total time cost would be
21.56 + 2 × 9.41 = 40.38 ms, where 9.41ms is the time cost
for one optical flow inference and we have two in our network.
We can see that our method runs faster than the ConvLSTM

1https://github.com/yuxiangsun/See-the-Future

TABLE IV
THE INFERENCE TIME FOR THE NETWORKS. THE TESTED HARDWARE IS AN

NVIDIA 1080TI GRAPHICS CARD. THE UNIT IS MILLISECOND (MS)

Baseline, though they both take as input three images. The No-
Seq baseline is much faster partially because it only processes
one image during each inference.

F. The Limitations

We consider the major limitation of our network as the de-
graded prediction performance when turning at intersections. As
our network inferences solely based on the input visual images, it
can only make decisions when it sees enough lateral movements
of the vehicle. Otherwise, the network tend to treat the movement
as going straight and predict the trajectory forward. In addition,
the way the ground truth is determined does not allow the model
to learn long-term prediction, such as one minute or more predic-
tion horizon. This is because at such level of prediction horizon,
the vehicle motion cannot be largely determined from current
ego-motion status (i.e., the natural inertia is not dominant), and
the ground truth trajectories cannot cover all possible driven
routes.

V. CONCLUSION

We proposed here a novel semantic segmentation network
to predict the future trajectory of the ego-vehicle. Our network
is end-to-end. It takes as input several consecutive raw images
from a single front-view monocular camera, and outputs the
predicted trajectory mask that can be directly overlaid on the
current image. We create our datasets with different prediction
horizons from KITTI. The experimental results confirm the
effectiveness of our network design and the superiority over
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the baselines. In the future, we would like to integrate human
intentions to improve the prediction performance when turning
at intersections. In addition, we would like to generate more
training data for lane-changing cases using simulation software
to improve the prediction performance when changing lanes.
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