
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

A Novel Coding Architecture for Multi-Line
LiDAR Point Clouds Based on Clustering

and Convolutional LSTM Network
Xuebin Sun , Sukai Wang , Graduate Student Member, IEEE, and Ming Liu , Senior Member, IEEE

Abstract— Light detection and ranging (LiDAR) plays an
indispensable role in autonomous driving technologies, such
as localization, map building, navigation and object avoidance.
However, due to the vast amount of data, transmission and
storage could become an important bottleneck. In this article,
we propose a novel compression architecture for multi-line
LiDAR point cloud sequences based on clustering and convolu-
tional long short-term memory (LSTM) networks. LiDAR point
clouds are structured, which provides an opportunity to convert
the 3D data to 2D array, represented as range images. Thus,
we cast the 3D point clouds compression as a range image
sequence compression problem. Inspired by the high efficiency
video coding (HEVC) algorithm, we design a novel compression
framework for LiDAR data that includes two main techniques:
intra-prediction and inter-prediction. For intra-frames, inspired
by the depth modeling modes (DMM) adopted in 3D-HEVC,
we develop a clustering-based intra-prediction technique, which
can utilize the spatial structure characteristics of point clouds
to remove the spatial redundancy. For inter-frames, we design a
prediction network model using convolutional LSTM cells. The
network model is capable of predicting future inter-frames using
the encoded intra-frames. As a result, temporal redundancy can
be removed. Experiments on the KITTI dataset demonstrate
that the proposed method achieves an impressive compression
ratio (CR), with 4.10% at millimeter precision, which means
the point clouds can compress to nearly 1/25 of their original
size. Additionally, compared with the well-known octree, Google
Draco, and MPEG TMC13 methods, our algorithm yields better
performance in compression ratio.

Index Terms— LiDAR, point cloud compression, clustering,
convolutional LSTM.

I. INTRODUCTION

ADVANCES in 3D data acquisition techniques have
unleashed a new wave of innovation in many emerg-

ing applications, such as virtual/augmented reality (VR/AR),

Manuscript received October 20, 2019; revised April 23, 2020 and
September 18, 2020; accepted September 30, 2020. This work was sup-
ported in part by the National Natural Science Foundation of China under
Grant U1713211, in part by the Collaborative Research Fund by Research
Grants Council Hong Kong under Project C4063-18G, and in part by the
HKUST-SJTU Joint Research Collaboration Fund awarded to Prof. Ming Liu
under Project SJTU20EG03. The Associate Editor for this article was
J. Li. (Xuebin Sun and Sukai Wang contributed equally to this work.)
(Corresponding author: Ming Liu.)

Xuebin Sun was with The Hong Kong University of Science and Technology
(HKUST), Hong Kong 999077. He is now with the Department of Mechan-
ical and Automation Engineering, The Chinese University of Hong Kong,
Hong Kong (e-mail: sunxuebin@tju.edu.cn; xuebinsun@cuhk.edu.hk).

Sukai Wang and Ming Liu are with the Department of Electronic and
Computer Engineering, The Hong Kong University of Science and Technol-
ogy, Hong Kong 999077 (e-mail: swangcy@connect.ust.hk; eelium@ust.hk).

Digital Object Identifier 10.1109/TITS.2020.3034879

preservation of historical relics, 3D sensing for smart city,
as well as autonomous driving. Especially for autonomous
driving systems, LiDAR sensors play an indispensable role
in a large number of key techniques, such as simultaneous
localization and mapping (SLAM) [1], path planning [2],
obstacle avoidance [3], and navigation. A point cloud consists
of a set of individual 3D points, in accordance with one or
more attributes (color, reflectance, surface normal, etc). For
instance, the Velodyne HDL-64E LiDAR sensor generates a
point cloud of up to 2.2 billion points per second, with a
range of up to 120 m. This creates a great challenge for
data transmission and storage. Thus, it is highly desirable to
develop an efficient compression algorithm for LiDAR point
cloud data.

Due to the characteristics of large scale, uneven distrib-
ution, and sparsity, compressing LiDAR data is a big chal-
lenge. The points in one frame merely have connectivity and
topology, so it is hard to remove the spatial redundancies.
Additionally, there is no explicit point correspondence between
adjacent frames, which poses a challenge to remove the
temporal redundancies. Octrees, as a data structure, have been
widely researched in the last few decades to encode point
clouds [4], [5]. The method is implemented by recursively
dividing the 3D space into eight octants from top down.
Octree-based coding technique merely takes into account the
structural characteristics of LiDAR data captured by line-laser
scanners. Using it to encode vehicle-mounted LiDAR data is
inefficient.

By projecting 3D point clouds into 2D panoramic images,
some researchers have focused on using image or video coding
methods to compress LiDAR data [6]. Conventional image
or video encoding algorithms are primarily used to encode
integer pixel values. Using them to encode floating-point
LiDAR data will cause distortion. Moreover, range images
are characterized by sharp edges and uniform regions with
almost equal values, which is quite different from textured
videos. Using conventional tools such as block-based dis-
crete cosine transform (DCT) and coarse quantization to
encode distance images produces significant coding errors
at sharp corners. These factors make it difficult to estimate
the motion of points and predict the content of inter-frames
using video coding strategies. However, since point cloud
stream is continuous, we believe that it is possible to esti-
mate the point motion, though new techniques need to be
developed. The emerging deep learning method, known for

1524-9050 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 12,2020 at 11:32:25 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4867-2282
https://orcid.org/0000-0003-0491-8065
https://orcid.org/0000-0002-4500-238X

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

its ability to learn features and patterns from data, may be a
solution.

In this article, we propose a novel compression framework
for LiDAR point cloud sequences. As LiDAR data is struc-
tured, we project the 3D point clouds to 2D range images.
Thus, we cast the 3D point clouds compression as range
images coding problem. Inspired by the HEVC algorithm [7],
we design a coding architecture for the range images, which
mainly consists of intra-coding and inter-coding. For intra-
coding, we develop a clustering-based intra-prediction tech-
nique to remove spatial redundancy, while for inter-coding,
we train a prediction neural network to infer the inter-frames
using the encoded intra-frames. The intra- and inter- residual
data is quantified and coded using lossless coding schemes.
Experiments on the KITTI dataset demonstrate our method
yields an impressive performance [8], [9]. The major contri-
butions of the paper are summarized as follows.

• Inspired by the HEVC algorithm, we develop a novel
coding architecture for LiDAR point cloud sequences;

• To remove spatial redundancy, we propose an efficient
intra-prediction method for intra point clouds using clus-
tering and quadric surface fitting techniques;

• To remove temporal redundancy, we design a prediction
neural network using convolutional the LSTM cell. The
network is capable of predicting future inter-frames using
the encoded intra-frames;

• The algorithm is specially designed for line-laser scan-
ner data, meeting the requirements for autonomous
driving. Compared with octree [10], Google Draco [11]
and MPEG TMC13 [12], our method yields better
performance.

The rest of this article is structured as follows. In Section II,
we discuss related works. In Section III, we give an overview
of the point cloud coding framework. The intra-coding method
and inter-coding method are presented in Section IV and
Section V, respectively. Experimental results are shown in
Section VI. Finally, the paper is concluded along with possible
future research directions in Section VII.

