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A Tightly Coupled VLC-Inertial Localization
System by EKF

Qing Liang and Ming Liu

Abstract—Lightweight global localization is favorable by many
resource-constrained platforms working in GPS-denied indoor en-
vironments, such as service robots and mobile devices. In recent
years, visible light communication (VLC) has emerged as a promis-
ing technology that can support global positioning in buildings
by reusing the widespread LED luminaries as artificial visual
landmarks. In this letter, we propose a novel VLC/IMU integrated
system with a tightly coupled formulation by an extended-Kalman
filter (EKF) for robust VLC-inertial localization. By tightly fus-
ing the inertial measurements with the visual measurements of
LED fiducials, our EKF localizer can provide lightweight real-time
accurate global pose estimates, even in LED-shortage situations.
We further complete it with a 2-point global pose initialization
method that loosely couples the two sensor measurements. We
can hence bootstrap our system with two or more LED features
observed in one camera frame. The proposed system and method
are verified by extensive field experiments using dozens of self-made
LED prototypes.

Index Terms—Service robots, localization, sensor fusion.

I. INTRODUCTION

LOCALIZATION is essential for many robot tasks like
planning and navigation, as well as for some location-

based services. We are interested in global solutions in GPS-
denied indoor environments. State-of-the-art Lidar odometry
and mapping systems [1], [2] can provide consistent low-drift
pose estimates using multi-scan Lidar sensors. However, they are
computationally intensive for resource-constrained platforms,
such as service robots and mobile devices. We aim to reach
a lightweight solution that is accurate, consistent, reliable and
more easily affordable with inexpensive sensors.

In recent years, localization based on visible light commu-
nication (VLC) [3] has emerged as a competitive lightweight
solution to be deployed at scale in modern buildings. Besides
illumination, LED lights can be reused as artificial landmarks for
positioning. The modulated LED broadcasts its unique identity
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by VLC, which can later be recognized by a rolling-shutter
camera. The lights can be mapped once for all, as they are nor-
mally fixed and not easily vulnerable to environmental changes.
Hence, we are solving a localization problem with known data
associations via VLC and a priori map. We can obtain camera
poses by solving a perspective-n-point (PnP) problem, given
more than three LED features observed in one camera frame.
Yet we find that such a requirement is usually demanding, if not
impossible, to meet in real situations.

Note that each square-shaped fiducial (e.g., AprilTag [4])
provides four distinctive corner features, which are sufficient
to determine a camera pose. By contrast, normal LED lights
offer less usable point features in each due to the lack of
distinguishable appearance, e.g., one feature for a circular LED.
The number of LEDs decodable in a camera view is limited by a
couple of practical factors, such as the density of lights, ceiling
height, camera field-of-view (FoV) and the effective VLC range
supported by chosen hardware. It would deteriorate further with
line-of-sight obstruction by surroundings. Therefore, vision-
only methods like PnP may suffer the shortage of decodable
LEDs in reality. We can relax this problem by a more careful
LED arrangement, e.g., using special LEDs of distinguishable
appearance or increasing the density of lights. Yet, it may also
raise the associated cost during system deployment.

In this work, we aim to overcome the challenge of LED
shortage more economically. We are motivated to relax the
requirement on the number of LED observations for VLC local-
ization by fusing inertial measurements for improved robustness.
Hence, we propose a novel VLC/IMU integrated system with
a tightly-coupled formulation by an extended Kalman filter
(EKF). We follow the standard EKF-based framework for local-
ization. Especially, our approach exploits visual measurements
of VLC-enabled LED luminaries for visual-inertial fusion in
a tightly-coupled manner. Moreover, we expect our system
to work properly with low-end visual-inertial sensors (e.g., a
rolling-shutter camera and an inexpensive IMU) that can be
found on low-cost service robots or smartphones. Yet for these
sensors, hardware synchronization is not readily available. As
such, there may exist a time offset between two sensor streams,
e.g., due to different triggering and transmission delays [5], [6]. It
may vary slowly further due to clock drift in long-term operation.
To solve this problem, we turn to online temporal calibration by
following the standard approach proposed by [5], which adopts
an EKF-based formulation for visual-inertial odometry (VIO).

