
2377-3766 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2020.3010207, IEEE Robotics
and Automation Letters

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2020 1

A Novel Coding Architecture for LiDAR Point
Cloud Sequence

Xuebin Sun1*, Sukai Wang2*, Miaohui Wang3, Zheng Wang4 and Ming Liu2, Senior Member, IEEE

Abstract—In this paper, we propose a novel coding architecture
for LiDAR point cloud sequences based on clustering and
prediction neural networks. LiDAR point clouds are structured,
which provides an opportunity to convert the 3D data to a
2D array, represented as range images. Thus, we cast the
LiDAR point clouds compression as a range images coding
problem. Inspired by the high efficiency video coding (HEVC)
algorithm, we design a novel coding architecture for the point
cloud sequence. The scans are divided into two categories: intra-
frames and inter-frames. For intra-frames, a cluster-based intra-
prediction technique is utilized to remove the spatial redundancy.
For inter-frames, we design a prediction network model using
convolutional LSTM cells, which is capable of predicting future
inter-frames according to the encoded intra-frames. Thus, the
temporal redundancy can be removed. Experiments on the KITTI
data set show that the proposed method achieves an impressive
compression ratio, with 4.10% at millimeter precision. Compared
with octree, Google Draco and MPEG TMC13 methods, our
scheme also yields better performance in compression ratio.

Index Terms—Range Sensing, Automation Technologies for
Smart Cities

I. INTRODUCTION

A. Motivation

ADVANCES in autonomous driving technology have
widened the use of 3D data acquisition techniques.

LiDAR is almost indispensable for outdoor mobile robots, and
plays a fundamental role in many autonomous driving appli-
cations such as localization , path planning [1], and obstacle

Manuscript received: February, 24, 2019; Revised May, 22, 2019; Accepted
June, 24, 2020.

This paper was recommended for publication by Editor Behnke Sven
upon evaluation of the Associate Editor and Reviewers’ comments. This
work was supported by National Natural Science Foundation of China No.
U1713211, and the Research Grant Council of Hong Kong SAR Government,
China, under Project No. 11210017, awarded to Prof. Ming Liu. It was
also supported in part by the National Natural Science Foundation of China
(61701310, 61902251), in part by Natural Science Foundation of Guangdong
Province (2019A1515010961), and in part by Natural Science Foundation of
Shenzhen City (JCYJ20180305124209486), awarded to Prof. Miaohui Wang.
(Corresponding author: Ming Liu.)

* The first two authors contributed equally to this work.
1 Xuebin Sun is now with the Department of Mechanical and Au-

tomation Engineering, The Chinese University of Hong Kong, Hong Kong.
He contributed to this work during his time at HKUST. (email: sunxue-
bin@tju.edu.cn; xuebinsun@cuhk.edu.hk)

2 Sukai Wang and Ming Liu are with the Department of Electronic &
Computer Engineering, Hong Kong University of Science and Technology,
Hong Kong. (email: swangcy@connect.ust.hk; eelium@ust.hk)

3 Miaohui Wang is with the College of Electrical and Information Engi-
neering, Shenzhen University, China. (email: wang.miaohui@gmail.com)

4 Zheng Wang is with the Department of Mechanical Engineering, the
University of Hong Kong, Hong Kong, also with the Department of Mechan-
ical and Energy Engineering, Southern University of Science and Technology,
China. (email: wangz@sustech.edu.cn)

Digital Object Identifier (DOI): see top of this page.

detection [2], etc. The enormous volume of LiDAR point cloud
data could be an important bottleneck for transmission and
storage. Therefore, it is highly desirable to develop an efficient
coding algorithm to satisfy the requirement of autonomous
driving.

Octree methods have been widely researched for point cloud
compression. The main idea of octree-based coding methods
is to recursively subdivide the current data according to the
range of coordinates from top to bottom, and gradually form an
octree adaptive structure. Octree method can hardly compress
LiDAR data into very small volumes with low information
loss. The vehicle-mounted LiDAR data is structured, which
provides a chance to convert them into a 2D panorama range
image. Some researchers focus on using image-based coding
methods to compress the point cloud data. However, these
methods are unsuitable for unmanned vehicles. Traditional
image or video encoding algorithms, such as JPEG2000 ,
JPEG-LS [3], and HEVC [4], were designed mostly for
encoding integer pixel values, and using them to encode
floating-point LiDAR data will cause significant distortion.
Furthermore, the range image is characterized by sharp edges
and homogeneous regions with nearly constant values, which
is quite different from textured video. Thus, coding the range
image with traditional tools such as the block-based discrete
cosine transform (DCT) followed by coarse quantization can
result in significant coding errors at sharp edges, causing a
safety hazard in autonomous driving.

In this research, we address the LiDAR point cloud se-
quence compression problem. Learning from the HEVC ar-
chitecture, we propose a novel coding architecture for Li-
DAR point cloud sequences, which mainly consists of intra-
prediction and inter-prediction technologies. For-intra-frames,
we utilize a cluster-based intra-prediction method to remove
the spatial redundancy. There are great structural similarities
between adjacent point clouds. For inter-frames, we train a
prediction neural network, which is capable of generating
the future inter-frames using the encoded intra-frames. The
intra- and inter-residual data is quantified and coded using
lossless coding schemes. Experiments on the KITTI dataset
demonstrate our method yields an impressive performance.