II. RELATED WORK

Over the past decade, scholarly works on point cloud
compression have been extensive. Taking the characteristics
of the point cloud as a major consideration, these methods
can be roughly classified into two categories, structured and
unstructured point cloud compression, and each category can
be further divided into static single frame and dynamic point
cloud compression.

A. Structured Static Point Cloud Compression

Liu et al. [13] propose a scan-line-based lossless com-
pression algorithm for point clouds. In their method, they
employ a distance-based predictor to predict the forthcoming
point using the information of previous points, and use an
arithmetic coding scheme to code the residual data. Houshiar
and Nüchter [14] propose an image-based compression method
for 3D point clouds, in which they map the point cloud onto
panoramic images, and use image compression methods to

compress the generated panoramic images. Ahn et al. [15]
present a geometry compression algorithm for large-scale 3D
point clouds to encode radial distances in a range image.
In their method, they design twelve prediction modes for
radial distances, and only encode the prediction residuals
using a context-based entropy coder. Some other methods
focus on encoding RGB-D data. Zanuttigh and Cortelazzo [16]
introduce a novel strategy for the compression of depth
maps. They develop a segmentation approach to extract edges
and main objects, and predict the surface shape from the
segmented regions. Finally, the few prediction residuals are
efficiently encoded by standard image compression algo-
rithms. Morell et al. [17] propose a geometric 3D point cloud
compression approach based on the geometric structure of
man-made scenarios. In their method, the points of each scene
plane are represented as a Delaunay triangulation and a set of
points/area information.

B. Structured Dynamic Point Cloud Streams Compression

Yang et al. [18] develop a fast transmission method for
3D point clouds, in which they remove the redundancy
information by using filters and segmentation algorithms.
Wang et al. [19] propose a 3-D image warping-based com-
pression method for RGB-D data. They combine egomotion
estimation and 3-D image warping techniques and use a loss-
less coding approach to encode the depth data. Their method
has the advantage of high speed and high compression ratio,
and is capable in real-time applications. Cohen et al. [20]
develop a compression method for organized point clouds,
in which they map 3D point cloud data to a 2D array and
adaptively fit them with hierarchical patches. Their method
obtains better performance in compression ratio compared
with the octree-based codec.

C. Unstructured Static Point Cloud Compression

Oliveira et al. [21] propose a graph-based lossy coding
algorithm for the geometry of static point clouds. They use
an octree-based technique for a base layer and a graph-based
transformation technique for the enhancement layer, where
residual data is coded. Experimental results show their method
achieve impressive performance. Wang et al. [22] use 3D DCT
to compress point-cloud data, achieving a high compression
ratio and flexible reconstruction behaviors compared with
related methods. Fan et al. [23] propose a point cloud geom-
etry encoder based on hierarchical point clustering. Firstly,
a hierarchy of level of detail (LOD) is constructed using
the adapted Generalized Lloyd Algorithm (GLA). After that,
they progressively encode the LOD hierarchy using effective
representation, prediction, and entropy coding.

D. Unstructured Dynamic Point Cloud Streams Compression

Nguyen et al. [24] propose a compression method for
human body sequences, in which they develop graph
wavelet filter banks to time-varying geometry and color sig-
nals living on a mesh representation of the human body.
Thanou et al. [25] develop a graph-based motion estima-
tion and compensation scheme for dynamic 3D point cloud

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 12,2020 at 11:32:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SUN et al.: NOVEL CODING ARCHITECTURE FOR MULTI-LINE LiDAR POINT CLOUDS 3

Fig. 1. Schematic of the LiDAR point cloud sequence compression codec.

sequences. In their method, the time-varying geometry of point
cloud sequences is represented by a set of graphs, where
3D positions and color attributes are considered as signals.
Then the motion is estimated on a sparse set of representative
vertices based on new spectral graph wavelet descriptors.
Queiroz et al. [26] introduce a novel motion-compensation
approach to encoding dynamic voxelized point clouds (VPCs)
at low bit rates. In their method, the VPC is divided into blocks
and coded by intra-frames or replaced by a block in previous
frame through motion compensation.

E. Summary and Analysis

Generally, the exiting algorithms can significantly reduce
the point cloud data size and can be used for various appli-
cations, such as virtual reality, scanning of historical artifacts,
and 3-D printing. However, few of them aim at compressing
dynamically structured LiDAR point cloud streams. Octree
methods are not ideal choice in autonomous driving because of
the loss of points, while image-based compression methods fail
to utilize the spatial geometric characteristics of point clouds,
so their compression performance is inefficient. Fortunately,
we can learn from their coding concepts, such as image-based
coding technique [14], prediction concept [15] and clustering
method [23]. In this article, we present a novel coding algo-
rithm for LiDAR point cloud sequences based on clustering
and a convolutional LSTM network.

III. OVERVIEW OF POINT CLOUD CODING FRAMEWORK

In this article, we propose a hybrid encoding/decoding
architecture (intra-/inter- prediciton and residual data coding)
for LiDAR point cloud sequences. Fig. 1 shows the coding
and decoding flowcharts illustrating our proposed method [27].
The order arrangement of the intra- and inter frames- is

Fig. 2. The order arrangement of the intra- and inter-frames.

illustrated in Fig. 2. The number of I frame and P frame can
be defined by parameter m and n. For instance, if m = 5 and
n = 5, the input data, in the form of a LiDAR data stream,
will be formatted as “IIIIIPPPPPIIIIIPPPPP…”.

The I frames will be coded using the intra-prediction mode
which is a spatial prediction within the frame to remove
the spatial redundancy. According to the encoded I frames,
the inter-prediction module, a neural network, is capable of
inferring the future P frames [28]. The residual signal of the
intra- or inter-prediction, which is the difference between the
original and its prediction data, is encoded by lossless or
lossy schemes. The coded control data, coded residual data,
coded contour map data, and network parameters are packaged
together in a certain way, forming the final coded bitstream.

Decoding is the inverse process of encoding. This is done by
inverse scaling and decoding of the encoded data to produce
the decoder approximation of the residual signal. This residual
signal is then added to the prediction signal and forms the
decoded point cloud. The final data representation, which is
the duplicate of the possible output in the decoder, will be
stored in a decoded point cloud buffer’ and will be used for
prediction of subsequent point clouds. The components in the
codec are briefly described as follows.

(a) Convert to Range Image: The point clouds are cap-
tured by Velodyne LiDAR HDL-64 sensors, which

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 12,2020 at 11:32:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 3. Architecture of the intra-coding process.

utilize 64 laser beams covering a vertical field of view
of 26.9◦and horizontal field of view of 360◦. The sensor
represents the 3D geometry of a point by measuring
the radial distance from the center of the scanner to
an object in a uniformly distributed angular direction.
By coordinate system transformation, the 3D point cloud
data can be converted into 2D grid arrays, known as
panoramic range image.

(b) Outlier Removal Filter: In fact, the LiDAR sensor pro-
duces a large number of abnormal values during range
measurement. The outliers will reduce the efficiency of
the algorithm with higher computing costs. To reduce
the impact of outliers, a filter named Radius Outlier
Removal is used [29]. Radius Outlier Removal calculates
the number of adjacent points around each point and
filters out the outliers.

