
1

Hercules: An Autonomous Logistic Vehicle for
Contact-less Goods Transportation During the

COVID-19 Pandemic
Tianyu Liu∗, Qinghai Liao∗, Lu Gan, Fulong Ma, Jie Cheng, Xupeng Xie, Zhe Wang, Yingbing Chen, Yilong

Zhu, Shuyang Zhang, Zhengyong Chen, Yang Liu, Meng Xie, Yang Yu, Zitong Guo, Guang Li, Peidong Yuan,
Dong Han, Yuying Chen, Haoyang Ye, Jianhao Jiao, Peng Yun, Zhenhua Xu, Hengli Wang, Huaiyang Huang,

Sukai Wang, Peide Cai, Yuxiang Sun, Yandong Liu, Lujia Wang, and Ming Liu

Fig. 1. A worker dressed in a protective suit is collecting goods from our
Hercules logistic autonomous vehicle. There is no person-to-person contact
during the process of goods transportation. This photo was taken in Shenzhen,
Guangdong, China, February 2020 during the outbreak of COVID-19.

Since early 2020, the coronavirus disease 2019 (COVID-19)
has spread rapidly across the world. As at the date of writing
this article, the disease has been globally reported in 235 coun-
tries and regions, infected over 38 million people and caused
over 1 million deaths. Avoiding person-to-person transmission
is an effective approach to control and prevent the epidemic.
However, many daily activities, such as transporting goods
in our daily life, inevitably involve person-to-person contact.
Using an autonomous logistic vehicle to achieve contact-less
goods transportation could alleviate this issue. For example, it
can reduce the risk of virus transmission between the driver
and customers. Moreover, many countries have imposed tough
lockdown measures to reduce the virus transmission (e.g.,
retail, catering) during the pandemic, which causes inconve-
niences for human daily life. Autonomous vehicle can deliver
the goods bought by humans, so that humans can get the goods
without going out. These demands motivate us to develop
an autonomous vehicle, named as Hercules, for contact-less
goods transportation during the COVID-19 pandemic. The
vehicle is evaluated through real-world delivering tasks under
various traffic conditions.

There exist many studies related to autonomous vehicles,
however, most of these works focus on the specific modules

∗ Equal Contribution

Main

GNSS Antenna

Main

LiDAR

4G&GNSS

Backup Antenna

Fish-eye camera (×4)

Ultrasonic (×16)
LiDAR (×3)

Stereo

Camera

LED

Display

IMU Encoder (×2)

(a) The sensors on the vehicle (with the cargo box removed).

Bumper
Removable Lithium-ion

Battery
Rear Axle

VCU

OBC

MCU

EPB

Motor
EPS

EHBDCDC
Encoder

(b) The sensors and control units on the mobile base (chassis).
Fig. 2. The sensors used in our vehicle and the modules in the chassis. Note
that the cargo box is replaceable. It is not included in the figure.

of autonomous driving systems. For example, Sadigh et al.
[1] developed a planning method that models the interaction
with other vehicles. Koopman et al. [2] presented a testing
paradigm for autonomous vehicles. Some researchers have
tried to construct the complete autonomous driving systems
[3]. Compared with these studies, we build a complete system
and add several new modules, such as the cloud server module.
We also make some adjustments, such as considering novel
dynamic constraints, in our solution to make the vehicle more
suitable for the contact-less good transportation. In the follow-
ing sections, we provide details on the hardware, software,
as well as the algorithms to achieve autonomous navigation
including perception, planning and control. This paper is
accompanied by a demonstration video and a dataset, which

2

Industrial Personal Computer (IPC)

User Interface, perception, prediction

motion plan and motion control

Expansion board

ROS

Ubuntu

Web socket

Body Control Module (BCM)

Data retransmit, Communication

diagnosis

RTOS

Electronic Control Unit (ECU)

RTOS

Energy management and

safety diagnosis

Data Bus: Controller Area Network (CAN) / Local Interconnect Network (LIN)

Sonar Wheel Encoder Motor Drivers

PPS sync Sensor Group

GNSS, LiDAR,

cameras,

TOF cameras, IMU

Scheduling Server

Task priority management

Web socket

Ubuntu

Security Gateway

Map Server

World editor

Map editing and storage

Windows

Roadrunner

Log and Simulation Server

51

Sim-one

Data recording and replay,

model training

Ubuntu

Carla

Windows

Data

conversion

NTP time sync Task allocation and feedback

Fig. 3. The software architecture of our vehicle. The part shown in the yellow box is running on the vehicle, and the part shown in the blue box is running
on the cloud. The figure is best viewed in color.

are available at https://sites.google.com/view/hercules-vehicle.