B. Contributions

In our previous paper [5], an efficient compression algo-
rithm for a single scan is developed based on clustering.
Based on this previous technique, we propose a novel coding
architecture for LiDAR point cloud sequences in this work.
The contributions of the paper are summarized as follows.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 19,2020 at 04:45:39 UTC from IEEE Xplore. Restrictions apply.

2377-3766 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2020.3010207, IEEE Robotics
and Automation Letters

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2020

• Learning from the HEVC algorithm, we develop a novel
coding architecture for LiDAR point cloud sequences.

• For inter-frames, we design a prediction network model
using convolutional LSTM cells. The network model is
capable of predicting future inter-frames according to the
encoded intra-frames.

• The coding scheme is specially designed for LiDAR point
cloud sequences for autonomous driving. Compared with
octree, Google Draco and MPEG TMC13 methods, our
method yields better performance.

C. Organization

The rest of this paper is organized as follows. In Section
II, the related works are reviewed. Section III gives an
overview of the point cloud sequence compression scheme.
The inter-prediciton techniques is presented in Section IV. The
experimental results are presented and discussed in Section V.
Finally, the conclusion and discussion are given in Section VI.

II. RELATED WORK

The compression of 3D point cloud data has been widely
researched in literature. According to the types of point cloud
data, compression algorithms can be roughly classified into
four categories.

Structured single point cloud compression: Some re-
searchers have focused on developing compression methods
for structured LiDAR point cloud data. Houshiar et al. [6]
propose an image-based 3D point cloud compression method.
They map the 3D points onto three panorama images, and
use an image coding method to compress the images. Similar
to their approach, Ahn et al. [7] introduce an adaptive range
image coding algorithm for the geometry compression of
large-scale 3D point clouds. They explore a prediction method
to predict the radial distance of each pixel using previously
encoded neighbors, and only encode the resulting prediction
residuals. In contrast, Zanuttigh et al. [8] focus on efficient
compression of depth maps of RGB-D data. They develop a
segmentation method to identify the edges and main objects
of a depth map. After that, an efficient prediction process
is performed according to the segmentation result, and the
residual data between the predicted and real depth map is
calculated. Finally, the few prediction residuals are encoded
by conventional image compression methods.

Unstructured singe point cloud compression: Elseberg
et al. [9] propose an efficient octree data structure to store
and compress 3D data without loss of precision. Experimental
results demonstrate their method is useful for an exchange
file format, fast point cloud visualization, sped-up 3D scan
matching, and shape detection algorithms. Golla et al. [10]
present a real-time compression algorithm for point cloud data
based on local 2D parameterizations of surface point cloud
data. They use standard image coding techniques to compress
the local details. Zhang et al. [11] introduce a clustering- and
DCT-based color point cloud compression method. In their
method, they use the mean-shift technique to cluster 3D color
point clouds into many homogeneous blocks, and a clustering-
based prediction method to remove spatial redundancy of point

cloud data. Tang et al. [12] present an octree-based scattered
point cloud compression algorithm. Their method improves
the stop condition of segmentation to ensure appropriate voxel
size. Additionally, using their method, the spatial redundancy
and outliers can be removed by traversal queries and bit
manipulation.

Structured point cloud sequence compression: Kammerl
et al. [10] introduce a novel lossy compression method for
point cloud streams to remove the spatial and temporal re-
dundancy within the point data. Octree data structures are
used to code the intra point cloud data. Additionally, they
develop a technique for contrasting the octree data structures of
consecutive point clouds. By encoding structural differences,
spatial redundancy can be removed. Tu et al. [13] propose
an image-based compression method for LiDAR point cloud
sequences. They convert the LiDAR data losslessly into range
images, and then use the standard image or video coding
techniques to reduce the volume of the data. As image-based
compression methods hardly utilize the 3D characteristics of
point clouds, Tu et al. propose a SLAM-based prediction
for continuous point cloud data in their follow-up work
[14]. Experimental results show that the SLAM-based method
outperforms image-based point cloud compression methods.
In [15], Tu et al. develop a recurrent neural network with
residual blocks for LiDAR point cloud streams compression.
Their network structure is like a coding and decoding process.
The original point cloud data is encoded into low-dimensional
features, which is treated as encoded bit stream. The decoding
process is to decode these low-dimensional features to the
original point cloud data. In [16], Tu et al. present a real-time
point cloud compression scheme for 3D LiDAR sensor U-Net.
Firstly, some frames are choosen as key frames (I-frame), then
they use the U-net to interpolate the remaining LiDAR frames
(P-frames) between the key frames.