As shown in Fig. 1, a VLC frontend first extracts LED features
with known data associations from a built map by LED detection
and VLC decoding. EKF then corrects the propagated IMU
states using such absolute measurements and ensures globally
consistent pose estimates free of drift. To initialize the fil-
ter’s global pose, we introduce a 2-point method based on an

2377-3766 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 07,2020 at 08:20:31 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-7644-5629
https://orcid.org/0000-0002-4500-238X
mailto:qliangah@ust.hk
mailto:eelium@ust.hk
http://ieeexplore.ieee.org


3130 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 2, APRIL 2020

Fig. 1. Overview of the proposed VLC-inertial localization system.

IMU-aided P2P solution in [7]. By doing so, our EKF localizer
can safely bootstrap from at least two LED features in one
camera view, and enable failure recovery in extreme cases of
long-term LED outage. The main contributions are summarized
as follows:
� A novel VLC/IMU integrated system with a tightly-

coupled EKF formulation is proposed for robust VLC-
inertial localization in LED-shortage situations.

� A 2-point global pose initialization method is integrated to
aid system bootstrapping and failure recovery.

� The system and method are verified by extensive field
experiments using a prototype VLC network.

The remainder of this paper is organized as follows. Section II
introduces the related works. Section III and Section IV ex-
plain our VLC frontend and EKF-based localizer, respectively.
Section V presents the experimental results. Section VI con-
cludes this paper.

II. RELATED WORKS

A. VLC-Based Localization

VLC-based systems [8]–[12] employ modulated LEDs of
known locations as landmarks, measure bearings or ranges of
visible LEDs with cameras or photodiodes, associate each mea-
surement as per the decoded LED identity by VLC, and solve
the location using the measured constraints. Geometry-based
methods (e.g., triangulation) need at least three LED features to
fix a 3D pose. This is a major cause of their fragile performance
in real situations with insufficient visible LEDs. Several methods
were proposed to relax this issue by fusing IMU measurements.
Epsilon [11] employed an IMU and a digital compass to measure
the photodiode’s 3D orientation w.r.t. the geomagnetic north. By
tedious user intervention, it managed to fix locations in meter-
level accuracy using one LED, yet not in real-time. Epsilon
may suffer large compass errors due to magnetic anomalies.
Lookup [10] solved the camera‘s 2D position using two LEDs
by measuring its roll and pitch angles with an accelerometer, as
well as assuming knowledge of the camera’s altitude. Further,
by knowing the camera’s yaw angle from a digital compass, it
was able to handle the case of one visible LED for 2D local-
ization. Some larger errors were reported, e.g., due to incorrect
orientation measurements of the compass. In this work, we are
interested in solving the real-time 3D pose of a free-moving
camera in LED shortage or outage scenarios with the aid of an
IMU (i.e., not using a compass) by tightly-coupled fusion.

B. Pose Estimation With Fiducial Markers

The paper printable squared fiducials [4], [13] are popular ar-
tificial visual landmarks for lightweight pose estimation in robot
applications. Similar to modulated LEDs, the fiducial maker

can be uniquely identified by its encoded code patterns from
a camera image. Yet, each marker can provide four distinctive
corner features. By integrating inertial measurements, in either a
loosely- or tightly-coupled manner, some methods [14]–[16] can
provide very accurate and robust pose estimates with fiducials.
They have a trivial solution to the pose initialization problem,
as it is sufficient to determine the camera pose from a single ob-
servation of known fiducials. By contrast, it is more technically
difficult to obtain an initial pose guess for our system, especially
under the LED-shortage condition. We note that fiducial-based
systems are suitable for specialized robot workspaces where the
environmental appearance is of no concern, such as warehouses,
factories, and laboratories. However, fiducials may look unap-
pealing or even weird in daily environments, such as shopping
malls and museums. As an alternative, our LED-based system
can be naturally compatible with most daily scenarios, as well
as some specialized workspaces.

III. VLC WITH A ROLLING-SHUTTER CAMERA

The time-varying light signals from LEDs are perceived by
the rolling-shutter camera as spatially-varying strips. We intend
to retrieve VLC messages from such barcode-like strip patterns.
To do so, we first extract candidate regions from the image that
may possibly contain LEDs. For each of them, we try to decode
its unique identity (ID) and find its normalized centroid pixel
as feature measurements. We can then obtain its absolute 3D
position from a prebuilt LED feature map.

