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Abstract— Vision-based autonomous driving through imitation
learning mimics the behavior of human drivers by mapping
driver view images to driving actions. This article shows that
performance can be enhanced via the use of eye gaze. Previous
research has shown that observing an expert’s gaze patterns
can be beneficial for novice human learners. We show here
that neural networks can also benefit. We trained a conditional
generative adversarial network to estimate human gaze maps
accurately from driver-view images. We describe two approaches
to integrating gaze information into imitation networks: eye
gaze as an additional input and gaze modulated dropout. Both
significantly enhance generalization to unseen environments in
comparison with a baseline vanilla network without gaze, but
gaze-modulated dropout performs better. We evaluated per-
formance quantitatively on both single images and in closed-
loop tests, showing that gaze modulated dropout yields the
lowest prediction error, the highest success rate in overtaking
cars, the longest distance between infractions, lowest epistemic
uncertainty, and improved data efficiency. Using Grad-CAM,
we show that gaze modulated dropout enables the network to
concentrate on task-relevant areas of the image.

Index Terms— Autonomous driving, eye gaze, generalization,
human attention, imitation learning (IL).

I. INTRODUCTION

END-TO-END deep learning has attracted great inter-
est and has been successfully applied to numerous

autonomous control tasks. Many attempts have been made
in end-to-end vision-based driving through imitation learning
(IL) [1], [2] and reinforcement learning (RL) [3]. The IL can
be adapted to complex driving scenarios more efficiently than
RL, which requires careful selection of an appropriate reward
function.

One typical solution to IL is behavioral cloning (BC), which
has been used successfully in many autonomous systems,
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including off-road driving [4] and lane following [1]. It is
simple and efficient. It follows a student–teacher paradigm,
where teachers give demonstrations for students to learn from.
Previous works in BC for autonomous driving systems largely
concentrated on establishing a mapping from the sensor data
to the control commands explicitly, without consideration of
other cues from the teachers.

While executing tasks, humans pay attention to an important
area in the visual environment using saccades. A driver’s
gaze contains rich information related to his/her intent and
decision making. Previous research has found that exposure to
experts’ gaze trajectories can be beneficial for novice human
learners. For example, Vine et al. [5] showed that exposing
gaze strategies of experts can improve the laparoscopic skills
of novice learners. Yamini et al. [6] found that novice drivers
can improve their hazard anticipation ability by viewing a
video of expert gaze patterns.

Thus, it is quite promising to explore whether BC for
autonomous driving might also benefit from observation of
expert gaze patterns.

There has been little work studying how the human gaze
can help autonomous driving. Palazzi et al. [7] analyzed gaze
data in different driving conditions. They trained a network
to predict eye gaze and demonstrated a strong relationship
between gaze patterns and driving conditions. However, they
did not apply their results to the autonomous driving system.

In this article, we applied a conditional generative adver-
sarial network (GAN) to anticipate human gaze maps accu-
rately while running in both seen and unseen environments.
We incorporated the estimated gaze maps into deep driving
networks through two different methods.

In the first approach, we use the gaze map as an additional
input to the network [8]. While this is a fairly straightforward
approach to incorporating additional information, it has the
disadvantage of increased network complexity. Since most
units of the gaze map are zero value, this additional complexity
is utilized inefficiently.

In the second approach, the gaze map is applied to spatially
modulate the dropout probability. Areas close to the estimated
gaze position possess a smaller dropout probability than areas
distant. Since human saccadic eye movements direct high-
resolution processing and attention to different areas of the
scene, we hypothesized that incorporating a human gaze model
as a modulatory effect, rather than as an additional input,
may be more effective. This helps the network concentrate
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on task-relevant areas and neglect task-irrelevant areas, such
as the background, which should be useful when the network
is presented with new and unfamiliar inputs.

To quantify the generalization ability, we estimated the
epistemic (model) uncertainty of the trained neural networks.
The epistemic uncertainty quantifies the similarity between
new inputs and previous observations and is inversely related
to model confidence [9]. In autonomous driving, epistemic
uncertainty can help quantify the capability that a trained
model generalizes to unseen environments.

The main contributions of our work are as follows.

1) We train a gaze model to estimate gaze maps accurately,
given the driver-view images.

2) We propose two approaches to incorporate gaze infor-
mation into deep imitation networks that both improve
generalization to unseen environments.