Unstructured point cloud sequence compression: Saranya
et al. [17] propose a real-time compression strategy on various
point cloud streams. They perform an octree-based spatial
decomposition to remove the spatial redundancy. Addition-
ally, by encoding the structural differences of adjacent point
clouds, the temporal redundancy can be removed. Thanou
et al. [18] present a graph-based compression for dynamic
3D point cloud sequences. In their method, the time-varying
geometry of the point cloud sequence is represented by a set
of graphs, where 3D points and color attributes are considered
as signals. Their method is based on exploiting the temporal
correlation between consecutive point clouds and removing
the redundancy. Mekuria et al. [19] introduce a generic and
real-time time-varying point cloud coding approach for 3D
immersive video. They code intra-frames with an octree data
structure. Besides this, they divide the octree voxel space into
macroblocks and develop an inter-prediction method.

Generally, the aforementioned approaches can significantly
reduce the size of point cloud data, and are capable for
some specific applications. However, few of them are specially
designed for LiDAR point clouds data compression, so using
them to encode LiDAR point clouds is inefficient. However,
we can learn from their coding techniques, such as prediction
[14], clustering [11] and registration [19]. In this paper, we

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 19,2020 at 04:45:39 UTC from IEEE Xplore. Restrictions apply.

2377-3766 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2020.3010207, IEEE Robotics
and Automation Letters

SUN et al.: A NOVEL POINT CLOUD COMPRESSION ALGORITHM BASED ON CLUSTERING 3

Network

Configuration

+

Contour Map

Coding

Header Formatting

& Parameter

Information

Network

Parameters

Coded

Bitstream

Outlier Removal

Filter

Parameter

Setting

Coding

Controller

Intra / Inter

Selection

Input

Point Cloud

Sequence

Decoding

Process

Decoded

Point Clouds

Buffer

Convert to

Range Image

Coded

Contour

Map Data

Coded

Residual

Data

Control

Data

-

+ +

Output

Point Clouds

Quantification

&Coding

Point Cloud

Clustering

Intra-

Prediction

Inter-

Prediction

Fig. 1. Schematic of the LiDAR point cloud sequence compression codec

p

Fig. 2. Order arrangement of the intra- and inter-frames

propose a novel coding scheme for LiDAR point cloud se-
quences. Our method can largely remove spatial and temporal
redundancy.

III. OVERVIEW OF POINT CLOUDS CODING SCHEME

In this paper, we propose a hybrid encoding/decoding ar-
chitecture (intra-prediciton, inter-prediction, and residual data
coding) for LiDAR point cloud sequences. Fig. 1 illustrates
the encoding and decoding flowcharts of the proposed method.
The order arrangement of the intra- and inter-frames is illus-
trated in Fig. 2. The number of I frames and P frames can be
defined by parameter m and n, respectively. For instance, if
m = 5 and n = 5, the input data, in the form of a LiDAR
data stream, will be formatted as “IIIIIPPPPPIIIIIPPPPP...”.

The intra-frames will be coded using the intra-prediction
mode, which is a spatial prediction within the frame, to
remove the spatial redundancy. According to the encoded
intra-frames, the inter-prediction module, a prediction neural
network, is capable of inferring the future inter-frames [20].
The residual signal of the intra- or inter-prediction, which
is the difference between the original and prediction data, is
encoded by lossless coding schemes. The coded control data,
coded residual data, coded contour map data, and network

parameters are packaged together in a certain way, forming
the final bitstream.

Decoding is the inverse process of encoding. This is done by
inverse scaling and decoding of the encoded data to produce
the decoder approximation of the residual signal. This residual
signal is then added to the prediction signal and forms the
decoded point cloud. The final data representation, which is
the duplicate of the possible output in the decoder, will be
stored in a ‘decoded point clouds buffer’ and will be used for
the prediction of subsequent point clouds. The components in
the codec are briefly described as follows.

(a) Convert to Range Image: The point clouds are captured
by Velodyne LiDAR HDL-64 sensors, which utilize 64 laser
beams covering a vertical field of view of 26.9°and horizontal
field of view of 360°. By coordinate system transformation,
the 3D point cloud data can be converted into 2D grid arrays,
known as panoramic range images.

(b) Outlier Removal Filter: To reduce the impact of outliers,
a filter named Radius Outlier Removal is used [21]. Radius
Outlier Removal calculates the number of adjacent points
around each point and filters out the outliers.

(c) Point Cloud Clustering: For a single scan of a point
cloud, points belonging to the same object have a lot of
spatial redundancy. To eliminate the redundancy, a point cloud
clustering technique is exploited to segment the range image
into nonoverlapping clusters.

(d) Intra-Prediction: According to the clustering result, an
efficient intra-prediction technique is performed to remove the
spatial redundancy [5].

(e) Contour Map Coding: To recover the original point cloud
data, we also need to encode the contour map. We divide the
contour map into independent coding units and encode each
unit with an integer value.

(f) Network Parameter Setting: The parameters of the neural

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 19,2020 at 04:45:39 UTC from IEEE Xplore. Restrictions apply.

2377-3766 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2020.3010207, IEEE Robotics
and Automation Letters

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2020

Prediction

NetworkXt=0 Xt=1 Xt=T

Xt=T+1
Residual

Data

...