(c) Point Cloud Clustering: For a single scan of a point
cloud, points belonging to the same object have a lot
of spatial redundancy. In order to eliminate the redun-
dancy, a graph-based point cloud clustering technique is
exploited to segment the range image into nonoverlap-
ping clusters.

(d) Intra-Prediction: According to the clustering result,
we develop an efficient intra-prediction technique based
on quadric surface fitting. We perform quadric surface
fitting for the clusters with a large number of points.
According to the fitting surface and LiDAR parameters,
the predicted value can be obtained.

(e) Contour Map Coding: In order to recover the original
point cloud data, we also need to encode the contour
map. In [30], Matejek et al. propose an efficient com-
pression method for segmentation data in biomedical
imaging. Inspired by their method, we divide the contour
map into independent coding units and encode each unit
with an integer value.

(f) Network Parameter Setting: The parameters of the neural
network are configured according to the size of the input
point cloud and the order arrangement of intra- and
inter-frames.

(g) Inter-Prediction: A prediction neural network model is
designed using convolutional LSTM cells. The model
uses the encoded intra-frames to infer future inter-frames
to remove the temporal redundancy.

(h) Residual Data Coding: The difference between the real
point cloud data and the predicted data is calculated as

residual data. The residual data is quantified and encoded
with lossless coding schemes.

(i) General Coder Control: The encoder uses pre-specified
codec settings, including the precision configuration for
module (b), cluster parameter configuration for module
(c), network parameters configuration for module (g),
and quantization parameter encoding method for module
(h). In addition, it also controls the intra- and inter-
frames order arrangement.

(j) Header Formatting & Parameter Information: The para-
meter information, coded residual data, and coded con-
tour map data are organized in a predefined order and
form the final bitstream.

IV. INTRA-PREDICTION BASED ON CLUSTERING AND

QUADRIC SURFACE FITTING

Figure 3 gives the architecture of the intra-point-cloud cod-
ing process, where the grey blocks indicate processing steps
and the blue blocks represent data. Particularly, the processed
data, which need to be further encoded by lossless schemes,
are marked with an asterisk. The workflow and example results
are illustrated in Fig. 4. The intra-frame encoder consists of
four main stages. Firstly, it converts the point cloud into a
2D range image and filters outliers. Secondly, a graph-based
clustering technique is performed using the range image.
Thirdly, based on the clustering result, we perform quadric
surface fitting for each cluster to figure out the best fitting
plane. According to the fitting surface and LiDAR parameters,
a predicted range map can be computed. Thirdly, the difference
between the predicted and the real range image is calculated
as the residual data, which will be quantified and encoded
by lossless schemes. To be able to rebuild the point cloud,
the contour map and surface parameters also need to be saved.
Finally, the encoded contour map data, surface parameters and
residual data compose the intra-bitstream.

A. Pre-Processing

We experimented with the KITTI dataset captured by Velo-
dyne HDL64 sensors, which represents the 3D geometry of the
environment by rotating clockwise at a frequency of 10 Hz.
While the sensor is rotating, all 64 lasers that are positioned
vertically at a predetermined pitch angle emit simultaneously
at different rotation angles 360◦/n, where n denotes the
number of emission times during a 360◦ rotation. The angular

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 12,2020 at 11:32:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SUN et al.: NOVEL CODING ARCHITECTURE FOR MULTI-LINE LiDAR POINT CLOUDS 5

Fig. 4. The overall workflow of the intra-prediction method: (a) input
point cloud; (b) range image; (c) clustering result in the point cloud;
(d) segmentation result in the range image; (e) prediction map; (f) contour
map; and (g) residual data.

Fig. 5. Convert LiDAR point cloud to 2D array.

resolution of the Velodyne HDL-64 in the direction of rota-
tion is approximately 0.18◦, while in the vertical direction,
the pitch angle difference of adjacent lasers is about 1.33◦.
This makes the point cloud denser in the lateral direction
and relatively sparse in the radial direction. The scan data
thus can be converted to a 2D array, as illustrated in Fig. 5.
After that, the isolated points are filtered out [29]. The original
point cloud and the transformed range image results are shown
in Fig. 4 (a) and (b), respectively.

B. Graph-Based Clustering

We use graph-based techniques to complete the segmenta-
tion. According to the range image, the points are represented
as a weighted undirected graph G = (V , E), where V is the set
of nodes representing points and E is the set of edges between
adjacent points. Given the point cloud P = (p1, p2, p3, . . .),
we construct the problem of segmenting the set into disjoint
subsets si s.t. ∪i si = V .

We exploit a 4-connected graph for segmentation, which
is extracted from the laser scans. Each node is connected
to four adjacent others by edges labeled with three edge
weights. This means for an edge ei, j =< ωα,ωβ, ω(u,v) >
to connect two vertexes. ωα represents the angle between two

Fig. 6. Schematic diagram of the clustering technique: (a) ground extraction
fundament; and (b) clustering fundament.

adjacent points in the vertical direction with the xoy plane,
while ωβ indicates the angle between two neighboring beams,
as depicted in Fig. 6. ω(u,v) is the Euclidean distance in the
three-dimensional space between to adjacent points. According
to Fig. 6, ωα , ωβ and ω(u,v) are defined as follows:

ωα = arctan(|BC|, |AC|) = arctan(�z,�x)

�z = |Rr−1,csinζα − Rr,csinζβ |
�x = |Rr−1,ccosζα − Rr,ccosζβ |, (1)

ωβ = arctan
|B H |
|H A| = arctan

d2sinα

d1 − d2cosα
, (2)

ω(u,v) =
√

(ux − vx)
2 + (uy − vy)

2 + (uz − vz)
2, (3)

where ζα and ζβ denote the vertical angles of the laser beams
corresponding to row r − 1 and r , respectively. d1 and d2
denote the distance between O A and O B , respectively, and α
represents the angle between two beams. The ζα, ζβ , and α
can be obtained by LiDAR sensor parameters.

ωα is used to extract the point cloud ground, while ωβ and
ω(u,v) are used for object clustering. As can be seen from
Fig. 6 (a), if point A and point B belong to the ground,
the angle ωα is very small (ωα < thresα), and vice versa. The
threshold thresα is predefined. Fig. 6 (b), if the two points A
and B belong to the same object, then A and B are close,
and the angle ωβ is close to 90◦. Otherwise, if points A and
B come from different objects, they are farther apart, and the
angle ωβ is close to 0◦or 180◦. Additionally, the Euclidean
distance is smaller for the points belonging to the same
object. Two points merge into the same segment according
to the conditions |90◦ − ωβ | < thresβ , ω(u,v) < thres(u,v).
In our experiment, thresα and thresβ are set to 15◦and 10◦,
respectively. thres(u,v) is a changeable value along the radius
direction of the LiDAR center. Due to the radiation of the
LiDAR data, the distance threshold of the farther point cloud
should be larger. We set the minimal distance threshold as
0.2 m and add 0.025m to it for each 2 meters far away.