A. VLC Preliminaries

We consider a rolling-shutter camera with row exposure time
τe and row read-out time τr. The effective sampling rate, also
known as the rolling-shutter frequency [17], is fs = 1/τr. We
assume that the LED transmitter can switch on and off under
the control of binary signals. We use an on-off-keying (OOK)
modulation scheme with Manchester coding for data packaging.
The OOK modulation frequency is fm = 1/τm with τm as the
sampling interval. That is, τm is the minimum pulse duration
in the modulated binary signals. The upper bound of the square
wave fundamental frequency is fh = fm/2. To recover the sig-
nals, the Nyquist sampling theorem must apply,1 i.e., fh < fs/2
and hence fm < fs. The modulated pulses are captured by the
camera as bright or dark strips with varying widths proportional
to the pulse durations. The minimum strip width, measured in
pixels, is computed as w0 = τm/τr. An L-bit long data packet
yields a strip pattern extending w0L pixels in height. That is,
to recover the complete information carried by the data packet,
we need a strip pattern with at least w0L rows of pixels. The
pattern size is bounded by the image height H , i.e., w0L ≤ H .
It follows τr < τm ≤ τrH/L.

We further consider a circular-shaped LED of diameter A.
The maximum image size S of the LED radiation surface at
a given distance d is described by S = Af/d, where f is the
camera focal length in pixels. The data packet is decodable only
if the condition S ≥ w0L holds:

d ≤ dm =
Af

w0L
=

τrAf

τmL
(1)

where dm is the maximum range for VLC decoding. The deter-
mining factors include the focal length f and row read-out time

1We consider the fundamental frequency for analysis convenience.
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τr of the rolling-shutter camera, the radiation surface size A and
the OOK modulation interval τm of the LED transmitter, and
also the data packet size L in use.

B. Protocol Definition

The designed data packet begins with a 4-bit pream-
ble PS = b0001, precedes with a 16-bit Manchester-coded
data payload DATA, and ends with another 4-bit symbol
ES = b0111. This format yields a 24-bit long data packet with
balanced DC-components to circumvent the LED flicker issue.
The payload carries one byte of IDs, e.g., labeling up to 256
LEDs. The channel capacity can be extended by a larger payload.
Yet, we are motivated to improve the maximum VLC decoding
distance dm by using a smaller packet size L instead, as sug-
gested by Eq. 1, due to hardware limitations in our implemen-
tation. To do so, we further omit any special packet section for
error checking or data recovery.

C. LED Detection

Rolling-shutter cameras can capture strip patterns from a
flashing LED during underexposure. Natural features are not
observable, while bright objects (e.g., LEDs) can be easily
distinguished. Normally, the strips are parallel to image rows
and interleaving in the column direction. We are interested in
those regions as they carry VLC information. To locate the
bright blobs in the image and extract such regions of interest
(ROI), we first binarize the grayscale image by thresholding.
We then dilate the binary image in the column direction to fill
strip gaps. After that, the bright strips from a given LED can join
together as a connected blob. We detect blobs and retain large
ones as ROIs for subsequent VLC decoding, as they are more
likely to carry a complete data packet. We crop the grayscale
image using the ROI masks and send the cropped images to
the VLC decoder. In addition, the centroid pixel for each ROI is
undistorted and normalized with the calibrated camera intrinsics,
as image measurements of the LED feature. Readers may refer
to our technical report [18] for more details. Note that the
perspective projection of the LED (e.g., a circle) centroid, in
general, does not squarely coincide with the centroid of the LED
image (e.g., an oval). Yet in practice, such an approximation error
is acceptable for small objects and can be accommodated by the
image noise.

D. VLC Decoding

VLC information is encoded by strips of varying widths. In
each ROI, we pick up the grayscale pixels in the centering
column. We consider the column pixels as 1D time-varying
intensity signals, as the camera’s sampling frequency is fixed
and known. The binarized signals are used for OOK demodu-
lation and Manchester decoding. We use adaptive thresholding
to counter the nonuniform illumination artifacts of LEDs. We
can now obtain the LED’s ID from the decoding result. The
data packet may start at a random location in an ROI due to
the asynchronous communication mechanism. It happens that
only shifted versions are available in some ROIs. To address
this problem, we adopt a bidirectional decoding scheme [17] to
improve the decoding success rate. Note that decoding mistakes
may happen due to the lack of a special data integrity checking
mechanism in our protocol. Therefore, the pose estimator should
be resilient to possible data association errors.