Prediction

Result Pt=T+1

Encoding
BitstreamInput Point Clouds

t=0 to t=T

Point Cloud

t=T+1

Fig. 3. Architecture of the inter-coding process

network are configured according to the size of the input point
cloud and the order arrangement of intra- and inter-frames.

(g) Inter-Prediction: A prediction neural network model is
designed using convolutional LSTM cells. The model uses the
encoded intra-frames to infer future inter-frames to remove the
temporal redundancy.

(h) Residual Data Coding: The difference between the real
and the predicted point cloud data is calculated as residual
data. The residual data is quantified and encoded with lossless
coding schemes.

(i) General Coder Control: The encoder uses pre-specified
codec settings, including the precision configuration for mod-
ule (b), cluster parameter configuration for module (c), net-
work parameters configuration for module (g), and quantiza-
tion parameter encoding method for module (h). In addition,
it also controls the intra- and inter- frames, order arrangement.

(j) Header Formatting & Parameter Information: The pa-
rameter information, coded residual data, and coded contour
map data are organized in a predefined order and form the
final bitstream.

IV. INTER-PREDICTION USING CONVOLUTIONAL LSTM

In a point cloud sequence, each frame has its coordinate
system, and the LiDAR center is used as the origin of the
coordinates. The time interval between two adjacent point
clouds is very short. In this period, the LiDAR moves only
a small distance. The adjacent frames in the point cloud
sequence have a large range of similar structures. Many
redundancies exist in the temporal dimensions. It is desirable
to develop an inter-prediction method to remove the temporal
redundancy.

In this paper, we develop a prediction neural network using
convolutional LSTM cells, which is capable of generating
future point clouds according to the encoded frames. Fig.
3 gives the architecture of the inter-coding process. The
prediction network obtains the encoded points clouds X =
{Xt=0, Xt=1, ..., Xt=T }, and generates the next frame point
cloud Pt=T+1. The difference between the real point cloud
Xt=T+1 and the predicted result Pt=T+1 will be calculated,
quantified and encoded as the inter-bitstream.

A. LSTM-based Inter-prediction Network

Deep learning algorithms have been widely used to solve
supervised learning tasks. However, point cloud prediction, as
unsupervised learning, remains a difficult challenge. Figure 4

Algorithm 1 The update process of the Prediction Network.
Require:

The input t frames of range image sequence: I =
{I0, I1, ..., Xt};

Ensure:
The prediction k frames: P = (Pt+1, Pt+2, ..., Pt+k).

1: Assign the initial value: Et
l = 0 (l ∈ [0, L], t = 0).

2: for t = 0 to T do
3: for l = L to 0 do
4: if t = 0, l = L then
5: Ot

L = ConvLSTM(Einitial
L)

6: else if (t = 0) then
7: Ot

l = ConvLSTM(Einitial
l , UpSample(Ot

l+1))
8: else if (l = L) then
9: Ot

L = ConvLSTM(Et
l , O

t−1
L)

10: else
11: Ot

l = ConvLSTM(Et
l , O

t−1
l , UpSample(Ot

l+1))
12: end if
13: end for
14: for l = 0 to L− 1 do
15: if l = 0 then
16: P t

0 = Conv(Ot
0)

17: Et
l = P t

l − xt
18: else
19: P t

l = ReLU(Conv(Ot
l))

20: Et
l = P t

l − F t
l

21: end if
22: F t

l+1 =MaxPool(Conv(Et
l))

23: end for
24: end for

illustrates the overall architecture of the proposed prediction
network using convolutional LSTM. The network consists
of a series of repeated convolutional LSTM modules that
attempt to locally predict the input and then subtract the
input from the actual input and pass it to the next layer.
X = {X0, X1, ..., XT } represents the input range images from
t = 0 to T , while the P = {P0, P1, ..., PT , PT+1} denotes the
predicted results. The network mainly consists of three types of
model: the error representation (Et

l), the convolutional LSTM
layer (ConvLSTM t

l), and the feature extraction layer (F t
l).

Et
l represents the difference between P t

l and F t
l ; F t

l revevies
the Et

l and extracts high features; and ConvLSTM t
l receives

the Et
l , Ot−1

l , and Ot
l+1, and makes a prediction.

When the network is constructed, point cloud prediction
is performed. Consider a series of range images converted
from point clouds. The lowest ConvLSTM level gets the
actual sequence itself, while the higher layers receive the
representative. The error is computed by a convolution from
the layer below. The update process is described in Algorithm
1. The status update is performed through two processes: a top-
down process in which the Ot

l and P t
l state are calculated as

described in the following formula; and then a forward process
is performed to calculate the error Et

l and higher-level targets
F t
l . The last noteworthy detail is that E0

l is initialized to zero,
which means that the initial prediction is spatially consistent
due to the convolutional nature of the network.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 19,2020 at 04:45:39 UTC from IEEE Xplore. Restrictions apply.