I. HARDWARE SYSTEM

The hardware system of our vehicle mainly consists of
a fully functional Drive-by-Wire (DBW) chassis and au-
tonomous driving-related devices. Fig. 2 shows the sensors
and the 3-D model of our vehicle.

A. Fully Functional DBW Chassis

To achieve autonomous driving, the first task is to equip
a vehicle with the full Drive-by-Wire (DBW) capability. Our
DBW chassis can be divided into four parts: 1) Motion control.
This modules includes Motor Control Unit (MCU), Electric
Power Steering (EPS), Electro-Hydraulic Brake (EHB) and
Electronic Parking Brake (EPB). MCU supports both the speed
control and torque control. EPS controls the steering angle and
speed of the the vehicle. The combination of MCU and EPS
controls the longitudinal and lateral motions. EHB controls
the brake. EPB controls the parking brake; 2) Electronic acces-
sories control. A vehicle has some basic electronic accessories
such as lights and horns. They are controlled by the Body Con-
trol Module (BCM); 3) Basic sensor. Our chassis are equipped
with some basic sensors, such as bumper, wheel encoder and
Tire Pressure Monitoring System (TPMS). The bumper and
TPMS are both safety-critical sensors. Specifically, bumper is
used to detect collisions and is the last defence to prevent
further damage when accident occurs; 4) System control.
The chassis system is controlled and managed via Vehicle

Control Unit (VCU) which is responsible for coordinating each
module. It keeps communicating with the Industrial Personal
Computer (IPC), performing parameter checking and sending
commands to other modules. In addition, VCU is responsible
for critical safety functions, such as the stopping signal from
the emergency button. In our chassis, VCU and BCM are
implemented on one device.

There are two batteries in our vehicle. A 12 V Lead-
acid starter battery and a 72 V removable lithium-ion battery,
which can support the maximum 80 Km running distance.
The lithium-ion battery powers the chassis, IPC, sensors and
accessories. It has a built-in Battery Management System
(BMS) to monitor and manage the battery. The removable
design allows the vehicle to operate at 24 hours a day without
stopping for a recharge. An On-Board Charger (OBC) with a
Direct Current Direct Current (DCDC) converter takes about
5 hours to fully recharge the battery.

B. Autonomous Driving-related Devices
The devices related to autonomous driving are: 1) Compu-

tation platform. Our vehicle is equipped with an IPC which
has an Intel i7-8700 CPU with 6 cores and 12 threads, 32 GB
memory, and a 1050Ti NVIDIA Graphics card. It is able to
run deep learning-based algorithms; 2) Sensors. As shown in
Fig. 2(a), our vehicle is equipped with four 16-beam LiDAR,
one MEMS short-range LiDAR, four fish-eye cameras, 4×4
ultrasonic radars, one IMU and one high-precision GNSS
system which supports RTK and heading vector; 3) Auxiliary
devices. We have 4G/5G Data Transfer Unit (DTU), Human

https://sites.google.com/view/hercules-vehicle

3

Multi-LiDAR Input

M
ul

ti-
Li

D
A

R
 F

us
io

n

V
ox

el
N

et

3D Boxes 3D Object Detector

Fig. 4. Overview of the 3D object detection module. The inputs are multiple
point clouds captured by synchronized and well-calibrated LiDARs. We use
an early-fusion scheme to fuse the data from multiple calibrated LiDARs, and
adopt the VoxelNet [4] to detect 3D objects from the fusion results.

Machine Interface (HMI), LED display, remote controller. The
DTU allows the IPC to be connected to our cloud management
platform via the Internet. The LED display is programmable
and can be controlled by the IPC. Hence, it can interact with
other traffic participants like pedestrians and human drivers.
Also, it can be used for advertisement. The remote controller
is necessary in the current stage to ensure safety.

II. SOFTWARE SYSTEM

Fig. 3 shows the software architecture of our autonomous
vehicle. It can be generally divided into two parts: software
system running on the vehicle, and software system running
on the cloud.