3) We demonstrate that deep networks can benefit from a
complete understanding of human behavior, by showing
how auxiliary cues not directly related to control com-
mands can improve IL.

4) We validate the effectiveness of gaze modulated dropout
using a quantitative measure of performance and the
epistemic uncertainty.

5) Through a CNN visualization technique, we find support
for an intuitive explanation for the effectiveness of
incorporating eye gaze information.

II. RELATED WORK

In this section, we first review work in end-to-end vision-
based autonomous driving systems. We then describe prior
work using gaze in driver assistance and in characterizing
the human gaze during driving. Finally, we discuss different
uncertainty measures and their application in deep learning.

A. End-to-End Autonomous Driving

End-to-end learning has become increasingly popular for
vision-based autonomous driving because it does not require
separation into several steps and can be trained to optimize
overall system performance [1].

The RL learns a policy through trial and error without
the need for human demonstrations. You et al. [10] used a
virtual-to-real style translation network to transfer a driving
policy trained by RL in the TORCS simulator to real-world
driving. Liang et al. [11] used an imitative RL network to
learn the policy. First, they trained the imitation network
from human demonstration. Then, they used this as the initial
policy for further refinement by RL. The main drawbacks of
RL are its low sample efficiency and the need to shape an
appropriate reward function, which becomes intractable for
complex driving scenarios.

The IL learns policy that mimics human behavior from
human demonstrations. Bojarski et al. [1] trained a feed-
forward five-layer CNN followed by three fully connected
(FC) layers (PilotNet) to generate steering output for lane
following given images of the road ahead. Chen and Huang
[12] used a similar architecture for a lane keeping task.
Muller et al. proposed a similar framework for an off-road

obstacle avoidance task [4]. Codevilla et al. [2] trained a
branched deep imitation network for policy learning. Given
high-level command from a human or a global planning
module, the imitation network maps camera images and car
speed to action. The major limitation of IL systems is that
they do not generalize well, i.e., their performance degrades in
unfamiliar environments [11]. For instance, despite the many
data augmentation methods applied in [2], the policy network
trained in Town1 of the Carla simulator had clearly degraded
driving performance while tested in Town2.

B. Human Gaze in Driving Systems

During driving, rich cues about a driver’s intent, mental
state, and decision making are conveyed by his/her eye gaze. In
assisted driving systems, eye gaze information has been used
to evaluate driver mental state, such as tiredness detection [13]
and mental load classification [14]. However, eye gaze has yet
to be well investigated for autonomous driving research [15].

To the best of our knowledge, the most related article to
ours is by Palazzi et al. [7], who introduced a deep neural
network with multiple branches to predict human gaze in
urban driving scenarios. They investigated the distribution of
human gaze over several semantic classes in visual scenes,
how driving speed correlated with the driver’s attention, and
how these measures varied over different scenarios. However,
they did not consider the application of an estimated eye gaze
to autonomous driving.

C. Types of Uncertainty in Deep Learning

The measurement of uncertainty can quantify a model’s
confidence and indicate what the model does not know [16].
Uncertainty can be divided into two types: epistemic and
aleatoric.

Aleatoric uncertainty captures noise in the observations
caused by sensor noise. Kendall [16] proposed to evaluate
aleatoric uncertainty by increasing an extra output. Feng et al.
[17] used a similar approach to catch the uncertainty in 3-D
object detection tasks. Wang et al. [18] quantified the aleatoric
uncertainty of image segmentation and used it to investigate
the effect of multiple image transformations on segmentation.

Epistemic (model) uncertainty quantifies “familiarity,” by
measuring the similarity of a new input to previously seen
observations [9]. Kendall [16] quantified epistemic uncertainty
by multiple sampling over the distribution of model weights
through dropout at the testing stage. This method has been
adopted in many tasks, such as semantic segmentation [19] and
depth regression [20]. Objects that are rare in training data sets
will lead to larger epistemic uncertainties. The major drawback
of the dropout method is the need for expensive sampling,
which makes it unsuitable for real-time applications. However,
it can be applied offline to measure model confidence.

III. METHODOLOGY

In this section, we first introduce our experimental setup
to collect training data and to test model performance. After
that, we introduce the network for estimating the gaze map.
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Fig. 1. Illustration of the general idea behind the IL augmented with gaze
maps. Typically only the image-action pairs are collected as human expert
demonstrations. Other informative cues, such as human gazes, are ignored.
It is expected that the network can better imitate expert behaviors with extra
gaze information.