2377-3766 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2020.3010207, IEEE Robotics
and Automation Letters

SUN et al.: A NOVEL POINT CLOUD COMPRESSION ALGORITHM BASED ON CLUSTERING 5

X0P0

+
-

ConvLSTM0
1

+
-

ConvLSTM1
1

+

+
-

ConvLSTM0
2

ConvLSTM1
2

X1

-

F1
1

P1

ConvLSTM0
0

ConvLSTM1
0

F1
0

 +

+
-

ConvLSTM0
T

ConvLSTM1
T

XT

-

PT+1

+ ConvLSTML
1 +

-
ConvLSTML

2
ConvLSTML

0 + ConvLSTML
T

E0
0 E0

T

E0
initial

E1
initial

EL
initial

E1
0

EL
0

E1
1 E1

T
P1
0

PL
0 EL

1

P1
1

PL
1

E0
1

EL
T

-

P0
1

-

F1
T

O0
0

O1
0

OL
0

O0
1

OL
1

O1
1

P0
0

Fig. 4. Architecture of the point cloud prediction network.

Ot
l =


ConvLSTM(Einitial

L) t = 0, l = L
ConvLSTM(Einitial

l , Up(Ot
l+1)) t = 0

ConvLSTM(Et
l , O

t−1
l) l = L

ConvLSTM(Et
l , O

t−1
l , Up(Ot

l+1)) others
(1)

P t
l =

{
Conv(Ot

0) t = 0
ReLU(Conv(Ot

l)) others
(2)

The model is trained to minimize the weighted sum of error
cell activities. Explicitly, the training loss is formalized in the
following equation, represented by the weighting factor λt for
the time and λl for the layer. The loss per layer is equivalent
to the ||Et

l ||. The loss function is defined as follows:

Loss =
t=T∑
t=0

l=L∑
l=0

λt · λl · ||Et
l ||. (3)

B. Training and Evaluation

We train and evaluate the proposed prediction model using
the KITTI dataset. The point clouds are converted to range
images with the resolution of 64× 2000 pixels. After this, the
images are processed to be grayscale, with values normalized
between 0 and 1. We use 5K point clouds for training, 1K
for validation and 2K for testing. The point cloud data of the
four scenes is equally distributed. The Adam method is used
to train our model with a learning rate of 0.0001. We train
our model with entropy optimization within 150 epochs. The
batch size is set to 3, as limited by our GPU memory.

The model is capable of accumulating information over
time to make accurate predictions of future frames. Since the
representation neurons are initialized to zero, the prediction
of the first time step is consistent. In the second time step, in
the absence of motion information, the prediction is a fuzzy
reconstruction of the first time step. After further iterations,
the model adapts to the underlying dynamics to generate
predictions that closely match the incoming frame.

V. EXPERIMENTAL RESULTS

A. Evaluation Metrics

The main body of the proposed point clouds coding scheme
is implemented in C++ using OpenCV [22], and PCL [23]
libraries. The prediction network uses Keras 2.0.6 with CUDA
9.0 and cuDNN 7.0 libraries. The whole framework works
on Intel 3.7GHz i7 CPU and a single GeForce GTX 1080Ti
graphics card. We evaluated our framework on a series of
experiments in KITTI dataset [24] in different scenes includ-
ing campus, city, road and residuential, to demonstrate the
generalization ability of our model.

The performance of the proposed method was evaluated in
terms of compression rate (CR) and root mean square error
(RMSE). The CR is the ratio between the compressed data
size and the original one, defined in following formula [25].
The lower the value the better the performance.

Ratio =
Compressedsize
Originalsize

× 100%, (4)

The RMSE represents the square root of the corresponding
points between the original point cloud and the reconstructed
one. The original point cloud Pinput is a set of K points, while
Pdecoded represents the decoded point cloud with N points. K
and N do not necessarily need to be equal.

Pinput = {(pi) : i = 0, ...,K − 1}
Pdecode = {(pi) : i = 0, ..., N − 1}

. (5)

For each point in Pinput, we take the distance to the nearest
point pnn−decode in Pdecode. The pnn−decode is efficiently
computed via a K-d tree in the L2 distance norm. The RMSE
is defined as follows:

MSR(Pinput, Pdecode) =
1

K

∑
pl∈Pinput

||pl − pnn−decode||22

MSR(Pdecode, Pinput) =
1

N

∑
pl∈Pdecode

||pl − pnn−input||22

RMSE =

√
MSR(Pinput, Pdecode) +MSR(Pdecode, Pinput)

2
(6)

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 19,2020 at 04:45:39 UTC from IEEE Xplore. Restrictions apply.

2377-3766 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2020.3010207, IEEE Robotics
and Automation Letters

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2020

Ground Truth : X0, X1, X2, X3, X4...

Prediction Results : P2, P3, P4...

Fig. 5. Point clouds prediction results (residential scene).