Given the graph of the point cloud and the three edge costs,
we now have the essential material to begin segmentation.
Algorithm 1 gives the pseudo-code for the complete pipeline.
The raw laser data is first processed into an augmented set
of vertex V and a set of edges E . In line 2, we com-
pute edge weights ωα , ωβ and ω(u,v), and in lines 4–6 we

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 12,2020 at 11:32:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Algorithm 1 Outline of the Point Cloud Clustering Algorithm
Input:

A frame of point cloud P = (p1, p2, p3, . . .);
Output:

The segmentation result Psegment = (s1, s2, s3, . . .).
1: Construct a undirected graph G = (V , E) with the points

as nodes V and the links between adjacent nodes as edges
E .

2: Calculate the weights between adjacent points represented
with ωα , ωβ and ω(u,v).

3: Start with a segmentation S0
segment = (s0

1 , s0
2 , s0

3 , . . . , s0
n),

where each vertex is in its own component.
4: for Pi ∈ P do
5: Let ωα denote two adjacent vertices connect. If the

weight of ωα is less than the initial threshold thresα ,
merge the two points together as the ground point sground

otherwise do nothing.
6: end for
7: for Pi ∈ P and Pi /∈ sground do
8: Let ωβ and ω(u,v) denote the weight between to adjacent

points. If the two points belong different components and
|90◦ − ωβ | < thresβ , ω(u,v) < thres(u,v), merge the two
components otherwise do nothing.

9: end for
10: return Psegment = ∪i si

extract the ground points according to edged weights thresα .
In lines 7–9, we traverse the edges and propose a union
between the sets connected by the edges. Thus, we obtain the
segmentation result. Typical clustering results using a 64-beam
Velodyne scanner are shown in Figs. 7. Fig. 7 (a) shows the
point cloud from the Velodyne, which is shown for illustration
reasons only. The segmentation results between the ground
and the objects are shown in Fig. 7 (b). The green points
represent the ground and the red points represent the objects.
The clustering result is shown in Fig.7 (c), where each object
is surrounded by a bounding box.

C. Quadric Surface Fitting for Intra-Prediction

The intra-prediction method is inspired by the depth mod-
eling modes (DMMs) in 3D-HEVC. The depth map coding
in 3D-HEVC will be described firstly, followed by our pro-
posed intra-prediction based on quadric surface fitting.

1) Depth Map Coding Method in 3D-HEVC: 3D-HEVC,
as an extension of the HEVC standard, is specially designed
for encoding multi-view video and depth data, which are
primarily captured by RGB-D sensors. To better preserve
edge details in depth video, 3D-HEVC adapts DMM as new
prediction modes. The range image converted from a LiDAR
has similar characteristics to the depth image captured by
RGB-D sensor. They all have sharp edges and uniform areas.
The difference is their measurement range and accuracy.

An RGB-D sensor has a measurement range of 4.5 meters,
while a LiDAR can measure objects up to 100 meters away.
Therefore, it requires more bits to represent the distance than
in a depth image from an RGB-D sensor. Additionally, the

Fig. 7. Clustering results: (a) input point cloud; (b) extraction of the ground
point, where the green points represent the ground, while red points represent
the objects; (c) clustering result.

Fig. 8. Depth modeling modes: (a) wedgelet partitioning; (b) contour
partitioning.

depth map captured by RGB-D sensor is dense, while the
range image converted from LiDAR is sparse, especially for
the points far from the LiDAR center. These reasons determine
that we can not encode LiDAR data with a depth map coding
method. However, we can learn how to eliminate spatial
redundancy.

3D-HEVC exploits two novel DMMs. When using DMMs,
the current block will be divided into two regions, P1 and P2,
each of which will be represented by a constant partition value
(CPV). The DMMs implement two segmentation strategies:
wedge and contour segmentation. An example of wedge and
contour partitioning is shown in Figure 8. For a wedge parti-
tion, as illustrated in Fig 8 (a), the depth prediction unit (PU) is
split into two segments using a line defined by a starting point
and an endpoint corresponding to the boundary sample. For
contour segmentation, as illustrated in Fig 8 (b), the depth PU
is segmented into arbitrary shapes using its collocated texture
block information, and can be composed of multiple parts.
The difference between the real data block Btrue(x, y) and
the predicted data block Bpredicted (x, y) is calculated as the
residual data, represented by Bresidual(x, y). Since the pixel
value of the residual block is close to zero, the entropy of the

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 12,2020 at 11:32:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SUN et al.: NOVEL CODING ARCHITECTURE FOR MULTI-LINE LiDAR POINT CLOUDS 7

residual block is small. The remaining blocks can be encoded
with very few bits compared to the original block. In addition,
the split information will be stored in a binary matrix equal
to the block size:

Bresidual(x, y) = Btrue(x, y) − Bpredicted (x, y). (4)

2) Intra-Prediction Based on Quadric Surface Fitting:
Inspired by the prediction technique adopted in 3D-HEVC,
we exploit a similar approach. After segmentation, the range
image is represented as a set of components P = ∪i si ,
as illustrated in Fig. 4 (d). Each component represents an
object in 3D space. Similar to the DMMs in 3D-HEVC, for
a component with few points, we use the average value to
make the prediction. To further improve the coding efficiency,
we also use the quadric surface to make prediction for the
components with a large number of points. For given point
cloud data {pk}n

k=1 ∈ si , the least-squares function is defined
as follows:

J = 1

n

n∑
i=1

d(s, pi)
2, (5)

where pi = (xi , yi , zi)
T represents a 3D point coordinate, and

s denotes the parameter of the surface. Since the expression of
the distance function directly affects the solution of nonlinear
equations and the accuracy of the least squares method,
we establish the parametric equation of the distance function
of the quadric surface. Here, we define four conicoid models:

Plane model: the distance from a point pi to a plane can
be expressed as

d(s, pi) = n pi + d, (6)

where n denotes the normal vector of the plane, and d
represents the vertical distance parameter from the origin of
the coordinate to the plane.

Sphere model: the distance equation from a point pi to a
sphere can be expressed as

d(s, pi) = ||c − pi || − r, (7)

where c represents the center of the sphere, and r is the radius
of the sphere.

Cylinder model: the distance from a point pi to a sphere is
defined as follows:

d(s, pi) =
√

||q0 − pi ||2 − (a · (q0 − pi)2) − r, (8)

where q0 = (k1, k2, k3)
T represents the coordinates of a point

on the axis of a cylinder, a = (k4, k5, k6) denotes the normal
vector of the cylinder axis, and r is the cylinder radius k7.
As the point q0 on the axis is not unique, it will affect the
robustness of the algorithm. To make the obtained parameters
independent, the distance between the point to the cylinder is
re-parameterized. The point q0 is redefined as the closest point
to the origin on the axis of cylinders.

Cone model: the distance from a point pi to a cone can be
defined as follows:
d(s, pi) = |pi B|

= √||c− pi ||−n · (c− pi) · cosγ −n · (c− pi)sinγ ,

(9)

Fig. 9. Architecture of the inter-coding process. The grey blocks indicate
processing steps and the blue blocks represent data.

where c = (x0, y0, z0)
T represents the apex of the conical sur-

face, n = (cosαcosβ, sinαsinβ, cosα) denotes the unit vector
in the direction of the cone axis (pointing to the apex), and γ
is the cone’s apex semi-angle. Thus, the geometric parameters
of the conical surface are redefined as (x0, y0, z0, α, β). The
parameters are independent of each other.