E. Implementation Details

We customize dozens of battery-powered LEDs as VLC trans-
mitters. The LED has a circular radiation surface of diameter
15.5 cm. The rating power is around 3 watts. We employ a
cheap microcontroller to run the VLC protocol on its firmware
and use a MOSFET transistor for driving the LED current. The
modulation frequency fm is set to 16 kHz. We use a Raspberry
Pi rolling-shutter camera (Sony IMX219 with a vertical FoV of
48.8 deg) as the VLC receiver. It has a focal length of 1284 pixels
under the image resolution of 1640 by 1232. We manually
adjust the camera exposure time to capture sharp patterns. We
experimentally determine the maximum decoding distance of
our hardware setup be around 2.5 m, which coincides with the
theoretical upper bound of 2.76 m computed from Eq. 1. Readers
interested in details can refer to our technical report [18].

IV. GLOBAL LOCALIZATION BY EKF

We consider an indoor environment with modulated LED
lights at known locations (e.g., on the ceiling). The EKF uses
the camera observations to known LED features extracted by the
VLC frontend to correct its state estimates, after bootstrapping
from 2-point global pose initialization.

A. Notations

We define a gravity-aligned global reference frame {G} with
its z-axis pointing upwards to the ceiling. The gravity vector
expressed in {G} is Gg = [0, 0, −g]. The IMU frame {I} and
camera frame {C} are rigidly connected. The two sensors run
freely without any hardware or software synchronization. The
IMU-camera spatial transformation can be obtained from offline
calibration or manual measurements. To account for calibration
inaccuracy, we further include these extrinsic parameters in the
filter state for refinement by joint estimation. Besides this, the
time offset td between the two sensors is assumed as an unknown
constant. We use the IMU time as the time reference, i.e., timu =
tcam + td, following the convention in [5]. For a camera image
timestamped at t, its actual sampling time instance is t+ td.
We use the unit quaternion A

Bq̄ under JPL convention [19] to
represent the rotation A

BR from frame {B} to {A}, i.e., A
BR =

R(ABq̄). ⊗ denotes the quaternion multiplication. �·×� denotes
the skew-symmetric matrix. For a quantity a, we use â for its
estimate and ã for the residue.

B. Filter State Definition

The IMU state xI ∈ R24 is defined as follows [5]:

xI =
[
I
Gq̄

� Gp�
I

Gv�
I b�

g b�
a

C
I q̄

� Cp�
I td

]�
(2)

where I
Gq̄ is the unit quaternion that describes the rotation I

GR
from {G} to {I}, i.e., I

GR = R(IGq̄);
GpI and GvI are the

global IMU position and velocity, respectively;bg andba are the
gyroscope and accelerometer biases; C

I q̄ is the unit quaternion
that represents the rotation C

I R from the IMU frame {I} to the
camera frame {C}; CpI denotes the IMU position in {C}; and
td is the time offset.

The error state x̃I ∈ R22 is then given by:

x̃I =
[
I θ̃

� Gp̃�
I

Gṽ�
I b̃�

g b̃�
a

Iφ̃
� C p̃�

I t̃d

]�
(3)
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where for quaternions, we employ the multiplicative error def-
inition with local perturbations in the IMU frame. That is, we

have I
Gq̄ 	

[
1
2
I θ̃

1

]
⊗ I

G
ˆ̄q and C

I q̄ 	 C
I
ˆ̄q⊗

[
1
2
Iφ̃

1

]
where I θ̃ and

Iφ̃ are the 3× 1 small angle rotation error vectors expressed in
{I}. The standard additive errors apply to other quantities, e.g.,
GpI = Gp̂I +

Gp̃I .

C. IMU Propagation

The IMU measures the true angular velocity Iω and linear
acceleration Ia in its local frame {I} as [5]: ωm = Iω + bg +
ng andam = Ia− I

GR
Gg + ba + na. The measurement errors

are modeled as zero-mean white Gaussian noises, i.e., ng ∼
N (0,σ2

g) and na ∼ N (0,σ2
a). The continuous-time dynamics

of the state xI is given by:

I
G
˙̄q =

1

2
Ω
(
Iω

)
I
Gq̄,

GṗI = GvI ,
Gv̇I = I

GR
�Ia,

ḃg = nwg, ḃa = nwa,
C
I
˙̄q = 0, C ṗI = 0, ṫd = 0 (4)

where Ω(Iω) =

[−�Iω×� Iω

−Iω� 0

]
; and nwg and nwa are the

underlying noise processes that drive the IMU biases, with
nwg ∼ N (0,σ2

wg) and nwa ∼ N (0,σ2
wa). Note that, for long-

term operation, the time offset may vary slowly due to clock
drift between unsynchronized sensors. We can then model it as
a random walk process, i.e., ṫd = ntd with ntd as the underlying
white Gaussian noise. The propagation of nominal state x̂I

derives from the expectation of Eq. 4:

I
G
˙̄̂q =

1

2
Ω (ω̂) IG ˆ̄q, G ˙̂pI = Gv̂I ,

G ˙̂vI = I
GR̂

�â+ Gg (5)

where ω̂ = ωm − b̂g , â = am − b̂a, and I
GR̂ = R(IG ˆ̄q). The

other quantities such as b̂g remain constant. We can now predict
x̂I in discrete-time by numerical integration.