A. Software System on the Vehicle

There are three main computing platforms on the vehicle:
the IPC, Electronic Control Unit (ECU) and BCM. The IPC is
used to run algorithms for autonomous navigation. The ECU
is used to ensure the safety of the vehicle by energy man-
agement and safety diagnosis. The applications on ECU run
on the Real-Time Operating System (RTOS), which satisfies
the real-time requirements. The BCM connects the IPC and
ECU. It also runs on the RTOS, which meets the real-time
requirements. It detects the communication between the nodes
of the CAN network by heartbeat protocols. When major nodes
of this network experience an outage or crash, the BCM stops
transmitting high-level CAN signals from the IPC to the VCU
and waits for human interventions.

The sensors on the vehicle are synchronized by a 1 Hz Pulse
per Second (PPS) signal from the external GNSS receiver. The
IPC receives data from the sensors and uses them at different
frequencies. For example, the state estimation module updates
at 100 Hz, providing real-time enough position feedback
for the control system. This is achieved by fusing LiDAR
measurements with other high-frequency sensors, e.g., IMU or
wheeled odometer. The LiDAR object detection module runs
at 10 Hz according to the refresh rate of the LiDAR. All the
modules are developed on the Robot Operating System (ROS)
to facilitate data communication.

B. Software System on the Cloud

The software system on the cloud mainly includes the map
server, the scheduling server and the log and simulation server.
The map server stores pre-built maps. The scheduling server
performs the task allocations and collects the status of every
registered running vehicle. It also plays the role of accessing

3D Lidar Point Cloud

IMUAccelerometer

& Gyroscope Readings

Initialization

Lidar-inertial Odometry

Undistort

Point Cloud

Feature Extraction

& Local Map

Management

Propagation &

Pre-integration

Joint Non-linear

Optimization Undistorted

Point Cloud &

Lidar Pose

Rotationally

Constrained

Mapping

Refined Global

Map & Lidar Pose

Fig. 5. The schematic diagram of our 3-D point-cloud mapping system. After
the initialization, the system will estimate the states and refine the global map
and Lidar poses in the odometry and mapping sub-modules, respectively.

the map data for routing, transmitting sensor data into the map
server, recording the key information into the log server, and
replaying the data recorded for a good trace-back. The log
and simulation server run the end-to-end simulator Carla and
51Sim-One. The clock synchronization between the platforms
on the vehicle and cloud is manipulated based on the network
time through the Network Time Protocol (NTP).

III. PERCEPTION

Perception serves as the fundamental component of au-
tonomous navigation. It provides necessary information for
planning and control. This section describes two key percep-
tion technologies used in our vehicle.

A. Multiple Lidar-based 3-D Object Detection

The 3-D object detection aims to recognize and classify
objects, as well as estimate their poses with respect to a
specific coordinate system. We use multiple Lidars for object
detection. The first step is to calibrate the Lidars. In this
work, we propose a marker-based approach [5] for automatic
calibration without any additional sensors and human inter-
vention. We assume that three linearly independent planar
surfaces forming a wall corner shape are provided as the
calibration targets, ensuring that the geometric constraints are
sufficient to calibrate each pair of Lidars. After matching the
corresponding planar surfaces, our method can successfully
recover the unknown extrinsic parameters with two steps: a
closed-form solution for initialization based on the Kabsch
algorithm [6] and a plane-to-plane iterative closest point (ICP)
for refinement. The overview of our 3-D object detection is
shown in Fig. 4. The inputs to our approach are multiple
point clouds captured by different Lidars. We adopt an early-
fusion scheme to fuse the data from multiple calibrated Lidars
at the input stage. With the assumption that the Lidars are
synchronized, we transform the raw point clouds captured by
all the Lidars into the base frame, and then feed the fused
point clouds into the 3-D object detector [4]. The final output
is a series of 3-D bounding boxes.

B. 3-D Point-cloud Mapping

The 3-D point-cloud mapping aims to build the 3-D map
of the traversed environments. Fig. 5 shows the diagram of
our mapping system. The inputs to the system are the raw
data from the IMU and 3-D Lidar (i.e., accelerometer and

4

Localization

Point cloud

IMU
Odometry

...