After establishing the plane, spherical, cylindrical, and
conical surface distance functions, the fitting calculation is
performed. We use the coordinates of the point and its normal
vector information to obtain the initial value estimation. After
we obtain the initial values and distance equation, we use the
Levenberg-Marquardt algorithm to get the optical surface para-
meters [31]. Using the fitted surface and LiDAR parameters,
we calculate the virtual points and convert these points into
a predicted range data. The difference between the real range
data and the predicted range data is calculated as residual data
for further processing.

D. Contour Map Coding Method

For each segment, the fitted plane parameters are saved in
laser scanning order. To be able to reconstruct point clouds,
we also need to save the contor map (Fig. 4 (f)). If one of
the pixels in p(x + 1, y) or p(x, y + 1) belongs to a different
segment, we set the pixel p(x, y) to 1, and otherwise to 0.
The extraction result of the contour map is shown in Fig. 4(f).
After that, the boundary map is uniformly subdivided into 4×4
macroblocks, represented by 16-bit integer values.

Vblock =
15∑

i=0

Contour(i) · 2i (10)

where Vblock represents the value assigned for the current
block. Coutor(i) is 1 if pixel i is on the boundry and
0 otherwise. Thus, we convert the contour map encoding into
a 1D array encoding problem that can be encoded by any
lossless compression scheme.

V. INTER-PREDICTION TECHNIQUE USING

CONVOLUTIONAL LSTM

When a car mounted with a Velodyne LiDAR is traveling
in urban area, the time interval between two adjacent point
clouds is very short, and the car only moves a short distance
during this time. Adjacent frames in a point cloud sequence
have a large number of similar structures, and there is a lot
of redundancy in the time dimension. To eliminate temporal
redundancy in point cloud sequences, we develop a prediction

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 12,2020 at 11:32:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 10. Architecture of the point cloud prediction network.

neural network using convolutional LSTM, which is capable
of inferring future point clouds according to the encoded
frames. Fig. 9 gives the architecture the inter-coding process.
The predition network obtains the encoded points clouds
X = {Xt=0, Xt=1, . . . , Xt=T }, and infers the next frame of
point cloud Pt=T +1. The difference between the real point
cloud Xt=T +1 and predicted result Pt=T +1 will be calculated,
quantified and encoded as the inter-bitstream.

Deep learning algorithms have been widely used to solve
supervised learning tasks. However, point cloud predic-
tion, as unsupervised learning, remains a difficult challenge.
Figure 10 illustrates the overall architecture of the proposed
prediction network using convolutional LSTM. The network
consists of a series of repeated convolutional LSTM modules
that attempt to locally predict the input and then subtract
the input from the actual input and pass it to the next layer.
X = {X0, X1, . . . , XT } represents the input range images from
t = 0 to T , while the P = {P0, P1, . . . , PT , PT +1} denotes the
predicted results. The network mainly consists of three types of
model: the error representation (Et

l), the convolutional LSTM
layer (ConvLST Mt

l), and the feature extraction layer (Ft
l).

Et
l represents the difference between Pt

l and Ft
l ; Ft

l revevies
the Et

l and extracts high features; and ConvLST Mt
l receives

the Et
l , Ot−1

l , and Ot
l+1, and makes a prediction.

When the network is constructed, point cloud prediction
is performed. Consider a series of range images converted
from point clouds. The lowest ConvLSTM level gets the actual
sequence itself, while the higher layers receive the represen-
tative. The error is computed by a convolution from the layer
below. The update process is described in Algorithm 2. The
status update is performed through two processes: a top-down
process in which the Pt

l state is calculated ad described in
formula (17), and then a forward process is performed to
calculate the error Et

l , and higher-level targets Ft
l described in

formulas (18) and (19). The last noteworthy detail is that E0
l

is initialized to zero, which means that the initial prediction
is spatially consistent due to the convolutional nature of the
network.

Pt
l =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ConvLST M(Einit ial
L) t = 0, l = L

ConvLST M(Einit ial
l , Ot

l+1) t = 0

ConvLST M(Et
l , Ot−1

l) l = L

ConvLST M(Et
l , Ot−1

l , Ot
l+1) others

(11)

Algorithm 2 The Update Process of the Prediction Network
Input:

The input t frames: I = {X0, X1, . . . , Xt };
Output:

The prediction k frames: P = (Pt+1, Pt+2, . . . , Pt+k).
1: Assign the initial value: Et

l = 0 (l ∈ [0, L], t = 0).
2: for t = 0 to T do
3: for l = L to 0 do
4: if (t = 0, l = L) then
5: Pt

L = ConvLST M(Einit ial
L)

6: else if (t = 0) then
7: Pt

l = ConvLST M(Einit ial
l , Ot

l+1)
8: else if (l = L) then
9: Pt

L = ConvLST M(Et
l , Ot−1

l)
10: else
11: Pt

l = ConvLST M(Et
l , Ot−1

l , Ot
l+1)

12: end if
13: end for
14: for l = 0 to L − 1 do
15: if (l = 0) then
16: Et

0 = Pt − Xt

17: Ft
0 = Conv(Et

0)
18: else
19: Et

l = Pt
l − Ft

l
20: Ft

l = Conv(Et
l)

21: end if
22: end for
23: end for

Et
l =

{
Pt − Xt t = 0

Pt
l − Ft

l others
(12)

Ft
l =

{
Conv(Et

0) t = 0

Conv(Et
l) others

(13)

The model is trained to minimize the weighted sum of
error cell activities. Explicitly, the training loss is formal-
ized in equation (20), represented by the weighting factor
λt for the time and λl for the layer. The loss per layer
is equivalent to the ||Et

l ||. The loss function is defined

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 12,2020 at 11:32:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SUN et al.: NOVEL CODING ARCHITECTURE FOR MULTI-LINE LiDAR POINT CLOUDS 9

TABLE I

EVALUATION OF NEXT-FRAME PREDICTIONS WITH KITTI DATASET

as follows.

Loss =
t=T∑
t=0

l=L∑
l=0

λt · λl

l
· ||Et

l ||. (14)

We train the proposed prediction model using the KITTI
dataset. We convert the point clouds to range images with res-
olution 64 × 2000 pixels. After that, the images are processed
to be grayscale, with values normalized between 0 and 1.
We use 5K point clouds for training and 600 for both validation
and testing. The Adam method is used to train our model
with learning rate 0.0001. We train our model with entropy
optimization within 500 epochs. The batch size is set to 8,
as limited by our GPU memory.

The model is capable of accumulating information over
time to make accurate predictions of future frames. Since the
representation neurons are initialized to zero, the prediction
of the first time step is consistent. In the second time step,
in the absence of motion information, the prediction is a fuzzy
reconstruction of the first time step. After further iterations,
the model adapts to the underlying dynamics to generate
predictions that closely match the incoming frame.

Quantitative assessment of generated models is a difficult
and unresolved problem. We calculate the prediction errors
based on mean square error (MSE) and structural similarity
index measures (SSIM). The SSIM is designed to be more
relevant to perceptual judgment, ranging from −1 to 1, with
larger scores indicating greater similarity. Table I shows the
results of four point cloud scenes: campus, city, road, and res-
idential. The error between the real point cloud and predicted
is calculated and perpared for further processing.