We then describe the two ways we incorporated the estimated
gaze map into the imitation network. Finally, we present the
method used to evaluate the model uncertainty.

A. Experimental Setup

Fig. 1 shows the setup for data collection and testing.
During data collection, the human expert controlled the car
using the steering wheel while viewing the driving scenes on
the computer monitor. An eye tracker recorded gaze location
simultaneously for every frame. We stored data as image-gaze-
steering action tuples. The eye tracker used in this experiment
is Tobii Pro X60 commercial eye tracker, whose error is 0.6◦
after nine-point calibration. For our experiment, one degree of
visual angle corresponds to about 54 pixels.

The experiments were conducted in TORCS simulator [21],
which simulates highway driving and supports different tracks
designs and settings. We collected data on five tracks with
diverse routes and scenarios. For each track, the subject drove
the car for four trials, each lasting about three minutes. We
set the car to run at a constant speed. Drivers were asked to
follow the road and overtake other cars to avoid collisions. The
driver pressed a button doing each overtaking maneuver so that
we could segment data into lane following versus overtaking.
Four subjects participated in data collection. We have eighty
trials collected in total. For each trial, we collected an average
of 2500 action-image-gaze map tuples. Thus, our entire data
set consists of 200 000 tuples.

About 40 000 image-gaze-action tuples from the first two
trials of two tracks (16 trials in total) were selected as the
training data set. As the eye gaze was located at the center
of the visual scene most of the time, we created a balanced
data set containing about 4 000 tuples for gaze network train-
ing by downsampling the training data set randomly. The
three remaining tracks were used for open-loop testing. We
also used the TORCS simulator for closed-loop driving tests,
where the trained networks generated steering commands input
to the simulator. During these closed-loop tests, we measured
the percentage of cars successfully overtaken, and the average
distance traveled between infractions. Infractions are defined
by collisions or driving outside the lane.

B. Gaze Map Synthesis

The gaze network was trained to synthesize gaze maps on
pairs of driver-view images and real gaze maps similar to the
way deep networks have been trained to generate saliency
maps [22].

For each frame, the ground-truth gaze map was generated
from the gaze data collected in a sliding window of 10 frames
centered on the current frame. We generated a 2-D probability
distribution by placing a 2-D circularly symmetric Gaussian
at each gaze point. The standard deviation of the Gaussian,
σ = 2.6 degrees of visual angle, was chosen by a grid search
to yield the best performance on a validation set.

Most previous deep saliency models have used loss func-
tions, such as L2 distance [22] or KL-divergence [23]. In our
case, most units of the real gaze map have values close to
zero. Only a few pixels have significant nonzero values. In
our experiments, we found that using the L2 distance as a
loss function resulted in estimated gaze maps where all pixels
had close to zero values.

To avoid this problem, we estimated gaze maps using a
conditional GAN following the Pix2Pix architecture [24]. A
GAN trains both a generator network and a discriminator
network that tries to differentiate between the generated and
ground truth gaze maps. Generated gaze maps that are easily
distinguished from ground truth gaze maps are penalized. This
led to much better gaze map estimations since gaze maps with
all zero values are not realistic.

The generator was a U-Net encoder–decoder architecture
[25]. The discriminator network consists of

C B64 − C B128 − C B256 − C B512 − C B512 − C B512

where C Bk denotes a 4 × 4 Convolution-BatchNorm-ReLU
layer with k filters. The GAN was trained for 200 epochs (7 h
on the collected data set with an NVIDIA GTX 970). We
initialized the weights randomly from a Gaussian distribution
with zeros mean and a standard deviation of 0.02. The batch
size was set to 16.

C. Imitation Network

Fig. 2 shows the two proposed frameworks for incorporating
gaze information. They shared the same network for gaze map
synthesis but differed in the way the gaze map is used in the
imitation network.

The imitation network followed a deep CNN architecture
(PilotNet [1]) to estimate steering actions. It comprises five
convolutional (Conv) layers and four FC layers. The activation
function for the networks was the ReLU. Two CNN networks
with the same structure but different parameters were trained:
one for following and one for overtaking. The driving maneu-
ver (overtaking or lane following) to follow at each point was
based on the driver input.

Weights were initialized in the same way as the gaze
network. The batch size was 128. The size of the input image
was 66 × 200. The steering output was a continuous number
between −1 and 1.