The linearized continuous-time error state equation is written
as ˙̃xI = F x̃I +GnI , wherenI = [n�

g n�
wg n�

a n�
wa]

� denotes
the continuous-time IMU noise with its covariance matrix Qc as
diag{σ2

g,σ
2
wg,σ

2
a,σ

2
wa}. The detailed expressions ofF andG

can be found in our technical report [18]. The state covariance is
propagated using the discrete-time implementation of the above-
mentioned error state equation.

D. Camera Measurement Update

We assume a calibrated pinhole camera model. For an image
timestamped at t, we consider the ith feature fi of the decoded
LEDs from the VLC frontend. Its measurement {zi,Gpfi} is
known, where zi is the normalized pixel of the LED centroid
and Gpfi is the global LED position. The feature observation zi
taken at camera time t is given by:

zi(t) = h
(
Cpfi(t+ td)

)
+ nim(t+ td)

Cpfi(t+ td)=
C
I R

I
GR(t+ td)

(
Gpfi − GpI(t+ td)

)
+ CpI

(6)

wherenim ∼ N (0,σ2
im) is the image noise;h(·) is the perspec-

tive projection function, i.e., h([x, y, z]�) = [x/z, y/z]�; and
Cpfi is the feature position with respect to the current camera
frame at IMU time t+ td.

With the latest state estimate x̂I(t+ t̂d) from the IMU propa-
gation, we can now derive the expected measurement as ẑi(t) =
h(C p̂fi(t+ t̂d)), and compute its residue term z̃i = zi − ẑi
by first-order approximation: z̃i 	 Hx,ix̃I +Hfi

Gp̃fi + nim.
The LED position error Gp̃fi is modeled as zero-mean white
Gaussian noise with covariance σ2

f . The measurement Jacobian
w.r.t. the IMU state Hx,i and the Jacobian w.r.t. the LED feature
position Hfi are given by:

Hx,i = [Hθ,i Hp,i 02×9 Hφ,i Hpc,i Htd,i]

Hθ,i = Ji
C
I R̂ �IGR̂

(
Gp̂fi − Gp̂I

)
×�

Hp,i = −Ji
C
I R̂

I
GR̂, Hφ,i = Hθ,i, Hpc,i = Ji

Htd,i = Hθ,i ω̂ +Hp,i
Gv̂I , Hfi = −Hp,i (7)

where Ji = ∂h(f)/∂f is the Jacobian of h(·) evaluated at the
expected feature position in the camera frame C p̂fi = [x̂, ŷ, ẑ]�,

i.e., Ji =
1

ẑ

[
1 0 −x̂/ẑ

0 1 −ŷ/ẑ

]
.

The filter state and covariance estimates can be updated
by following the general EKF equations [19]. To account for
false data associations from VLC decoding errors, we perform
the Mahalanobis gating test for each observation before the
measurement update. The EKF can naturally process multiple
observations if more LEDs are successfully decoded.

E. 2-Point Pose Initialization

For global localization, we need to initialize the filter with
a 6-degrees-of-freedom (DoF) pose w.r.t. the global frame, as
well as its velocity. Since vision-only methods like PnP easily
suffer from large errors or failure in LED-shortage scenarios, we
steer to an IMU-aided P2P solution that can work more reliably
with two point-feature measurements [7]. IMU measures roll
and pitch angles accurately by monitoring gravity, leaving four
unknowns in the camera pose. It has been proved that there are
two closed-form solutions to this problem [7]. In our applica-
tions, moreover, we can obtain a unique solution by checking its
z-direction as the sensor suite is alway beneath the ceiling. We
further refine the pose by minimizing camera re-projection errors
once more than two LEDs are decoded in the image. Specially,
we use the P2P solution as an initial guess and optimize the pose
in 4-DoF by fixing its roll and pitch. The IMU-centric pose can be
resolved given the sensor extrinsics. To aid velocity initialization
of the filter, we expect the sensor to start from a static phase in
each run. So far, our system can bootstrap with two or more
LEDs that are concurrently decoded in a single image.