Sensory data

Route planning Global pathStart, destination
Road map

High resolution map

Curbs
Non-curb obstacles

Tranversable area

Static obstacles
Moving obstaclesObstacle detection

and tracking Trajectory prediction

Traffic information
Road information

Trajectory

Kinematic,

constraints
dynamic

Obstacles' trajectories

Driving maneuver
Ego vehicle pose

Motion planning

Local path planning

Behavioral planning

Fig. 6. The schematic diagram of planning for our autonomous vehicle. The planning process consists of four layers: route planning, behavioral planning,
path planning and motion planning. The four layers are coloured in pink.

gyroscope readings from the IMU and point clouds from the
3-D Lidar). The system starts with an adapted initialization
procedure, followed by two major sub-modules: the Lidar-
inertial odometry and rotationally constrained mapping. Since
the vehicle usually remains still at the beginning of mapping,
we do not need to excite the IMU to initialize the module
as described in [7], which is more suitable for hand-held
applications. With the stationary IMU readings, the initial
orientation for the first body frame can be obtained by aligning
the average of the IMU accelerations to the opposite of the
gravity direction in the world frame. The initial velocity, and
IMU biases are set to zero. Then, the lidar-inertial odometry
optimially fuses lidar and iMU measurements in a local win-
dow. The mapping with rotational constraints further refines
the lidar poses and the point cloud map.

IV. PLANNING

Planning enables autonomous vehicles to acquire future
paths or motions towards the destination. The planning for au-
tonomous driving is challenging, because traffic environments
are usually with dynamic objects, bringing about risks and
uncertainties [8]. Autonomous vehicles are required to interact
with various road participants, including cars, motorcycles,
bicycles, pedestrians, etc. The planner needs to meet the
vital requirements of safety, and the kinematic and dynamic
constraints of vehicles, as well as the traffic rules. To satisfy
these requirements, our planning is hierarchically divided into
four layers: route planning, behavioral planning, local path
planning, and motion planning. Fig. 6 shows the four-layer
planning process.

A. Route Planning

The route planning aims at finding the global path from
the global map. For autonomous driving, the route planner
typically plans a route given the road network. For structured
environments with clear road maps, we use path planning
algorithm A* to find the route by establishing the topological
graph. However, driveways in industrial parks or residential

areas are often not registered in the road net. Furthermore,
some of the traversable areas in these places are unstructured
and not clearly defined. We employed experienced drivers
as teachers to demonstrate reference routes in these places.
Fig.8 shows the global routes in the road network with arrows
indicate the forward directions.

B. Behavioral Planning

Behavioral planning decides the manoeuvres for local navi-
gation. It is a high-level representation of a sequence of vehicle
motions. Typical manoeuvres are lane keeping and overtaking.
This layer receives information from the global maps and
finds the category of the local area to give specifications on
path planning. For example, unstructured environments, like
parking lots, have different requirements on planning. Given
the road map and the localization of the ego-vehicle, features
of the local area can be obtained. As shown in Fig. 6, road
information that indicates the road environment classification
of the global path segments is helpful for behavioral planning.
Furthermore, traffic information from traffic signs helps in
making decisions. The road and traffic information together
with the estimation of other moving agents allows the behav-
ioral planner to follow or overtake the front car, or pull over
the ego-vehicle.

C. Local Path Planning

The local path planning generates a geometric path from the
starting pose to the goal pose for the vehicle to follow. The
time complexity of this process increases with increased path
length, so it is often limited to a local range to ensure real-
time planning. The local path planner needs to tackle motion
constraints of the vehicle to generate collision-free paths that
conform to the lane boundaries and traffic rules. Fig. 6 shows
the online local path planning for driving on standard roads.
Here we plan the path in the Frenet coordinate system. With
the global path as the reference path, it defines the lateral shift
to the path and the distance travelled along the path from the
start position. We drew multiple samples with different speeds

5

and lateral offsets. Then a graph search method is adopted to
search the path with the minimum cost. To define the cost of
the coordinates of each curve, we take into consideration the
quality of the curve, ending offset to the global path, and other
factors (e.g., the potential trajectories of other agents).

D. Motion Planning

Given the planned path, motion planning is the final layer
which optimizes the trajectory with dynamic constraints from
the vehicle, the requirements for comfort and energy con-
sumption. The planned trajectory specifies the velocity and
acceleration of the vehicle at different timestamps, so it is
also called trajectory planning. Though the path planned in
the Frenet frame contains speed information, the dynamic
constraint of the vehicle is not yet considered. Besides this, the
local planning process is time-consuming and has a low update
rate, which is inadequate to handle dynamic obstacles and
emergency cases. The motion planner optimizes the trajectory
given the information of obstacles, the constraints from the
vehicle, and the path from the local path planner. It outputs
the final trajectories for the controller to follow at a much
higher updating rate to ensure safety.