We implemented two different methods to incorporate gaze
information into the driving network, as shown in Fig. 2.
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Fig. 2. Two approaches for incorporating gaze information into autonomous driving. (a) For the model that uses the gaze map as an additional input, the
gaze map modulates the input image by pixelwise multiplication. The grayscale image and the modulated image are stacked and input to the network. For
the model that uses the gaze map to modulate the dropout probability, the gaze map was first used to calculate the keep probability map through (1). During
the training (dashed line), the keep probability map is scaled to the size of the feature map to generate the dropout binary mask. During the testing (solid
line), we directly modulate the features by the scaled keep probability map. The command switches the input to the steering angle between the networks for
overtaking or lane following. (a) With gaze map as input. (b) With gaze modulated dropout.

1) With Gaze Map as Input: We used the synthesized gaze
map from the gaze network to create an additional input to the
network. As shown in Fig. 2(a), we multiplied the grayscale
original driver-view image pixelwise with the estimated gaze
map. The modulated and driver-view images were stacked as
input to the imitation network.

2) With Gaze Modulated Dropout: We used the synthesized
gaze map for a keep probability map to modulate the dropout
in the network. As shown in Fig. 2(b), gaze modulated dropout
is applied to the convolutional layers of the imitation networks.

Based on the idea that saccades focus attention on important
areas and de-emphasize task-irrelevant areas, we utilized the
gaze to spatially modulate the keep probability (the comple-
ment of the dropout probability) to be higher at gaze points
and lower elsewhere, as shown in Fig. 3. We first applied gaze
modulated dropout to each convolutional layer individually.
We found that dropout in lower layers results in lower error
than dropout in higher layers on the validation set (Conv1:
2.84 deg, Conv2: 2.85 deg, Conv3: 2.87 deg, Conv4: 3.06
deg, Conv5: 3.18 deg). Based on this finding, we applied gaze
modulated dropout cumulatively to successive convolutional
layers starting from the lowest layer and found that applying
gaze modulated dropout to the first two layers resulted in the
best performance. This setting is used in all results reported
in the following.

For uniform dropout, we generated a random array with the
same size as the feature map independently at each location
according to a standard uniform distribution on [0, 1]. This
was converted to a binary mask by setting a pixel to one if the
corresponding position in the random array was smaller than
the keep probability KP and to zero otherwise. The feature
map activation was modulated by the binary mask.

For gaze modulated dropout, the procedure was similar, but
KP varied from pixel to pixel according to

KP = (1 − dp) + dp
G − Gmin

1 − Gmin
(1)

where G is the gaze map scaled to the range [Gmin, 1], Gmin

is the minimum value of the gaze map over all pixels and
dp ∈ [0, 1] is the maximum drop probability.

At test time, we did not apply dropout. Instead, following
[26], we approximated the effect of averaging by modulating
the feature map by the keep probability KP.

D. Validation of the Gaze Effect

To determine whether gaze-modulated dropout helped to
improve the model’s generalization capability, we measured
the epistemic uncertainty of several models that shared the
same structure but were trained with different dropout meth-
ods. A model with better generalization should have lower
epistemic uncertainty for unseen inputs.

As introduced in Section II-C, stochastic dropout is a prac-
tical and effective approach to modeling epistemic uncertainty.
With x as the input, we measure the variance of the output of
the model y = f (x) by using multiple forward passes using
the same input, but different initializations of the weights for
each forward pass. Denoting fn(·) to be the mapping from
input to output for the dropout masked weight for pass n, we
evaluated

y = 1

N

N∑

n=1

fn(x) (2)

σ 2(y) = 1

N

N∑

n=1

( fn(x) − y)2. (3)
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Fig. 3. Details of the implementation of gaze modulated dropout. The blocks
on the left show the structure of the driving network. We applied the gaze
modulated dropout after the first and second convolutional (Conv) layers. The
keep probability for gaze-modulated dropout is shown on the right. At the
training stage, keep probabilities are utilized to control whether units are kept
or dropped. A typical gaze modulated dropout mask is shown on the top left.
At the testing state, similar to dropout, the gaze modulated dropout multiplies
the feature maps pixelwise with the keep probability maps.

TABLE I

KL DIVERGENCE AND CC BETWEEN REAL AND ESTIMATED GAZE MAPS

IV. RESULTS

A. Gaze Network Evaluation

Fig. 4 shows examples of estimated gaze maps superim-
posed with ground truth gaze trajectories. There is a strong
overlap between the estimated gaze map and the actual trajec-
tories.