V. EXPERIMENTS

We evaluate our system through real-world experiments. We
use the absolute trajectory error (ATE) for global position ac-
curacy and use the axis-angle error for orientation accuracy
assessment. We set up a room-sized (5*4*2.3 m3) test field
with 25 LEDs evenly mounted on the ceiling (see Fig. 2). The
spacing is around 1–1.5 m. We use a customized sensor suite
for data collection, as shown by the right side of Fig. 2. It com-
prises a Raspberry Pi camera (IMX219, 1640*1232 @10 Hz)
and a MicroStrain IMU (3DM-GX3-25 @200 Hz) without any
synchronization. The motion capture system (OptiTrack Mocap
@120 Hz) provides ground truth poses for our experiments. We
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Fig. 2. Test field (left) and self-assembled sensor suite (right).

TABLE I
DESCRIPTION OF THE EIGHT DATASETS IN USE

set the Mocap world frame to coincide with the global frame
{G}. The extrinsic parameters between the camera and the
Mocap rigid body (i.e., reflective markers on the sensor suite)
are known from hand-eye calibration. We measured the global
3D location of LEDs using Mocap, as well as a commodity laser
ranger for height compensation. The algorithm runs on a desktop
computer (Intel i7-7700 K CPU @4.20 GHz, 16 G RAM).

A. Localization Performance

To assess the localization performance,2 we have collected a
few datasets in eight trials [see Table I]. Specifically, we move
the handheld sensor suite smoothly by walking in the test field.
We orient the camera upwards facing the ceiling lights. For the
ease of filter initialization, we put the sensor on the ground and
keep it still for a few seconds at the start of each run. Unless
otherwise specified, the global pose in EKF is initialized by the
2-point initialization method, which will later be evaluated in
section V-C. The extrinsic parameters {CI q̄,CpI} are initialized
with coarse manual measurements. The remaining parameters
in the filter (e.g., the IMU biases and time offset) are simply set
to zeros.

Fig. 3 shows the results for trial 7 as we walk randomly in
the field for 68 s. We use Mocap to denote the ground truth and
use EKF for the estimates. As shown in Fig. 3(a), the estimated
trajectory well matches the ground truth. The global position,
orientation and velocity estimates for this trial, as well as the
respective errors compared against the ground truth, are shown
in Fig. 4. We illustrate the number of decodable LEDs in each
camera frame in Fig. 3(b). On the one hand, we have a very low
chance to decode three or more LEDs in one image despite the
dense LED deployment. As such, vision-only methods can rarely
be used in our setting. On the other hand, we can concurrently
decode two LEDs at a much higher possibility, and thus, boot-
strap the proposed system more easily by 2-point initialization.

2Online demonstrations can be found in our supplementary video.

Fig. 3. The random trajectory (a) travels approximately 69 m in 68 s. The EKF
estimates are very close to the ground truth by visual comparison. (b) shows the
number of LEDs that are successfully decoded from each camera frame by the
VLC frontend. (c) shows the time offset estimates as well as their uncertainty
described by the standard deviation (SD), as shown in the inner subplot.

Also, we show the time offset estimate t̂d in Fig. 3(c), as well
as its standard deviation from the filter covariance matrix. It
converges soon after the sensor starts moving.

The absolute pose errors for the eight trials are shown in Fig. 5,
where the position error is evaluated by ATE and the orientation
error is based on the axis-angle representation. Fig. 5(c) shows
the time offset estimates in the last 20 s of each run. Most of
these estimates are consistent, e.g., lying between −24 ms and
−32 ms. Note that no ground truth is available for our sensor
suite. Further, we study the impact of temporal calibration on
localization performance. With online time offset estimation
activated, the proposed method significantly outperforms its
counterpart without such a calibration, say on the eight trials
in terms of both the global position accuracy and orientation
accuracy. We note that the extreme outliers in orientation, as
shown in Fig. 5(b), are most probably caused by the occasional
Mocap tracking errors (especially the rotation) in certain places,
e.g., due to the blockage of reflective markers by the experi-
menter. By revisiting the Mocap orientation plots in Fig. 4(b),
we observe that the yaw direction is consistently smooth while
the roll and pitch directions have a few spikes (e.g., at the
30 s). With ceiling-mounted LED features, we expect larger
positional errors in vertical motions due to less parallax. The
manual height compensation (say with a laser ranger) in our LED
mapping procedure results in larger errors in the calibrated LED
heights, which may further degrade the positioning accuracy in
the vertical direction.