V. CONTROL

The main task of vehicle control is to track the planned tra-
jectory. In the past decade, many trajectory tracking controllers
have been developed, among which the Model Predictive
Controller (MPC) [9] is the most popular one. The schematic
diagram of our controller is shown in Fig. 7.

As we can see, there are two inputs to the trajectory
tracking controller. One is the trajectory s(t), which includes
the information (e.g., desired coordinates, curvatures, speed)
from the motion planner, the other is the feedback information
x′(t) from the state estimator. Sometimes, sensor feedback
from the chassis cannot be directly sent to the controller,
or more feedback quantities are required by the controller,
which is difficult to obtain from sensors. In such cases, a state
feedback estimator is required but is not a must. In Fig. 7,
the output of the trajectory tracking controller u(t) is sent to
the chassis after being processed by a lower controller. The
lower controller can work for many purposes. For example, our
autonomous vehicle can work in both the autonomous-driving
mode and the parallel-driving model (i.e., the remote control
mode). The trajectory tracking controller only functions in the
autonomous-driving mode, which means that only in this mode
the lower controller takes as input u(t).

The vehicle control can be divided into the lateral control,
which controls steer angles, and the longitudinal control,
which controls the car speed. There are two types of MPCs in
the area of the autonomous vehicle. One is kinematics-based
while the other is dynamics-based. A kinematics-based MPC
is a combined controller that integrates the lateral control and
longitudinal control. Therefore, the longitudinal PID controller
highlighted in the dashed box in Fig. 7 may be not required.
The vector of two control quantities u(t) (i.e., steer angle
and speed), will be directly given by the MPC. However,
the dynamics-based MPC is a standalone lateral controller of

Simplified
Car Model

Predictive
Model

Extend to Predictive time
domain

Objective Function
& Constraint Conditions

Optimal Solution

MPC Controller

Longitudinal PID Controller

+

Trajectory Tracking Controller

Motion
Planner

s(t) Lower
Controller

u(t)

Unmanned CarState Estimator
u'(t)x(t)

x'(t)

Fig. 7. The schematic diagram of our controller. The main component is the
trajectory tracking controller.

which the output is a control quantity of the steering angle.
In such a case, a longitudinal PID controller that outputs the
speed control quantity will be required. And the outputs of
these two controllers constitute u(t).

VI. EVALUATION

This section describes the real tasks of contact-less goods
transportation using our vehicle during the outbreak of
COVID-19 in China. From Feb. 2, 2020 to May. 27, 2020,
we have deployed 25 vehicles in 3 different cities (Zibo,
Shandong; Suzhou, Jiangsu; Shenzhen, Guangdong) in China.
Our current server can handle 200 vehicles simultaneously.
The total running distances of each vehicle reached 2,500
Km. The details of the transportation tasks are summarized
in Tab. I. Selected demonstration photos during the tasks are
displayed in Fig. 8. Note that in case of failures during the
autonomous navigation, such as unavoidable accidents and
system errors, we build a parallel driving system to back up
our vehicle control. The parallel driving system is a remote
control system based on 4G/5G technology. When using 4G
with good signal, the latency is usually between 30ms and
60ms. We set the system to automatically adjust the bit rate
to ensure that the vehicle is not out of line. When using 5G,
the latency can be less than 20ms. If the vehicle is out of line,
it will stop immediately. We have tested the function with
several vehicles on several real road environments, and the
experimental results show that the function works well. The
vehicle control is immediately taken over by a human driver in
case of any failure for the autonomous navigation. We expect
less human intervention during our goods transportation tasks.
The performance is evaluated by the number of occurrences
of human interventions.