Campus City Road Residential

10

20

30

40

50

60

70

80

90

100

C
om

pr
es

si
on

 R
at

io
s

(%
)

Zstandard
LZ5
Lizard
Deflate
LZ4
BZip2
Brotli

(a)

Campus City Road Residential

10

20

30

40

50

60

70

80

90

100

C
om

pr
es

si
on

 R
at

io
s

(%
)

Inter-prediciton + Zstandard
Inter-prediciton + LZ5
Inter-prediciton + Lizard
Inter-prediciton + Deflate
Inter-prediciton + LZ4
Inter-prediciton + BZip2
Inter-prediciton + Brotli

(b)

Fig. 6. Compression ratios of different lossless compression methods: (a) stand-alone lossless compression, (b) combination of the inter-prediction with
lossless methods

B. Coding Performance

Compression ratio for a single frame: Fig. 6 depicts the
average compression ratios for a single frame with our pro-
posed inter-prediction method combined with different loss-
less compression schemes, including Zstandard, LZ5, Lizard,
Deflate, LZ4, BZip2, and Brotli. The point clouds are also
directly encoded with these lossless coding schemes as the
anchor. It should be noted that compared with coding the
point cloud directly with the lossless schemes, the combination
of the proposed inter-prediction method with lossless coding
schemes achieves better performance. The best compression
performance is achieved by the combination of the inter-
prediction with the BZip2 method, with a compression ratio
of 3.06% for the campus scene. The worst compression ratio
is 6.92% for the residential scene coded by the combination of
the proposed method with LZ4 scheme. Experimental results
indicate that the inter-prediction method using the prediction
network can effectively remove the time redundancy.

Comparsion with recent methods: Table 1 describes the
compression ratio results of the proposed method compared
to the well-known octree method [28]. Considering that octree
algorithms can not directly encode point cloud sequences, we
assemble the point cloud sequence into a point cloud map by

transforming each single point cloud into a global coordinate
system. x̃

ỹ
z̃

 = Ryaw ×Rpitch ×Rroll ×

 x
y
z

+

 Cx

Cy

Cz

, (7)

where (x̃, t̃, z̃) represents the coordinates after transformation;
(x, y, z) denotes current coordinates; Cx, Cy , and Cz denote
the translation matrix of the coordinates; and Ryaw, Rpitch

and Rroll represents the rotation matrix of the yaw, pitch, and
roll angle. These parameters can be obtained by the iterative
closest point (ICP) algorithm [29].

The coding accuracy of the octree method is set to 1
cubic millimeter, 5 cubic millimeters, and 1 cubic centimeter,
separately. In our experiments, we choose the BZip2 scheme
to encode the residual data. The order of intra and inter-
frames is formatted as IIIIIPPP...PPPIIIII.... Five intra-frames
are encoded firstly, followed by fifteen interframes. From Table
2, it can be seen that our method outperform octree algorithm
in compression ratio. However, octree method can process
more than 1.28 million points per second. The complexity
of our algorithm is higher than octree method. Additionally,
octree has the advantage in searching operations, which is still
indispensable for autonomous vehicle applications.

To further verify the generality of the proposed prediction
network, we also perform experiments using 32-lines LiDAR
data captured by Velodyne HDL-32E sensors. Compression

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 19,2020 at 04:45:39 UTC from IEEE Xplore. Restrictions apply.

2377-3766 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2020.3010207, IEEE Robotics
and Automation Letters

SUN et al.: A NOVEL POINT CLOUD COMPRESSION ALGORITHM BASED ON CLUSTERING 7

0 1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

12

14
RM

SE
 (c

m)

Bits per point (bpp)

 Proposed Method
 Cluster-based Method [5]
 Google Draco [26]
 MPEG TMC13 [27]

(a)

0 1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

12

14

RM
SE

 (c
m)

Bits per point (bpp)

 Proposed Method
 Cluster-based Method [5]
 Google Draco [26]
 MPEG TMC13 [27]

(b)

1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

12

RM
SE

 (c
m)

Bits per point (bpp)

 Proposed Method
 Cluster-based Method [5]
 Google Draco [26]
 MPEG TMC13 [27]
 U-net-based Method [16]
 SLAM-based Method [14]

(c)

1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

12

RM
SE

 (c
m)

Bits per point (bpp)

 Proposed Method
 Cluster-based Method [5]
 Google Draco [26]
 MPEG TMC13 [27]
 U-net-based Method [16]
 SLAM-based Method [14]

(d)

Fig. 7. RMSE-bpp curves performance of our method in comparision with cluster-based method [5], Google Draco [26], MPEG TMC13 [27], U-net-based
method [16] and SLAM-based method [14]: (a) campus, (b) city, (c) road, (d) residential.

TABLE I
COMPRESSION RATE RESULTS COMPARED WITH THE OCTREE METHOD.

Scene
Proposed method Octree [28]

Quantization Accuracy Distance Resolution
1mm 5mm 1cm 1mm3 5mm3 1cm3

Campus 3.94 3.14 2.52 21.27 8.05 5.75
City 4.06 3.22 2.64 23.98 10.76 8.40
Road 3.85 3.11 2.61 23.56 10.35 7.99

Residential 4.55 3.74 3.16 22.94 9.72 7.37
Average 4.10 3.30 2.73 20.23 9.72 7.29

TABLE II
COMPRESSION RATE RESULTS ON 64-LINES AND 32-LINES LIDAR DATA.