B. Robustness Test Under LED Shortage/Outage

We aim to explore the robustness of our system in more
challenging scenarios, e.g., with less decodable LEDs in a single

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 07,2020 at 08:20:31 UTC from IEEE Xplore.  Restrictions apply. 



3134 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 2, APRIL 2020

Fig. 4. Global position (a), orientation (b), and velocity (c), as well as their respective errors in trial 7 compared with the ground truth.

Fig. 5. Absolute position (a) and orientation (b) errors on eight trials. We show the consistency of time offset estimates in (c) by using results over the last 20 s,
and compare the performance of the proposed method both with and without online temporal calibration.

TABLE II
STATISTICS ON LOCALIZATION ERRORS AND COUNTS OF DECODED LEDS IN EIGHT TRIALS USING BOTH DENSE AND SPARSE FEATURE MAPS

view (say LED shortage) or with the complete absence of LEDs
in a certain period (say LED outage). These problems may
arise from many practical factors, such as the lights deployment
density and the maximum VLC decoding range supported by the
hardware setup. We here look into the LED shortage problem by
altering the deployment density. To do so, we uniformly remove
half of the 25 LEDs from the original dense map. This results in
a sparse map with 12 LEDs. We simply discard measurements
from those removed ones. Unlike commercial lights for illu-
mination, our prototype LEDs have a much smaller radiation
surface (e.g., 15 cm in diameter), as well as a reduced VLC
decoding range. The 12 circular LEDs are reasonably sparse
for localization in the test field. As a comparison, 10 pairs of
standard fluorescent tubes are deployed in the same area.

Table II summarizes the statistics on absolute position and
rotation errors, along with the counts of decodable LEDs in the

camera view. The results from the dense map are shown before
that from the sparse map side by side. We show the root-mean-
squared error (RMSE) and the respective standard deviation for
the estimated poses. We notice that the position errors increase
as the map density decreases, e.g., with larger RMSE errors and
standard deviations. Yet, we do not find any substantial variation
in rotation errors. The maximum RMSE position error (e.g., 4 cm
in trial 8) arises from the sparse map, while the maximum RMSE
rotation error (e.g., 1.27 deg in trial 2) comes from the dense
map. The average number of decodable LEDs in the sparse map
is almost half of that in the dense map, indicating a substantial
loss of usable LED features. In the meantime, the performance
degradation in positioning accuracy is relatively marginal.

Also, we show the percentage of frames that can decode a
certain number of LEDs in Table II. The percentage of decoding
three or more LEDs is extremely low, especially in the sparse
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Fig. 6. Pose errors in trial 7 at different camera rates. The maximum position
errors are 27 cm at 1 Hz and 37 cm at 0.5 Hz. Note that we manually remove an
extreme rotation outlier at the 30 s (around 10 deg) caused by Mocap tracking
errors, as illustrated by Fig. 4(b).

Fig. 7. Pose errors evaluated on trial 1, 3, 5, and 7. We compared the results
from P2P, the EKF initialized by the Mocap ground truth, and the EKF initialized
by P2P. There is no statistically significant difference in performance between
the latter two cases.

map. Meanwhile, we have a much higher possibility to decode
one or more LEDs. As we know, EKF can still keep correcting
its estimates with one observation only. The chance remains
to observe two decodable LEDs simultaneously in the sparse
map. As such, our system can still bootstrap from 2-point
initialization. Therefore, our method has better usability than
those vision-only counterparts.

Further, we explore the system performance in situations
with an intermediate LED outage. Specifically, we study the
short-term outage problem by dropping different quantities of
camera frames in a given period. For example, we can simulate
an effective camera rate of 1 Hz by dropping 9 out of 10 frames
for every 1 s. We choose five different camera rates from 10 Hz
to 0.5 Hz. The respective pose errors are shown in Fig. 6. The
system can bootstrap on its own at the camera rate of 1 Hz.
Aided by its normal initialization at 10 Hz, the system can finally
sustain at 0.5 Hz without diverging. In other words, the system
is tolerant to a certain short-term LED outage, e.g., less than 2 s,
during normal walking.