VII. LESSONS LEARNED AND CONCLUSIONS

For object detection, we found that real-time performance
deserves much more attention than accuracy in practice. The
perception algorithms should be efficient since they are always
the front-end of the entire autonomous navigation system.
Therefore, we replaced the dense convolution layers with
spatially sparse convolution in our 3D object detection module.
As a result, the inference time is boosted from 250 ms

6

(a)

(b) (c)

(d) (e)

(f) (g) (h)

(i) (j) (k)

(l) (m) (n)

Fig. 8. Selected task routes and demonstration photos. The first column includes three representative routes: (a) A 9.6 Km route in Zibo, Shandong for
vegetable delivery; (f) A 1.2 Km route in Suzhou, Jiangsu for lunch meal delivery; (i) A 1.6 Km route in Shenzhen, Guangdong for lunch meal delivery.
Photos taken in Zibo, Shandong: (b) Starting from the logistics company; (c) Crossing the gate of the logistics company; (d) and (e) Urban main roads. Photos
taken in Suzhou, Jiangsu: (g) Left turn; (h) Spraying disinfectant in a residential area. Photos taken in Shenzhen, Guangdong: (j) Heavy traffic environment;
(k) Surrounded with road users and meeting with oncoming cars; (l) U-turn in a narrow road; (m) Traffic light at night; (n) Contact-less picking up meal.

7

TABLE I
THE DETAILS OF THE CONTACT-LESS GOODS TRANSPORTATION TASKS DURING THE OUTBREAK OF COVID-19 IN CHINA.

City Task Distance Time Duration Payload Environments Characteristics

Zibo,
Shandong

Vegetable Delivery 9.6 Km 75 min 600 KG Urban Main Road
Light Traffic

Heavy Payload
Slow Speed

Vegetable Delivery 5.4 Km 50 min 960 KG
Urban Main Road
Residential Area

Light Traffic
Heavy Payload

Slow Speed

Suzhou,
Jiangsu

Meal Delivery 1.2 Km 30 min
80 KG

(100 boxes of meals)
Urban Main Road

Medium Traffic
Left-turn
U-turn

Road Disinfection 0.6 Km 10 min - Residential Area
Narrow Road

Crowded Obstacle
Slow Speed

Shenzhen,
Guangdong

Meal Delivery 1.6 Km 20 min
64 KG

(80 boxes of meals)
Urban Main Road
Residential Area

Heavy Traffic
Narrow Road

U-turn

Meal Delivery 4.0 Km 40 min
96 KG

(120 boxes of meals)
Urban Main Road
Residential Area

Heavy Traffic
Narrow Road

U-turn

approximately to 56 ms. For the point-cloud mapping, we
found that our system was capable of dealing with the rapid
motion of the vehicle and short-term point-cloud occlusions.
Since most of the Lidars are mounted parallel to the ground
and the vehicles always move along the ground, the typical
ring structure of the point clouds makes the system difficult
to observe in terms of translational movements vertical to
the ground plane. Drift in this direction is inevitable during
long-time operations. In practice, we learned that the GPS
localization results signaled the potential loop, which led to
a consistent larger-region map for Lidar-based localization. In
very crowded dynamic traffic environments, the system could
be degraded by the disturbances from moving objects [10].
To tackle this issue, we use semantic segmentation to remove
movable objects to get clear point-cloud data.

For the planning part, we found the four-layer hierarchical
planning necessary and effective. The application environ-
ments of our vehicle are complex in the sense of road
structures, traffic conditions, driving etiquette, etc. Layer-wise
planning makes the system extensible for multiple environ-
ments and various requirements. Furthermore, it is essential
to attach importance to the uncertainty from the perception
modules. The uncertainty comes from the limited accuracy of
the perception system as well as the time delay in processing.
For the planning, we avoid hitting the critical conditions and
leave safe distances for the planned trajectory.

For the control part, we found that the greatest advantage
of using an MPC can be gained by adding multiple con-
straints in the control process. When the vehicle operates
at low speed, the kinematic constraints restrain the vehicle
motion planning and control. But with the increment of speed,
dynamic characteristics become more influential. As afore-
mentioned, the dynamic-based MPC is much more accurate
than the kinematic-based MPC since the predictive model is
more accurate. However, we found that the complex-model
prediction is not the best option. With regards to low- and
middle-speed operation environments, a simplified predictive

model with multiple constraints would be sufficient.