Quantization Accuracy 1mm 5mm 1cm 2cm
64-lines 4.10 3.30 2.73 2.16
32-lines 4.26 3.53 2.93 2.41

rate results are illustrated in Table 2. Experimental results
demonstrate that the inter-coding method can also be used
to encode 32-lines LiDAR data.

Figure 7 illustrates the performance of the proposed method
compared with the cluster-based method [5], Draco [26],
TMC13 [27], U-net-based method [16] and SLAM-based

method [14]. As Tu et al. did not publish their coding
performance for campus and city point clouds. For campus
and city scenes, we only compare our method with cluster-
based, Draco and TMC13 methods.

Before performing Draco algorithm, we have assemble the
point clouds into a point cloud map. After that, we use the
Google Draco method to compress the point cloud map and
calculate the compression ratio per frame. Comparison results
are given by RMSE-bpp curves, which reflect the relationship
between the RMSE and bits per pixel (bpp). TMC13 is an
emerging point cloud compression standard recently released
at the 125th MPEG meeting. We experiment on four scenes
of point clouds: campus, city, road and residential. A smaller
RMSE and bpp mean better coding performance because they
enable a lower RMSE with less bandwidth. It can be observed
that our method obtains smaller bbp than Draco, TMC13
and cluster-based methods under similar RMSE reconstruction
quality.

Speed performance: The intra-coding includes three steps,
namely range image conversion, intra-prediction, and quantifi-
cation & encoding. The inter-coding consists of range image
conversion, inter-prediction, and quantification & encoding.
We test the average speed performance of the proposed method

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 19,2020 at 04:45:39 UTC from IEEE Xplore. Restrictions apply.

2377-3766 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2020.3010207, IEEE Robotics
and Automation Letters

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2020

TABLE III
AVERAGE ENCODING TIME FOR INTRA- AND INTER-FRAME (S).

Coding Time Conversion Prediciton Encoding Total
Intra-frame 0.110 0.071 0.023 0.204
Inter-frame 0.110 0.028 0.021 0.159

TABLE IV
ENCODING & DECODING TIME OF PROPOSED METHOD VERSUS OCTREE,

DRACO, TMC13 (S).

Time Intra-frame Inter-frame Octree Draco TMC13
Encoding 0.204 0.159 0.024 0.031 0.649
Decoding 0.013 0.034 0.009 0.010 0.337

with 500 frames. As illustrated in Tables 3, the total encoding
time for intra- and inter-frame is 0.204s and 0.159s, respec-
tively. Tables 4 depicts the average encoding and decoding
time of the proposed method compared with octree, Draco,
and TMC13 methods. It can be seen that the octree and Draco
algorithm have low complexity. Our algorithm needs to be
further optimized to meet the real-time requirement.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we proposed a novel and efficient compression
architecture for the LiDAR point cloud sequence. Learning
from the HEVC algorithm, we divided the frames in the point
cloud sequence into intra-frames and inter-frames, which were
encoded separately with different techniques. For intra-frames,
we used the coding technique proposed in [5]. For inter-
frames, we developed a prediction network using convolutional
LSTM cells. The network can infer future inter-frames accord-
ing to the encoded frames. Experimental results demonstrated
that our approach significantly outperforms state-of-the-art
techniques.

The drawback is that the proposed method can not apply to
disordered point cloud compression, such as 3D human body
sequences. Besides, the coding scheme can not satisfy real-
time applications at present. Future studies will concentrate
on improving its applicability and reducing the algorithm
complexity with hardware acceleration.

REFERENCES

[1] M. Liu. Robotic Online Path Planning on Point Cloud. IEEE
Transactions on Cybernetics, 46(5):1217–1228, May 2016.

[2] P. Yun, L. Tai, Y. Wang, C. Liu, and M. Liu. Focal Loss in 3D Object
Detection. IEEE Robotics and Automation Letters, pages 1–1, 2019.

[3] Shaou-Gang Miaou, Fu-Sheng Ke, and Shu-Ching Chen. A lossless
compression method for medical image sequences using JPEG-LS and
interframe coding. IEEE transactions on information technology in
biomedicine, 13(5):818–821, 2009.

[4] Miaohui Wang, King Ngi Ngan, Hongliang Li, and Huanqiang Zeng.
Improved block level adaptive quantization for high efficiency video
coding. pages 509–512, 2015.

[5] Xuebin Sun, Han Ma, Yuxiang Sun, and Ming Liu. A Novel Point
Cloud Compression Algorithm Based On Clustering. IEEE Robotics
and Automation Letters, pages 1–1, 2019.

[6] Hamidreza Houshiar and Andreas Nüchter. 3D point cloud compression
using conventional image compression for efficient data transmission.
In 2015 XXV International Conference on Information, Communication
and Automation Technologies (ICAT), pages 1–8. IEEE, 2015.