VI. EXPERIMENTAL RESULTS

A. Experimental Conditions and Evaluation Metric

To evaluate the point cloud compression performance,
the main body of the proposed algorithm is implemented
by C++ with some operations in the open source Point
Cloud Library (PCL). The prediction network uses PyTorch
0.4.1 with the CUDA 8.0 and cuDNN 7.0 libraries. The experi-
ments are performed on a PC with an Intel 2.2GHz i7 CPU and
a single NVIDIA graphics card with 16GB memory. We use
the public KITTI dataset to perform the experiments, using
four scenes of point clouds: campus, city, road, and residential.
We make comparisons with the available octree method [10],
Google Draco [11], MPEG TMC13 [12], [32], and other
recently proposed methods [33], [34]. The experiment tests
100 frames per sequence. The order of intra- and inter-frames
is formatted as “IIIIIPPP…PPPIIIII…”. Five intra-frames are
encoded firstly, followed by fifteen inter-frames.

We adopt two metrics to quantitatively evaluate of the
compression performance. The first is the compression rate,

which represents the ratio between the compressed data size
and the original size:

Ratio = Compressedsize

I nputsize
× 100%, (15)

where Ratio represents the compression ratio, and Inputsize

and Compressedsize represent the size of the point cloud data
before and after compression, respectively.

The second is the point to point symmetric root mean square
error (RMSE). The original point cloud Pinput is a set of K
points, while Pdecoded represents the decoded point cloud with
N points. K and N do not necessarily need to be equal.

Pinput = {(pi) : i = 0, . . . , K − 1}
Pdecode = {(pi) : i = 0, . . . , N − 1}. (16)

For each point in Pinput , we take the distance to the nearest
point in Pdecode, represented as pnn−decode. The pnn−decode is
efficiently computed via a K-d tree in the L2 distance norm.
The RMSE is defined as follows:

M S R(Pinput , Pdecode)= 1

K

∑
pl∈Pinput

||pl − pnn−decode||22

M S R(Pdecode, Pinput)= 1

N

∑
pl∈Pdecode

||pl − pnn−input ||22

RM SE =
√

M S R(Pinput , Pdecode)+M S R(Pdecode, Pinput)

2
(17)

B. Experimental Results

1) Intra- and Inter-Compression Ratio for a Single Point
Cloud: We consider several compression schemes to encode
the intra- or inter-predicted residual data, namely, Zstan-
dard, LZ5, Lizard, Deflate, LZ4, Bzip2, Brotli, LZMA
and PPMd. To make a comparision, the point cloud data
is also directly encoded with these schemes without any
pre-processing as an anchor. Figure 11 depicts the average
intra- and inter- compression ratio for a single point cloud
of four scenes. The intra-coding results using intra-prediction
and different lossless compression algorithms are represented
by blue bars, while the inter-coding result are represented
by red bars. The coding results of point cloud data with-
out using intra- or inter-prediction are represented by blue
bars. It can be observed that both proposed intra-prediciton
and inter-prediction methods paired with the lossless coding
schemes yields better performance.

For intra-coding, the proposed intra-prediction method com-
bined with the PPMd scheme obtains a lower compression
ratio compared with the other coding schemes. Among the
four scenes of point clouds, the compression performance of
the residential scene is relatively poor. This is because the
residential point cloud is complex, which results in more
clusters and a more complex contour map. More bits are
needed to encode the contour map and surface parameters
for the clusters. The best compression ratio is obtained by
the intra-predition paired with PPMd for the city scene point
cloud, with 4.5%. The intra-coding results demonstrate that the

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 12,2020 at 11:32:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 11. Intra- and inter- compression ratios for a single point cloud of four sences: (a) campus, (b) city, (c) road, (d) residential.

TABLE II

COMPRESSION RATE RESULTS COMPARED WITH THE OCTREE AND DRACO GOOGLE METHODS

intra-prediction technique can effectively remove the spatial
redundancy of the point cloud data.

For inter-coding, the inter-frame prediction technology com-
bined with the Bzip2 coding scheme achieves the optimal
compression performance for the campus scene point cloud,
with a compression ratio of 3.57%. Compression performances
of the different scenarios do not differ much. Compared with
the intra-coding method, the performance of the inter-coding
is better. The inter-coding results demonstrate that the pro-
posed prediction network is capable of removing the temporal
redundancy of point cloud sequences by inferring future point
cloud data.

2) Comparison With Octree and Google Draco: Table II
describes the compression ratio results of the proposed method
compared to the well-known octree method [10] and the recent
proposed Goolge-Draco method [11]. Considering that the two
algorithms can not directly encode point cloud sequences,
we assemble point cloud sequences into a point cloud map by
transforming each single point cloud into a global coordinate
system. The coding accuracy of the octree coding technique
is set to 1 cubic millimeter, 5 cubic millimeters, and 1 cubic
centimeter. In our experiments, we choose the LZMA scheme
as a representative of the lossless compression algorithm. From
Table II, it can be seen that the algorithm obtains a smaller
compression ratio than the octree coding technique.

DRACO is an open source library developed by Google that
uses k-d tree data structures to quantify and organize points
in 3D space. There are two custom parameters in the DRACO
algorithm, namely, the quantization bit (QB) and the compres-
sion level (CL). In our experiments, the quantization bits are
set to 17, 15, 14, and 11, corresponding to 1 mm, 5 mm,
1 cm, and 5cm accuracy, respectively. In addition, we set
cl = 10 to get the highest compression ratio. The experimental
results show that the compression scheme achieves a smaller
compression ratio than the DRACO method.

3) RMSE-bpp Curves Performance: Figure 12 illustrates
the performance of the proposed method compared with the

Draco [11], TMC13 [32] and Tu methods [33], [34]. Compar-
ison results are given by RMSE-bpp curves, which reflect the
relationship between the RMSE and bits per point. TMC13 is
an emerging point cloud compression standard lately released
at the 125th MPEG meeting. We experiment on four scenes of
point clouds: campus, city, road and residential. As Tu et al.
did not publish their coding performance for the campus and
city point clouds, for campus and city scenes, we only compare
our method with the Draco and TMC13 methods. A smaller
RMSE and bpp mean better coding performance because they
enable a lower RMSE with less bandwidth. It can be observed
that our method obtains smaller bbp than Google Draco [11],
TMC13 [32], U-net-based method and Tu et al.’s methods
under the same RMSE reconstruction quality.

In [33], Tu et al. proposed a continuous point cloud
data compression algorithm using SLAM-based prediction.
They used the SLAM-based method to reconstruct the 3D
environment [35], and make predictions according to the
3D environment and LiDAR parameters. In [34], Tu et al.
presented a real-time LiDAR point cloud streams algorithm.
They defined some frames as reference frames, and used
U-net to interpolate the remaining frames [36]. In contrast
with Tu et al.’s methods, our proposed prediction network
can use the temporal characteristics of multi-frame point
clouds to infer future frames. Also, the proposed model is
a multi-layered recurrent neural network structure, where the
error is passed from top to bottom to get more accurate predic-
tion results. Moreover, the spatial redundancy of intra-frames
is also removed by clustering and quadric surface fitting.
Different from Tu et al.’s methods, TMC13 is an MPEG
standard for point cloud compressions, which can be used for
various types of point clouds. It is not specifically designed
for Velodyne point clouds [37].