From the real-life operations, we found that more con-
servative settings for obstacle detection could lead to more
false positives. This would decrease the speed or even freeze
the vehicle, and hence cause traffic jams. On some roads,
the minimum allowed speed is not indicated, we need to
keep the vehicle speed not too slow. Otherwise, it would
cause annoyance for other vehicle drivers. Clearly and easily
identified human-machine interface is also important. It can
be used to inform other vehicle drivers what the autonomous
vehicle will do in advance. Otherwise, the other vehicle
drivers would feel frightened because they could not anticipate
the behaviours of the autonomous vehicle. For example, our
vehicle often frightens other vehicle drivers when it is making
a reverse even the reversing light is flashing. Using a screen
to notify the reversing behaviour could alleviate the issue. In
some cases, not strictly obeying the traffic rules would be
good for the autonomous navigation. For example, it would be
wise to change the lane when there happens a traffic accident
ahead of the ego-lane, even the lane changing behaviour is not
allowed according to the traffic rules. Otherwise, the vehicle
could not get over.

The successful daily operations demonstrated that using
our autonomous logistic vehicle could effectively avoid virus
spread due to human contact. It effectively provides a physical
wall between the recipient and sender during the process
of goods transportation. For quantitative measures, we can
compute from Tab. I that the average distance for each task
per vehicle is (9.6+ 5.4+ 1.2+ 0.6+ 1.6+ 4.0)/6 ≈ 3.7Km.
As the total running distance is 2,500Km, the number of
tasks is 2,500/3.7≈ 676. According to our observation, there
are usually 4 times of person-to-person contacts in each task
of the traditional goods transportation. So the number of
avoided contacts would be 4× 676 = 2,704. As we have 25
running vehicles, the total number of avoided contacts would
be 25×2,704= 67,600. Currently, there is a huge demand for
contact-less goods transportation in many infected areas. We

8

believe that continuous operations could extensively improve
our vehicle and speed up the maturity of our autonomous-
navigation technology.

VIII. ACKNOWLEDGEMENTS

This work was supported by the Hong Kong RGC
Project No. 11210017, Guangdong Science and Tech-
nology Plan Guangdong-Hong Kong Cooperation Innova-
tion Platform Project No. 2018B050502009, Shenzhen Sci-
ence and Technology Innovation Commission Project No.
JCYJ2017081853518789, Macao Science and Technology De-
velopment Fund Project No. 0015/2019/AKP.

REFERENCES

[1] D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan, “Planning for
autonomous cars that leverage effects on human actions.” in Robotics:
Science and Systems, vol. 2. Ann Arbor, MI, USA, 2016.

[2] P. Koopman and M. Wagner, “Challenges in autonomous vehicle testing
and validation,” SAE International Journal of Transportation Safety,
vol. 4, no. 1, pp. 15–24, 2016.

[3] M. R. Endsley, “Autonomous driving systems: A preliminary naturalistic
study of the tesla model s,” Journal of Cognitive Engineering and
Decision Making, vol. 11, no. 3, pp. 225–238, 2017.

[4] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud
based 3d object detection,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 4490–4499.

[5] J. Jiao, Q. Liao, Y. Zhu, T. Liu, Y. Yu, R. Fan, L. Wang, and M. Liu,
“A novel dual-lidar calibration algorithm using planar surfaces,” in 2019
IEEE IV. IEEE, 2019, pp. 1499–1504.

[6] W. Kabsch, “A discussion of the solution for the best rotation to relate
two sets of vectors,” Acta Crystallographica Section A: Crystal Physics,
Diffraction, Theoretical and General Crystallography, vol. 34, no. 5, pp.
827–828, 1978.

[7] H. Ye, Y. Chen, and M. Liu, “Tightly coupled 3d lidar inertial odometry
and mapping,” in 2019 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2019.

[8] M. Liu, “Robotic online path planning on point cloud,” IEEE transac-
tions on cybernetics, vol. 46, no. 5, pp. 1217–1228, 2015.

[9] C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control:
theory and practice—a survey,” Automatica, vol. 25, no. 3, pp. 335–348,
1989.

[10] Y. Sun, M. Liu, and M. Q.-H. Meng, “Improving RGB-D SLAM in
dynamic environments: A motion removal approach,” Robotics and
Autonomous Systems, vol. 89, pp. 110 – 122, 2017.

Tianyu Liu Shenzhen Unity Drive Innovation Technology
Co. Ltd., Shenzhen, China. Email: liutianyu@unity-drive.com.

Qinghai Liao The Hong Kong University of Science and
Technology, Clear Water Bay, Hong Kong, China. Email:
qinghai.liao@connect.ust.hk.

Lu Gan The Hong Kong University of Science and
Technology, Clear Water Bay, Hong Kong, China. Email:
lganaa@connect.ust.hk.

