IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2020 1

Robot Navigation in Crowds by Graph
Convolutional Networks with Attention Learned
from Human Gaze

Yuying Chen*, Congcong Liu*, Ming Liu, Bertram E. Shi

Abstract—Safe and efficient crowd navigation for mobile robot
is a crucial yet challenging task. Previous work has shown
the power of deep reinforcement learning frameworks to train
efficient policies. However, their performance deteriorates when
the crowd size grows. We suggest that this can be addressed by
enabling the network to identify and pay attention to the humans
in the crowd that are most critical to navigation. We propose a
novel network utilizing a graph representation to learn the policy.
We first train a graph convolutional network based on human
gaze data that accurately predicts human attention to different
agents in the crowd as they perform a navigation task based on
a top down view of the environment. We incorporate the learned
attention into a graph-based reinforcement learning architecture.
The proposed attention mechanism enables the assignment of
meaningful weightings to the neighbors of the robot, and has the
additional benefit of interpretability. Experiments on real-world
dense pedestrian datasets with various crowd sizes demonstrate
that our model outperforms state-of-art methods, increasing task
completion rate by 18.4% and decreasing navigation time by
16.4%.

Index Terms—Autonomous Vehicle Navigation, Deep Learning
in Robotics and Automation, Social Human-Robot Interaction

I. INTRODUCTION

ITH the rapid development of artificial intelligence

technologies, mobile robot navigation has many vi-
tal applications in crowded pedestrian environments such as
hospitals, shopping malls, and canteens. In these scenarios
with dense crowds, navigating robots safely and efficiently is
a crucial, yet still challenging, problem [1].

Traditional approaches often treat pedestrians as simple
dynamic obstacles and focus only on the next step [2], [3].
Since these approaches do not model human behavior, they
result in robot behavior that can seem unnatural and short-
sighted. To achieve better long-term navigation, many research
efforts have included reasoning about human intention and
prediction of human trajectories before planning [4], [5].

Manuscript received: September, 10, 2019; Revised November, 15, 2019;
Accepted January, 14, 2020.

This paper was recommended for publication by Editor Dan Popa upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
supported in part by the Hong Kong Research Grants Council under grant
number 16211015 and was supported by the National Natural Science Founda-
tion of China, under grant No. U1713211, the Research Grant Council of Hong
Kong SAR Government, China, under Project No. 11210017, No. 21202816,
and the Shenzhen Science, Technology and Innovation Commission (SZSTI)
under grant JCYJ20160428154842603, awarded to Prof. Ming Liu.

* These two authors contributed equally

All the authors are with the Hong Kong University of Science and Tech-
nology. {ychenco, cliubh, eelium, eebert}@ust .hk

Digital Object Identifier (DOI): see top of this page.

L

Adjacency - ;_'.: .

Adjacency !-
by .

Fig. 1: We represent the interactions among the humans and
the robot as a graph whose node state and edge strength both
vary over time. We aggregate crowd features using a graph
convolutional network whose adjacency matrix is modulated
by attention.

However, doing prediction and planning separately may cause
the freezing robot problem when crowd density grows, because
the planner believes every forward path will cause collision
[6]. To address this problem, a key solution is to consider the
impact of the motion of the robot on the crowds.

Current solutions can be divided into two categories: model-
based and learning-based. Model-based methods mainly ex-
tend existing multi-agent collision avoidance solutions with
explicit models of social interactions [7[], [8]]. However, the
model parameters need to be tuned for different application
scenarios. More recent research has used deep reinforcement
learning (RL) successfully to learn efficient policies that model
the cooperation and interactions implicitly [9]—[/11]].

Deep RL methods proposed for crowd navigation have
been model-based. They use reinforcement learning to learn
a deep neural network that estimates the value function of a
given robot-crowd configuration. This value function is used in
conjunction with a state transition function to perform action
selection. Previously proposed approaches differ primarily in
the structure of the networks used to encode the robot-crowd
state and to estimate the corresponding value. There are several
limitations of current models, which cause their performance
to degrade when the crowd density increases [9]], [[10]]. First,
existing models have considered only pairwise interactions
between the robot and each human in the crowd. By estimating
these pairwise interactions independently, these approaches do
not completely capture the global and dynamic nature of crowd
interactions. Second, information about the crowd is obtained
by combining information from these pairwise interactions
by pooling [9], [12], [[13[], a maximum operation [11] or an
LSTM that combines information about the humans in the

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2020

crowd sequentially according to their proximity to the robot
[10]. This does not completely capture important geometric
information about the configuration of crowds and the robot.