4) Contribution of Each Step in Intra- or Inter-Coding
Process: To evaluate the contribution of each step in the
encoding process, we record the change in the size of the point
cloud data during the compression process. Table III illustrates

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 12,2020 at 11:32:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SUN et al.: NOVEL CODING ARCHITECTURE FOR MULTI-LINE LiDAR POINT CLOUDS 11

Fig. 12. RMSE-bpp curves performance of our method in comparision with Google Draco [11], TMC13 [32] and Tu et al.’s methods [33], [34]: (a) campus
scene, (b) city scene, (c) road scene(d) residential scene. (Best viewed by zooming in.)

TABLE III

AVERAGE CHANGES IN DATA VOLUMES DURING

INTRA- OR INTER- CODING (KB)

TABLE IV

AVERAGE CODING TIME OF THE INTRA-CODING TECHNIQUE

the average change in the amount of data during the intra-
and inter- coding processes. The last contribution comes from
the coding part. The intra or inter residual data is quantified
firstly, and encoded by lossless schemes. By adjusting the
quantization parameters, the compression accuracy can be
controlled. Here, we use the BZip2 method with millimeter
accuracy. The steps of conversion, intra or inter prediction,
and residual data encoding are all important techniques for
the proposed point cloud sequence compression algorithm.
Their contributions are not simply added together, but their
effects are multiplied. Therefore, even a small improvement
in a single step can make a big difference.

5) Speed Performance: The proposed intra-coding
technique includes three steps: range image conversion,
intra-prediction and residual data encoding, while the
inter-coding technique includes range image conversion,
inter-prediction and residual data encoding. We chose
50 frames to evaluate the speed performance of the proposed
method. Tables IV and V give the average coding time
of each step for intra-coding and inter-coding processes,
respectively. It can be seen that the total coding time is 1.95s
for intra-coding and the 0.77s for inter-coding.

Currently, the algorithm cannot be run in real-time, but
the algorithm framework can be used offline. After we have
collected the LiDAR data, we can use this algorithm to
encode them to reduce the storage space. After compression,
when transmitting these data to others through the internet,
the bandwidth will also be reduced. In future work, we will
continue to optimize the point cloud coding architecture to

TABLE V

AVERAGE CODING TIME OF THE INTER-CODING TECHNIQUE

improve the coding efficiency and reduce complexity. We will
try to find a balance between the algorithm complexity and
the compression rate.

VII. CONCLUSION

In this article, we propose a novel coding architecture for
multi-line LiDAR point cloud sequences. To remove the spatial
redundancy, an intra-prediction technique is developed based
on clustering and quadric surface fitting. To remove the tempo-
ral redundancy, we develop a prediction network using convo-
lutional LSTM cells. The network can infer future inter-frames
according to the encoded intra-frames. Experimental results
show that both the intra and inter coding achieve a high
compression rate. The proposed algorithm also outperforms
octree [10], Google Draco [11], MPEG TMC13 [32] and other
recently proposed methods [33], [34].

The proposed method is specially desinged for LiDAR
point cloud sequences captured by line-laser scanners for
autonomous vehicles. Intra-frame prediction is also applica-
ble to organized dense point clouds [38], [39]. However,
the proposed method can not apply to disordered point cloud
compression, such as 3D human body sequences [40]. Addi-
tionally, the high complexity of the algorithm can not satisfy
real-time applications at present. Future work will focus on
improving the applicability and reducing the complexity of
the proposed algorithm.

REFERENCES

[1] H. Ye, Y. Chen, and M. Liu, “Tightly coupled 3D Lidar inertial odometry
and mapping,” in Proc. Int. Conf. Robot. Autom. (ICRA), May 2019,
pp. 3144–3150.

[2] M. Liu, “Robotic online path planning on point cloud,” IEEE Trans.
Cybern., vol. 46, no. 5, pp. 1217–1228, May 2016.

[3] P. Yun, L. Tai, Y. Wang, C. Liu, and M. Liu, “Focal loss in 3D object
detection,” IEEE Robot. Autom. Lett., vol. 4, no. 2, pp. 1263–1270,
Apr. 2019.

[4] J. Elseberg, D. Borrmann, and A. Nüchter, “One billion points in the
cloud – an octree for efficient processing of 3D laser scans,” ISPRS J.
Photogramm. Remote Sens., vol. 76, pp. 76–88, Feb. 2013.

[5] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz, and
E. Steinbach, “Real-time compression of point cloud streams,” in Proc.
IEEE Int. Conf. Robot. Autom., May 2012, pp. 778–785.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 12,2020 at 11:32:25 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

[6] C. Tu, E. Takeuchi, C. Miyajima, and K. Takeda, “Compressing contin-
uous point cloud data using image compression methods,” in Proc. IEEE
19th Int. Conf. Intell. Transp. Syst. (ITSC), Nov. 2016, pp. 1712–1719.

[7] M. Wang, K. N. Ngan, and H. Li, “An efficient frame-content based
intra frame rate control for high efficiency video coding,” IEEE Signal
Process. Lett., vol. 22, no. 7, pp. 896–900, Jul. 2015.

[8] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? The KITTI vision benchmark suite,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2012, pp. 3354–3361.

[9] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” Int. J. Robot. Res., vol. 32, no. 11, pp. 1231–1237,
Sep. 2013.

[10] D. Meagher, “Geometric modeling using octree encoding,” Comput.
Graph. Image Process., vol. 19, no. 2, pp. 129–147, Jun. 1982.

[11] Google. (2018). Draco: 3D Data Compression. [Online]. Available:
https://github.com/google/draco

[12] S. Schwarz et al., “Emerging MPEG standards for point cloud com-
pression,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 9, no. 1,
pp. 133–148, Mar. 2019.

[13] X. Liu, Y. Wang, Q. Hu, and D. Yu, “A scan-line-based data compression
approach for point clouds: Lossless and effective,” in Proc. 4th Int.
Workshop Earth Observ. Remote Sens. Appl. (EORSA), Jul. 2016,
pp. 270–274.

[14] H. Houshiar and A. Nuchter, “3D point cloud compression using
conventional image compression for efficient data transmission,” in
Proc. 25th Int. Conf. Inf., Commun. Autom. Technol. (ICAT), Oct. 2015,
pp. 1–8.

[15] J.-K. Ahn, K.-Y. Lee, J.-Y. Sim, and C.-S. Kim, “Large-scale 3D point
cloud compression using adaptive radial distance prediction in hybrid
coordinate domains,” IEEE J. Sel. Topics Signal Process., vol. 9, no. 3,
pp. 422–434, Apr. 2015.

[16] P. Zanuttigh and G. M. Cortelazzo, “Compression of depth information
for 3D rendering,” in Proc. 3DTV Conf., True Vis. Capture, Transmiss.
Display 3D Video, May 2009, pp. 1–4.