Fulong Ma The Hong Kong University of Science and
Technology, Clear Water Bay, Hong Kong, China. Email:
fmaaf@connect.ust.hk.

Jie Cheng The Hong Kong University of Science and
Technology, Clear Water Bay, Hong Kong, China. Email:
jchengai@connect.ust.hk.

Xupeng Xie The Hong Kong University of Science and
Technology, Clear Water Bay, Hong Kong, China. Email:
xxieak@connect.ust.hk.

Zhe Wang Shenzhen Unity Drive Innovation Technology
Co. Ltd., Shenzhen, China. Email: wangzhe@unity-drive.com.

Yingbing Chen The Hong Kong University of Science
and Technology, Clear Water Bay, Hong Kong, China. Email:
ychengz@connect.ust.hk.

Yilong Zhu The Hong Kong University of Science and
Technology, Clear Water Bay, Hong Kong, China. Email:
yzhubr@connect.ust.hk.

Shuyang Zhang Shenzhen Unity Drive Innovation Technol-
ogy Co. Ltd., Shenzhen, China. Email: shuyang.zhang@unity-
drive.com.

Zhengyong Chen Shenzhen Unity Drive Innovation
Technology Co. Ltd., Shenzhen, China. Email:
chenzhengyong@unity-drive.com.

Yang Liu The Hong Kong University of Science and
Technology, Clear Water Bay, Hong Kong, China. Email:
yang.liu@connect.ust.hk.

Meng Xie Shenzhen Unity Drive Innovation Technology
Co. Ltd., Shenzhen, China. Email: xiemeng@unity-drive.com.

Yang Yu The Hong Kong University of Science and
Technology, Clear Water Bay, Hong Kong, China. Email:
yyubj@connect.ust.hk.

Zitong Guo Shenzhen Unity Drive Innovation Technol-
ogy Co. Ltd., Shenzhen, China. Email: guozitong@unity-
drive.com.

Guang Li Shenzhen Unity Drive Innovation Technology
Co. Ltd., Shenzhen, China. Email: liguang@unity-drive.com.

Peidong Yuan Shenzhen Unity Drive Innovation Technol-
ogy Co. Ltd., Shenzhen, China. Email: yuanpeidong@unity-
drive.com.

Dong Han Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China. Email:
dong.han@siat.ac.cn.

Yuying Chen The Hong Kong University of Science and
Technology, Clear Water Bay, Hong Kong, China. Email:
ychenco@connect.ust.hk.

Haoyang Ye The Hong Kong University of Science and
Technology, Clear Water Bay, Hong Kong, China. Email:
hy.ye@connect.ust.hk.

Jianhao Jiao The Hong Kong University of Science and
Technology, Clear Water Bay, Hong Kong, China. Email:
jjiao@connect.ust.hk.

Peng Yun The Hong Kong University of Science and
Technology, Clear Water Bay, Hong Kong, China. Email:
pyun@connect.ust.hk.

Zhenhua Xu The Hong Kong University of Science and
Technology, Clear Water Bay, Hong Kong, China. Email:
zxubg@connect.ust.hk.

Hengli Wang The Hong Kong University of Science and
Technology, Clear Water Bay, Hong Kong, China. Email:
hwangdf@connect.ust.hk.

Huaiyang Huang The Hong Kong University of Science
and Technology, Clear Water Bay, Hong Kong, China. Email:
hhuangat@connect.ust.hk.

Sukai Wang The Hong Kong University of Science and
Technology, Clear Water Bay, Hong Kong, China. Email:
swangcy@connect.ust.hk.

Peide Cai The Hong Kong University of Science and
Technology, Clear Water Bay, Hong Kong, China. Email:
peide.cai@connect.ust.hk.

9

Yuxiang Sun The Hong Kong University of Science and
Technology, Clear Water Bay, Hong Kong, China. Email:
eeyxsun@ust.hk.

Yandong Liu Shenzhen Institutes of Advanced Technol-
ogy, Chinese Academy of Sciences, Shenzhen, China. Email:
yd.liu@siat.ac.cn.

Lujia Wang Shenzhen Institutes of Advanced Technol-
ogy, Chinese Academy of Sciences, Shenzhen, China. Email:
lj.wang1@siat.ac.cn.

Ming Liu The Hong Kong University of Science and
Technology, Clear Water Bay, Hong Kong, China. Email:
eelium@ust.hk.