[7] Jae-Kyun Ahn, Kyu-Yul Lee, Jae-Young Sim, and Chang-Su Kim.
Large-scale 3D point cloud compression using adaptive radial distance
prediction in hybrid coordinate domains. IEEE Journal of Selected
Topics in Signal Processing, 9(3):422–434, 2015.

[8] Pietro Zanuttigh and Guido M Cortelazzo. Compression of depth
information for 3D rendering. pages 1–4, 2009.

[9] Jan Elseberg, Dorit Borrmann, and Andreas Nüchter. One billion points
in the cloud–an octree for efficient processing of 3D laser scans. ISPRS
Journal of Photogrammetry and Remote Sensing, 76:76–88, 2013.

[10] Julius Kammerl, Nico Blodow, Radu Bogdan Rusu, Suat Gedikli,
Michael Beetz, and Eckehard Steinbach. Real-time compression of point
cloud streams. In 2012 IEEE International Conference on Robotics and
Automation, pages 778–785. IEEE, 2012.

[11] Ximin Zhang, Wanggen Wan, and Xuandong An. Clustering and dct
based color point cloud compression. Journal of Signal Processing
Systems, 86(1):41–49, 2017.

[12] Lin Tang, Fei-peng Da, and Yuan Huang. Compression algorithm of
scattered point cloud based on octree coding. In 2016 2nd IEEE
International Conference on Computer and Communications (ICCC),
pages 85–89. IEEE, 2016.

[13] Chenxi Tu, Eijiro Takeuchi, Chiyomi Miyajima, and Kazuya Takeda.
Compressing continuous point cloud data using image compression
methods. In 2016 IEEE 19th International Conference on Intelligent
Transportation Systems (ITSC), pages 1712–1719. IEEE, 2016.

[14] Chenxi Tu, Eijiro Takeuchi, Chiyomi Miyajima, and Kazuya Takeda.
Continuous point cloud data compression using SLAM based prediction.
In 2017 IEEE Intelligent Vehicles Symposium (IV), pages 1744–1751.
IEEE, 2017.

[15] Chenxi Tu, Eijiro Takeuchi, Alexander Carballo, and Kazuya Takeda.
Point cloud compression for 3d lidar sensor using recurrent neural
network with residual blocks. In 2019 International Conference on
Robotics and Automation (ICRA), pages 3274–3280. IEEE, 2019.

[16] Chenxi Tu, Eijiro Takeuchi, Alexander Carballo, and Kazuya Takeda.
Real-time streaming point cloud compression for 3d lidar sensor using
u-net. IEEE Access, 7:113616–113625, 2019.

[17] S.thiruniral senthil R.Saranya. Real-time compression strategy on
various point cloud streams. International Journal of Computer Science
and Mobile Computing, 3(3):351–358, 2014.

[18] Dorina Thanou, Philip A Chou, and Pascal Frossard. Graph-based
compression of dynamic 3D point cloud sequences. IEEE Transactions
on Image Processing, 25(4):1765–1778, 2016.

[19] Rufael Mekuria, Kees Blom, and Pablo Cesar. Design, implementation,
and evaluation of a point cloud codec for tele-immersive video. IEEE
Transactions on Circuits and Systems for Video Technology, 27(4):828–
842, 2017.

[20] William Lotter, Gabriel Kreiman, and David Cox. Deep predictive
coding networks for video prediction and unsupervised learning. arXiv
preprint arXiv:1605.08104, 2016.

[21] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud
library (pcl). In 2011 IEEE international conference on robotics and
automation, pages 1–4. IEEE, 2011.

[22] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision
with the OpenCV library. ” O’Reilly Media, Inc.”, 2008.

[23] Aitor Aldoma, Zoltan-Csaba Marton, Federico Tombari, Walter
Wohlkinger, Christian Potthast, Bernhard Zeisl, Radu Bogdan Rusu,
Suat Gedikli, and Markus Vincze. Tutorial: Point cloud library: Three-
dimensional object recognition and 6 dof pose estimation. IEEE Robotics
& Automation Magazine, 19(3):80–91, 2012.

[24] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun.
Vision meets robotics: The KITTI dataset. The International Journal
of Robotics Research, 32(11):1231–1237, 2013.

[25] Lujia Wang, Luyu Wang, Yinting Luo, and Ming Liu. Point-cloud com-
pression using data independent methoda 3d discrete cosine transform
approach. In 2017 IEEE International Conference on Information and
Automation (ICIA), pages 1–6. IEEE, 2017.

[26] Google. Draco: 3D Data Compression. https://github.com/google/draco,
2018.

[27] PCC WD G-PCC (Geometry-Based PCC). document iso/iec
jtc1/sc29/wg11 mpeg. N 17771, 3D Graphics, Jul. 2018.

[28] Donald Meagher. Geometric modeling using octree encoding. Computer
graphics and image processing, 19(2):129–147, 1982.

[29] Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In
Sensor fusion IV: control paradigms and data structures, volume 1611,
pages 586–606. International Society for Optics and Photonics, 1992.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 19,2020 at 04:45:39 UTC from IEEE Xplore. Restrictions apply.