This work addresses these shortcomings in two ways. First,
we use a graph structure to represent the crowd state. Second,
we use gaze data from humans performing a navigation task
to learn a network that assigns different weights to different
agents in the crowd according to their importance as measured
by attention. Previous research has shown that deep networks
trained for many visuomotor tasks such as driving [14], [[15]]
and video games [[16] can benefit from the guidance of human
attention as measured by gaze.

As depicted in Fig. for robot navigation in dynamic
crowds, it is natural to use a graph structure, which captures
the relations (edges) between agents (nodes) to represent
the crowd state. Recently, Graph Convolutional Networks
(GCNs) with arbitrarily structured graphs have been applied
successfully in various areas, such as social networks [17]
and citation networks [18]]. A GCN takes a feature matrix
that represents the attributes of each node as the input, and
efficiently aggregates features from neighborhoods defined
by an adjacency matrix. One advantage of using a GCN to
encode the state is that the interactions between nodes can be
modulated easily by changing the adjacency matrix.

There are three primary contributions of our work. First, we
demonstrate that it is possible to train an attention network
that accurately predicts human attention in crowd navigation
scenarios. Second, we propose a novel graph-represented re-
inforcement learning method for the crowd navigation task
and demonstrate the architecture has significant benefits in
scalability and extensibility. Third, we show that incorporating
adjacency weights based on the human attention model into
the method results in performance that exceeds the state-of-
the-art on five real world pedestrian trajectory datasets.

II. RELATED WORK

A. Robot navigation in crowds

Previous researchers have proposed many methods to solve
the navigation problem. The Social Force Model [19] is
one of the representative methods that has been successfully
applied and extended in different environments [7]], [20], [21]].
Reciprocal velocity obstacles (RVO), which consider com-
munications with other agents, were proposed in multi-agent
navigation scenarios [2]]. More recently, ORCA enables mul-
tiple robots to avoid collisions when navigating in a cluttered
workspace [3]]. The main limitations of these model-based
methods are that they require tedious parameter selection and
that they may lead to unnatural robot behaviors, since they do
not fully capture real human behavior.

Alternatively, imitation learning aims to learn optimal poli-
cies directly from human demonstration. In the context of
robot navigation, previous work has used imitation learning
to obtain policies supervisedly from raw 2D laser data [22]]
or depth inputs [23]. Inverse reinforcement learning has also
been applied to model human cooperative navigation behavior
through maximum entropy [24], [25].

Deep reinforcement learning algorithms learn policies while
the robot interacts with the environment through trial-and-
error. For robot navigation, recent work has used reinforcement
learning methods to learn policies from raw sensor inputs
[26] or agent-level representations of the environment [9],
[10]. Learning from raw sensor representation has the benefit
that static and dynamic obstacles can be considered together
through a single neural network. However, an agent-level
representation can provide a richer high-level representation of
pedestrian intent, which is difficult to extract from raw sensor
information. One challenge is the varying crowd size. Everett
et al. [|10] converted the state of a variable-sized crowd to a
fixed-length vector using an LSTM module that processed each
pedestrian’s state in descending order of their distance from the
robot. However, assigning importance according to distance
is not always reasonable. For example, a pedestrian closely
following a robot may be less important than a pedestrian
farther in front of it. Chen et al. adopted a self-attention
module to assign different relative importances to different
parts of the crowd [9]]. Here, we infer the relative importance of
agents in the crowd to the robot by learning attention weights
from gaze data collected from humans performing a crowd
navigation task based on a top down view of the environment.

B. Graph representation learning

Graph Convolutional Networks (GCNs) have attracted much
attention for graph representation learning since they gener-
alize the convolution operation to graph-structured data effi-
ciently. GCNs have achieved remarkable successes in various
research areas such as citation networks [18]], social networks
[17] and material property prediction [27]. In the training
of a GCN, a static binary adjacency matrix is commonly
used. However, the entries in the adjacency matrix can also
be continuous real valued functions of time, which enables
adaptive and dynamic aggregation of neighbors’ information.

A Graph Attention Network (GAT) is a GCN variant that
adopts a self-attention mechanism allowing for the assignment
of different importances to different nodes [28]]. Similarly,
the Edge Attention based multi-relational GCN replaces the
adjacency matrix with a learned real-valued attention matrix,
and has been used to optimize chemical property prediction
[29]. Here, we modulate the interactions in the crowds using
attention weights learned from human gaze data to determine
the adjacency matrix.