[17] V. Morell, S. Orts, M. Cazorla, and J. Garcia-Rodriguez, “Geometric 3D
point cloud compression,” Pattern Recognit. Lett., vol. 50, pp. 55–62,
Dec. 2014.

[18] C. Yang, Z. Wang, W. He, and Z. Li, “Development of a fast transmission
method for 3D point cloud,” Multimedia Tools Appl., vol. 77, no. 19,
pp. 25369–25387, Oct. 2018.

[19] X. Wang, Y. A. Sekercioglu, T. Drummond, E. Natalizio, I. Fantoni, and
V. Fremont, “Fast depth video compression for mobile RGB-D sensors,”
IEEE Trans. Circuits Syst. Video Technol., vol. 26, no. 4, pp. 673–686,
Apr. 2016.

[20] R. A. Cohen et al., “Compression of 3-D point clouds using hierarchical
patch fitting,” in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2017,
pp. 4033–4037.

[21] P. de Oliveira Rente, C. Brites, J. Ascenso, and F. Pereira, “Graph-
based static 3D point clouds geometry coding,” IEEE Trans. Multimedia,
vol. 21, no. 2, pp. 284–299, Feb. 2019.

[22] L. Wang, L. Wang, Y. Luo, and M. Liu, “Point-cloud compression using
data independent method—A 3D discrete cosine transform approach,”
in Proc. IEEE Int. Conf. Inf. Autom. (ICIA), Jul. 2017, pp. 1–6.

[23] Y. Fan, Y. Huang, and J. Peng, “Point cloud compression based on
hierarchical point clustering,” in Proc. Asia–Pacific Signal Inf. Process.
Assoc. Annu. Summit Conf., Oct. 2013, pp. 1–7.

[24] H. Q. Nguyen, P. A. Chou, and Y. Chen, “Compression of human
body sequences using graph wavelet filter banks,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2014,
pp. 6152–6156.

[25] D. Thanou, P. A. Chou, and P. Frossard, “Graph-based motion esti-
mation and compensation for dynamic 3D point cloud compres-
sion,” in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2015,
pp. 3235–3239.

[26] R. L. de Queiroz and P. A. Chou, “Motion-compensated compression
of point cloud video,” in Proc. IEEE Int. Conf. Image Process. (ICIP),
Sep. 2017, pp. 1417–1421.

[27] X. Zhang et al., “Low-rank-based nonlocal adaptive loop filter for
high-efficiency video compression,” IEEE Trans. Circuits Syst. Video
Technol., vol. 27, no. 10, pp. 2177–2188, Oct. 2017.

[28] W. Lotter, G. Kreiman, and D. Cox, “Deep predictive coding
networks for video prediction and unsupervised learning,” 2016,
arXiv:1605.08104. [Online]. Available: http://arxiv.org/abs/1605.08104

[29] R. B. Rusu and S. Cousins, “3D is here: Point cloud library (PCL),” in
Proc. IEEE Int. Conf. Robot. Autom., May 2011, pp. 1–4.

[30] B. Matejek, D. Haehn, F. Lekschas, M. Mitzenmacher, and H. Pfister,
“Compresso: Efficient compression of segmentation data for connec-
tomics,” in Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Inter-
vent. Cham, Switzerland: Springer, 2017, pp. 781–788.

[31] J. J. Moré, “The Levenberg-Marquardt algorithm: Implementation and
theory,” in Numerical Analysis. Cham, Switzerland: Springer, 1978,
pp. 105–116.

[32] PCC WD G-PCC (Geometry-Based PCC), document ISO/IEC
JTC1/SC29/WG11 MPEG. N 17771, 3D Graphics, Jul. 2018.

[33] C. Tu, E. Takeuchi, C. Miyajima, and K. Takeda, “Continuous point
cloud data compression using SLAM based prediction,” in Proc. IEEE
Intell. Vehicles Symp. (IV), Jun. 2017, pp. 1744–1751.

[34] C. Tu, E. Takeuchi, A. Carballo, and K. Takeda, “Real-time streaming
point cloud compression for 3D LiDAR sensor using U-Net,” IEEE
Access, vol. 7, pp. 113616–113625, 2019.

[35] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A tutorial
on graph-based SLAM,” IEEE Intell. Transp. Syst. Mag., vol. 2, no. 4,
pp. 31–43, 2010.

[36] H. Jiang, D. Sun, V. Jampani, M.-H. Yang, E. Learned-Miller, and
J. Kautz, “Super SloMo: High quality estimation of multiple intermedi-
ate frames for video interpolation,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., Jun. 2018, pp. 9000–9008.

[37] R. Halterman and M. Bruch, “Velodyne HDL-64E lidar for unmanned
surface vehicle obstacle detection,” Proc. SPIE, vol. 7692, May 2010,
Art. no. 76920D.

[38] P. Huang, M. Cheng, Y. Chen, H. Luo, C. Wang, and J. Li, “Traffic sign
occlusion detection using mobile laser scanning point clouds,” IEEE
Trans. Intell. Transp. Syst., vol. 18, no. 9, pp. 2364–2376, Sep. 2017.

[39] H. Guan, J. Li, Y. Yu, M. Chapman, and C. Wang, “Automated road
information extraction from mobile laser scanning data,” IEEE Trans.
Intell. Transp. Syst., vol. 16, no. 1, pp. 194–205, Feb. 2015.

[40] D. Thanou, P. A. Chou, and P. Frossard, “Graph-based compression
of dynamic 3D point cloud sequences,” IEEE Trans. Image Process.,
vol. 25, no. 4, pp. 1765–1778, Apr. 2016.

Xuebin Sun received the bachelor’s degree from the
Tianjin University of Technology in 2011 and the
master’s and Ph.D. degrees from Tianjin University
in 2014 and 2018, respectively. He is currently a
Research Fellow with the Surgical Robotics Labo-
ratory, Department of Mechanical and Automation
Engineering, The Chinese University of Hong Kong,
Hong Kong. His research interests include video
coding optimization, digital image processing, deep
learning, and point cloud processing algorithms.

Sukai Wang (Graduate Student Member, IEEE)
received the bachelor’s degree in measurement con-
trol and instrument science from Zhejiang University
in 2018. He is currently pursuing the Ph.D. degree
with the Department of Electronic and Computer
Engineering, Robotics Institute, The Hong Kong
University of Science and Technology (HKUST),
Hong Kong. His research interests include naviga-
tion, autonomous car, and deep learning.

Ming Liu (Senior Member, IEEE) received the
B.A. degree in automation from Tongji University in
2005 and the Ph.D. degree from the Department of
Mechanical and Process Engineering, ETH Zürich,
in 2013, supervised by Prof Roland Siegwart. He is
currently affiliated with the ECE Department, CSE
Department, and Robotics Institute, Hong Kong Uni-
versity of Science and Technology. His research
interests include dynamic environment modeling,
deep-learning for robotics, 3D mapping, machine
learning, and visual control. He received twice the

innovation contest Chunhui Cup Winning Award in 2012 and 2013 and the
Wu Weijun AI Award in 2016. He was the Program Chair of the IEEE-RCAR
2016 and the Program Chair of International Robotics Conference in Foshan
2017. He is the Conference Chair of ICVS 2017.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 12,2020 at 11:32:25 UTC from IEEE Xplore. Restrictions apply.