To evaluate the gaze network quantitatively, we compute the
two standard metrics for similarity evaluation: the Kullback–
Leibler divergence (KL) and the correlation coefficient (CC).
Smaller KL and larger CC denote better similarity.

From the observation of the ground truth gaze trajectories,
we found that the subject mostly looks at the center region
of the image. Therefore, we considered a static gaze map
consisting of a single Gaussian at the image center as a
reference.

The estimated gaze map closely matches the real-gaze map
(Table I). Compared with the baseline (central Gaussian blob),
the average KL divergence between the estimated gaze map
and the real gaze map is markedly smaller (75.6% for seen
tracks and 62.1% for unseen tracks). The CC between the
estimated gaze map and the real-gaze map is significantly
larger (22.9% for seen tracks and 9.2% for unseen tracks).

Please refer to our video (https://sites.google.com/view/
gazedriving) to see gaze map predictions for both trained and

Fig. 4. Estimated gaze map and ground truth gaze trajectories visualized
as heatmaps and green lines superimposed on the driver-view images. The
first row is from environments seen during training. The second row is from
two environments unseen during training. On the heatmaps, red areas indicate
areas with more fixations.

unseen tracks. From the video, we can see that, besides mirror
fixations, the human gaze data also deviates from the center
of the image to track the car in front. This suggests that gaze
information helps the network concentrate on task-relevant
areas. Consistent with that, we found that 60.7% of the gaze
is located within a circle around the center with a radius equal
to one standard deviation of the center Gaussian blob, 5.7% is
located in the mirror, and 33.6% is located in other regions.

B. Imitation Network Evaluation

An imitation network with only image input was trained
utilizing uniform dropout as the baseline. We refer to it as
No gaze in the results. We compared the performance of five
different cases.

Real Gaze as Input: The ground truth gaze map was used
to generate the gaze-modulated driver-view image provided as
an additional input to the imitation network.

Estimated Gaze as Input: The estimated gaze map was used
to generate the gaze-modulated driver-view image provided as
an additional input to the imitation network.

Real Gaze Dropout: The ground truth gaze map was used
to modulate the dropout probability.

Estimated Gaze Dropout: The estimated gaze map was used
to modulate the dropout probability.

Center Blob Dropout: We observed that the subjects’ gaze
map was concentrated primarily at the center of the scene. To
rule out the possibility that the effects observed are primarily
due to increasing the weighting in the center part of the scene
over the periphery, we also considered a model where the keep
probability was modulated by a single-Gaussian blob located
at the center of the scene. The variance of the Gaussian blob
was chosen by the grid search to yield the best performance
on the validation set.

1) Test on Data Set: We chose the dropout probability dp
for both uniform and gaze modulated dropout by a brute-force
search over the range from 0.1 to 0.8 with search step 0.1.
The same dp settings were used for both training and testing.
Fig. 5 shows the mean average error (MAE) for the models
utilizing uniform and gaze modulated dropout. MAE on the
seen tracks remains nearly constant at around 3◦ overall values
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Fig. 5. Results of a brute-force search for the optimal values of dp for
models utilizing gaze-modulated dropout and uniform dropout.

TABLE II

MEAN ABSOLUTE ERROR BETWEEN COMMANDS GENERATED BY THE

SYSTEM AND THE HUMAN DRIVER ON THE TESTING SET

of dp for the two dropout methods. However, the MAE for
gaze modulated dropout on unseen tracks drops remarkably
with dp increasing from 0.2 to 0.8 for unseen tracks. This
is in stark contrast with the slight increase of the MAE for
uniform dropout.

Based on the results of this experiment, we set dp to 0.1
for uniform dropout and to 0.7 for gaze modulated dropout
for all following experiments, unless specified otherwise.

We evaluated the MAE between the commands generated
by the various models and the human driver. The testing results
shown in Table II demonstrate that both approaches decrease
the action estimation error, especially in unseen environments.
Networks with (real and estimated) gaze input outperform
the baseline (No gaze) by 20.1% and outperform the central
blob dropout network by 4.5% for unseen tracks on average.
Networks with (real and estimated) gaze dropout give even
greater improvements. They outperform the baseline (No gaze)
by 25.9% and the central blob dropout network by 11.5% for
unseen tracks on average.