C. Human attention in visuomotor learning

Human attention has been proved to be beneficial in learn-
ing effective policies for many visuomotor tasks, such as
autonomous driving [14], [15] and Atari games [16]. Liu et
al. [14] trained a conditional GAN to predict human attention
and incorporated it into an end-to-end autonomous driving
network. They added the predicted gaze map as an extra
input to the network. Similarly, Zhang et al. [[16] proposed an
attention guided imitation learning network, which also treats
the gaze map as additional image input in the task of eight
Atari Games. Chen et al. proposed a novel form of dropout
modulated by human gaze maps, and applied it to an imitation

CHEN et al.: ROBOT NAVIGATION IN CROWDS BY GRAPH CONVOLUTIONAL NETWORKS WITH ATTENTION LEARNED FROM HUMAN GAZE 3

@ Attention network

@ Value network

o a,

r GCN ’
Og ag f MLP
01 — > ai > =}

: 1 : = (cr

' 28 ' 3
ON anN

A 1/(N+2) 1/(N +2) A Qryp Qp1—N

“\ 12 1/2 v \1/2 I1/2
@ Crowd aggregation network i
P qr MLP (S GCN Cy
P a1 551 C1
Ser | T — B o e

: : : 50 :
P anN 150100 eN m CN

Fig. 2: The network structure for graph based V-learning with learned human attention. The attention network generates
attention weights for each node. These weights are normalized and used in the adjacency matrix of the GCN that aggregates
information about the crowd. The aggregated crowd information and the robot state are used to predict the value V of each
possible state. Subscripts r and g indicate the robot and goal. Numerical subscripts index humans in the crowd.

learning network for autonomous driving [[15]]. The proposed
gaze-modulated dropout leads to significant improvements in
driving performance.

III. NETWORK ARCHITECTURE

Fig. [2] shows the proposed network structure for attention-
based value-learning (V-learning) using a graph representation.
As shown in the top left of the framework, we first train a
two-layer GCN to predict human attention to agents in the
crowd. The learned attention weights are incorporated into
the adjacency matrix of a second GCN, which aggregates
the crowd information. Finally, the aggregated crowd features
and robot state are combined to estimate the value of the
crowd/robot state.

In this section, we first introduce the use of graph convolu-
tional networks to process crowd information in the attention
network and the crowd aggregation network. We then describe
each of the three parts of Fig.[2]in detail. This section describes
only the structure of the network. Training and testing are
described in the next section.

A. Graph convolutional networks for crowds

Handling the varying numbers and large densities of humans
has always been a problem for crowd robot navigation. How-
ever, the problem can be solved neatly with graph representa-
tions. Nodes in the graph correspond to the robot, the agents
in the crowd, and the goal. For simplicity, we will refer to
the agents in the crowd as humans, but the framework applies
equally well if the crowd includes other robots. We assume
the number of humans, N, is known.

We propose to use graph convolutional networks (GCNs)
to process information about the crowd. To each node in
the network, we associate a feature vector, which contains
important information about the node. The graph convolutional
layer is the key building block of a GCN. It takes input feature
vectors for each node and transforms them to output feature
vectors for each node by combining information both within

and across nodes. The set of input feature vectors for the
nodes in layer [are contained in a matrix H' € RM*! where
M is the number of nodes in the graph and I is length of
the input feature vector. These are transformed into a set of
output vectors contained in a matrix H'*! € RM*O (O is
the output feature dimensionality) according to the layer-wise
update rule:

H''' = o (AH'W') (1)

W! ¢ R’XO is a weight matrix. The adjacency matrix
A € RM*M defines the weights for combining the features
from different nodes in the graph. We normalize it so that
each row sums to one. o(-) denotes the activation function.
To increase complexity, successive graph convolutional layers
can be cascaded.

The adjacency matrix reflects the topology of the graph
structure. Zero values represent no connections between corre-
sponding nodes. Larger values represent stronger connections.
For the graph of interactions among the robot and humans,
the meaning of the adjacency matrix is shown in Fig[3] The
adjacency matrix is divided into three functional areas. The
red and green areas are related to the human-robot interactions.
Elements in the red area represent the importance that the robot
assigns to the humans and itself, which can also be interpreted
as attention. Elements in the green area indicate the influence
of the robot on the humans. The blue area determines the
interactions among the crowd.

Since we were primarily interested in modeling the robot’s
perspective, we used a star topology that included self-loops
with the robot as the central connection point [[18]]. We focused
on how to set the weights in the red area. For the green and
blue areas, we set the values by first defining a binary array
indicating connections, and the normalizing each row, resulting
in the following assignments:

Qjp = 1/2 (2)

_) 0i#]
ij = {1/272' =3 3)

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2020

r 1 N
r (788 ar1 arN
1 [a, an aiN
N \an, an: aNN

Fig. 3: The adjacency matrix of the graph network for crowd
aggregation. The red area determines the effect of the humans
and the robot on the robot itself. The green area depends on
the visibility of the robot to the human. The blue area models
the interaction among the crowd. The subscript 1’ indicates
the robot. Numerical subscripts indicate humans

where i,j € {g,1,...,N}.