C. 2-Point Initialization and Failure Recovery

The 2-point initialization plays important roles in filter boot-
strapping and recovery from failure, e.g., due to the long-term
LED outage. We want to evaluate the accuracy of our IMU-aided
P2P solution with 4-DoF pose refinement. Moreover, we are
interested in investigating the impact of the initial pose estimate
on the overall localization performance. To this end, we initialize
the filter using both the P2P-based solution and the ground truth.
Fig. 7 shows the pose errors on trial 1, 3, 5, and 7. We use

Fig. 8. Position estimates in trial 7 under longer periods of outage: T1 = [15 s
20 s], T2 = [25 s 30 s], T3 = [35 s 45 s], T4 = [50 s 60 s]. Besides this, we
show the two times error standard deviation 2σ estimated by EKF, as well as
the measured position error in the error plot. It is shown in log-scale for better
visualization.

TABLE III
RUNTIME STATISTICS

P2P to denote the results from our 2-point pose initialization.
We use EKF-Mocap for indicating the results from the Mocap-
initialized EKF while using EKF-P2P for the P2P-initialized
EKF. The P2P acts as a baseline for comparison. We notice that
P2P suffers from larger pose errors. Even though, we can achieve
a median position error around 5 cm and a median orientation
error around 3 degrees. The pose estimation results from both
EKF-Mocap and EKF-P2P are almost the same. We can not find
any statistically significant difference. So far, we may safely
prove the efficacy of the proposed 2-point initialization method
for filter bootstrapping.

Fig. 8 illustrates the case of failure recovery under the long-
term outage, where we take trial 7 as an example. We manually
introduce four outage periods: T1 and T2 last for 5 s, while T3
and T4 last for 10 s. In the first two periods, the filter begins to
diverge after losing LED observations but can converge again
once new features are available. The increasing position error is
well estimated by EKF, as indicated by the error plot of Fig. 8. In
the latter two cases, the filter uncertainty grows too high that the
failure recovery mechanism is triggered, preventing the output
of erroneous estimates. The filter can be reinitialized soon after
the camera observes two or more decodable LEDs.

D. Runtime Analysis

To evaluate the runtime efficiency, we also run the proposed
algorithm on a Raspberry Pi 3B single-board computer (Cortex-
A53 @1.2 GHz, 1 G RAM). We implement two threads: one for
VLC decoding and the other for EKF estimation. We summarize
the average runtime to process an image taken by each thread
in Table III. The runtime is dominated by the VLC thread. The
algorithm efficiency can be improved by optimizing the image
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processing pipeline for VLC decoding. Nevertheless, we can
achieve real-time performance on Raspberry Pi 3B without any
code optimization for ARM processors, considering a camera
rate of 10 Hz. The proposed VLC-inertial localization system is
hence lightweight to use on resource-constrained computational
platforms.

E. Discussions

The proposed system suffers a few limitations. We use only
circular LEDs of the same form factor for evaluation due to the
difficulty in hardware preparation. The number of encodable
LEDs is subject to the usable VLC channel capacity supported
by our hardware. Besides, we resort to a simplified global-shutter
camera model for the EKF update. In future work, we plan
to employ a rolling-shutter model instead. We exploit ceiling-
mounted LEDs in our system and thus assume an upward-facing
camera for normal operation. The change in camera orientation
(say roll and pitch) is often limited during motions. The system
can accommodate some temporally larger orientation changes
by inertial tracking at the risk of losing LED observations
though. We leave this issue for our future work. It would be
interesting to improve the system by using natural visual fea-
tures as well for better tracking performance in LED absent
periods.

VI. CONCLUSION

This paper presented an EKF-based tightly coupled VLC-
inertial localization system by using modulated LED lights in
modern buildings as artificial visual landmarks, especially for
lightweight global localization on resource-constrained plat-
forms. Our system employed a rolling-shutter camera and an
unsynchronized IMU. The EKF localizer tightly fused iner-
tial measurements with visual measurements of VLC-enabled
LEDs. We further completed our system by 2-point global pose
initialization for filter bootstrapping and failure recovery. Our
system managed to be bootstrapped from two or more LED
features in a single image and then sustained by EKF. The system
and method were verified by extensive field experiments in a
Mocap-room mounted with dozens of LED prototypes. It has
been shown that our system can reliably provide lightweight
real-time accurate global pose estimates in LED-shortage situ-
ations. The robustness under short-term LED outage, as well as
the failure recovery behavior under long-term outage, was also
demonstrated.
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