Gaze modulated dropout performs better than gaze as input
for both real gaze and estimated gaze. Using the real gaze,
dropout outperforms input by 6.8% on unseen tracks and 1.4%
on seen tracks. Using the estimated gaze, the improvements
are 7.8% and 0.35%.

Gaze data used in our experiments and training was col-
lected when subjects were driving alone without distractions.

TABLE III

QUANTITATIVE PERFORMANCE RUNNING ON AN UNSEEN TRACK
IN THE SIMULATOR

In real environments, gaze might be noisier, e.g., if the
driver is distracted by talking to a passenger. Thus, using
gaze data collected in real-unconstrained environments may
result in poorer performance. However, in autonomous driving
applications, we expect that estimated, rather than actual, the
gaze will be used.

2) Closed-Loop Performance: We evaluated the closed-loop
performance of the models utilizing estimated gaze in the
simulator for an unseen track. Gaze maps are obtained from
the gaze network running in real time. The network with uni-
form dropout (No gaze), the network with estimated gaze map
as input (Gaze as input) and the network utilizing estimated
gaze-modulated dropout (Gaze dropout) are compared. For
each episode, the starting position of the car was selected
randomly. The models controlled the car to follow the lane and
to overtake cars if required. The choice of whether to follow
the lane or to overtake was made by human drivers observing
the simulator. Human drivers also intervened to bring the car
back to the middle of the lane when infractions (collisions
or lane departures) occurred. We tested the models in two
different settings: without other cars running on the road (w/o
cars) and with cars (w/cars). For the setting w/o cars, the agent
only performs lane following. We evaluated the performance
by the success rate in overtaking cars (w/cars only), and the
average distance traveled between infractions. Higher numbers
are better for both measurements.

As shown in Table III, both approaches improve closed-
loop performance. Consistent with our previous result, gaze
dropout outperforms gaze as input in both measures. The
success rate of overtaking cars for the network with estimated
gaze dropout is 31.5% better than the baseline and 4.3% better
than the network with an estimated gaze as input. The average
distance traveled between two infractions for the network with
estimated gaze dropout is 58.5% better than the baseline and
15.4% better than the network with an estimated gaze as input
on average in the two environments.

Examples of the closes-loop behavior of the models with
uniform and gaze modulated dropout in an unseen environ-
ment are shown in our video (https://sites.google.com/view/
gazedriving).

C. Dropout Versus Inverted Dropout

As discussed in the original dropout article [26], it is too
time-consuming to average exponentially many predictions
during testing, especially for real-time applications. There are
two ways typically proposed to deal with this. In standard
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TABLE IV

Epistemic (MODEL) UNCERTAINTY

dropout, during testing, the output of each unit is scaled
by the keep probability. In inverted dropout, during training,
the output of each unit is multiplied not only by the binary
dropout mask but also by the multiplicative inverse of the
keep probability. Then at test time, no scaling is applied.
The advantage of inverted dropout is that the network during
deployment is much simpler. In our case, there would be no
need to estimate the gaze map. Prior work has suggested
that standard uniform dropout and inverted uniform dropout
perform similarly. Unfortunately, in our experiments, inverted
gaze modulated dropout performed much worse than standard
gaze modulated dropout. For example, on seen tracks using
standard real gaze modulated dropout, the MAE was around
3◦. However, the MAE for inverted real gaze modulated
dropout can reach 6◦degrees. Thus, it is still important to
estimate the gaze map during testing.

We also compared the performance of scaling the output
activations by the keep probability during testing with aver-
aging the outputs of 50 networks with different binary masks
sampled independently according to the keep probability. We
found that the testing errors to be quite similar to those shown
in Table II, differing by only 0.08◦ on average. Thus, simply
scaling the output activations by the keep probability is a
good choice during deployment, since it is simpler, more
computationally efficient, and results in a similar performance.

D. Discussion on Model Uncertainty

Table IV shows epistemic (model) uncertainty of models
using uniform (No gaze), gaze modulated, and center Gaussian
blob modulated dropout as computed using (3). For a fair
comparison, we unified the average drop probability of these
models by setting the parameter dp accordingly. To be specific,
dp was set to 0.66 for uniform dropout, 0.7 for gaze and center
Gaussian blob modulated dropout. Note that the definition
of drop probability is different for modulated dropout and
uniform dropout.

Model uncertainties for unseen tracks are much higher than
for seen tracks (Table IV). This is consistent with our inter-
pretation of model uncertainty as reflecting the familiarity of
the model with the input. In addition, there is little difference
between the epistemic uncertainties of the different models for
seen tracks.

To compare the generalization capability of different mod-
els, we concentrated on the results for unseen tracks. Lower
model uncertainties were achieved by gaze modulated dropout,
with real-gaze dropout achieving the lowest uncertainty. The
uncertainty for estimated gaze dropout was 14.2% higher, but
still much lower than for center blob dropout (33.0% higher)

Fig. 6. Prediction error of models trained with different size of training data
set.

and no gaze (40.5% higher), which was the worst among the
four.

Combining with the results from Section IV-B1, we find
that models with lower epistemic uncertainty also have smaller
prediction errors. This is consistent with the finding of [27],
which showed epistemic uncertainty and positional error were
positively correlated in a camera relocalization task.

E. Data Efficiency

We conducted experiments varying the number of training
samples to compare the data efficiency of gaze-modulated and
uniform dropout. The data set used in this section contains
about 100 000 image-action pairs from the first four tracks.
We obtained smaller training data sets by randomly sampling
from the larger data set. Data from the fifth track were reserved
for testing.

Fig. 6 compares the prediction errors of the two dropout
methods in unseen and seen environments as the number of
training samples varies. For seen tracks, the prediction error
is comparable for the two methods. The error reduces as the
number of training samples increases.

For unseen tracks, the error for uniform dropout decreases
much more slowly than for gaze modulated dropout. Gaze
modulated dropout achieves similar performance as a uniform
dropout with much fewer training samples.

Thus, the network with gaze modulated dropout has better
data efficiency.

F. CNN Visualization

To illustrate how incorporating the gaze map helps the
imitation network, we utilize Grad-CAM [28], a technique for
visual explanations of deep neural networks.

Fig. 7 shows the four examples of Grad-CAM visualizations
for the vanilla imitation network (without gaze information)
and the imitation network with gaze map. These visualizations
highlight the regions that contribute most to the output of the
networks. For the vanilla imitation network, a significant pro-
portion of the contributing areas (shown in red) is distributed
in the background. For the imitation network with gaze map,
the contributing areas are mainly associated with the road and
car in front and less on the background.
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Fig. 7. Visualization of the features by Grad-Cam [28]. For better visualization, we enlarged the road area and overlapped the features with the grayscale
image. Red regions correspond to high importance to the steering output. The first column shows the scaled driver-view images. The following columns show
the features of models after the second convolutional layer. The second and third columns show the features of models trained with gaze modulated dropout,
while the third column displays the features of models trained with uniform dropout. The corresponding steering angles of the scenes are given with GT
marking the human demonstrated action. EU and EG mark the estimated steering angle given by the model trained with uniform and gaze modulated dropout,
respectively.

These results suggest that the incorporation of the gaze map
helps the imitation network concentrate on task-related areas
and ignore irrelevant areas, such as the scene background. This
helps to explain why gaze modulated dropout leads to much
lower MAE and better closed-loop performance on unseen
scenes, where the main differences with those observed during
training are in the background.

V. CONCLUSION

This article proposed the use of gaze information contained
in expert demonstrations to improve the generalization of IL
networks for autonomous driving to unseen environments. We
show that a conditional GAN can estimate human gaze maps
accurately during driving. We studied two ways to incorporate
gaze information. Both significantly improve human action
estimation accuracy. Better performance is obtained with the
gaze-modulated dropout.

This article demonstrates for the first time that it is possible
to incorporate human information about gaze behavior into
deep driving networks so that they receive similar benefits
novice human drivers do when viewing expert gaze patterns.
By exploiting expert behavior implicitly, this article makes an
effort to raise IL to the next level. Furthermore, we found that
imitation networks with gaze information have lower model
uncertainty and have better data efficiency. We also show that
integrating gaze enables the network to focus more on task-
relevant information.

There are several potential directions to extend this article.
First, the current gaze network and policy network do not take
spatiotemporal aspects of eye gaze into account. Incorporating
a spatiotemporal unit, such as recurrent module, may benefit
the gaze prediction and action prediction. Second, human
gaze data involves rich information regarding human intent.
Estimated gaze maps may also be useful for the selection of
the driving maneuvers, e.g., selecting automatically between
lane following and car overtaking, which is currently manually

selected in our experiments. Finally, other visuomotor tasks,
such as vision-based robot manipulation and robot navigation,
may also benefit from the incorporation of the proposed gaze-
modulated dropout method.
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