Note that we can easily extend the size of the GCN as
the crowd size N grows, simply by increasing the number
of nodes (M) and the size of the adjacency matrix. The size
of the weight matrix is determined by the input and output
feature dimensionality, and does not change with M.

B. Attention Network

We use a two-layer GCN to compute the attention weights.
The robot, goal and humans are all included as nodes. Thus,
the total number of nodes is M = N +2, where N is the total
number humans in the crowd.

The input features of each node are the corresponding
position and velocity, expressed in robot-centric coordinate
system where the x axis points in the direction of the goal.
For node ¢ € {r,g,1,..., N}, the input features are

0i = [T4, Yi, Vi, Uyi)- 4

We set the output feature dimensionality of each node in
the first layer to 128. The output of each node in the second
layer is a scalar value corresponding to the attention of the
robot to that node. For both layers, the activation function is
the ReLU. The weights in the red part of the adjacency matrix
A, are all set to the same value, as shown in Fig.

C. Crowd aggregation network

The robot and humans, but not the goal, were included as
graph nodes for the crowd aggregation network. Thus, the total
number of nodes in the GCN is M = N + 1.

The input features for each node included information about
the robot, the goal and the corresponding agent. For node ¢ €

{r,1,..., N}, the input features were:
S; = [paqi]7 (5)
P= [dgoala Upref 07 Trobots Vzr, Uyr]a (6)
Ui = [T, Yis Vaiy Vyir Tiy iy Trobot + 7). @)

The vector p contains information about the state of the robot
and the goal, including distance between the robot and the
goal dgoa1, the robot’s preferred velocity vpres, the robot’s
moving direction €, the radius of the robot 7.0t and the
robot’s velocity (v, vy,n). q; represents the state of the node,
including its position (z;,y;), velocity (vgs,vy:), radius r;,

distance to the robot d; and sum of the radii r.opot + 75-
All positions and velocities are in a robot-centric coordinate
system where the x axis points in the direction of the goal.
We refer to the entire collection of input node features as the
crowd/robot state, S.p.

As shown in Fig[J] the input state of each node first passes
through a two-layer multilayer perceptron (MLP) to increase
the feature length to 100 for sufficient expressive power. The
outputs of the MLP {e;} are then sent into a two-layer GCN.
For both layers, the activation function is the ReLU.

In our experiments, we considered four ways to set the
weights in the red part of the adjacency matrix A,. In our
proposed method, which we refer to as Gaze modulated GCN-
based RL (G-GCNRL), we set the weights by first passing
the outputs of the robot and human nodes of the attention
network through a softmax function to normalize them, and
then using the outputs of the softmax function as the corre-
sponding adjacency weights. For comparison, we also trained
three baseline models with the weights from the self-attention
module of SARL [9] (SA-GCNRL), distance-related weights
(D-GCNRL) and uniform weights (U-GCNRL). The distance-
related weights capture the intuition that humans closer to the
robot should exert a stronger influence on it. These weights
decayed with the distance between the human and the robot
according to

2, 2
efdi]-/a

E;‘Lzl e~ /o’
The parameter o2 was set to 2, based on a brute force search
to maximize success rate of the D-GCNRL after imitation
learning. The uniform weights were all equal and summed
to one, resulting in an adjacency matrix similar to A,.

Aj5 = 1= 172, ..n (8)

D. Value network

The output features of the robot node in the second layer of
the crowd aggregation network, c,, are used to represent the
influence of the crowd on the robot. There are concatenated
with the robot state p before being sent into the value network,
which is a four-layer MLP with (150,100,100,1) neurons in the
layers. The scalar output of the network represents the value
of the crowd/robot state and is used for action selection, as
described in the next section.

IV. TRAINING AND TESTING

We learned the attention network G with supervision from
human gaze data.

To collect the gaze data, we reproduced overhead scenes
from the StudentsOOI and StudentsO03 real world crowd
datasets [30] in a simulator, and asked subjects to navigate
a virtual robot through the crowd from a starting point to the
goal using a joystick, while avoiding collisions. We used a
Tobii Pro X60 remote eye tracker to collect gaze data at 60
Hz while subjects were performing the task. This experimental
setup is similar to work collecting human gaze data while
subjects played Atari games [|16].

To generate the ground truth attention weights for each
robot/crowd state configuration in the dataset, we first created

CHEN et al.: ROBOT NAVIGATION IN CROWDS BY GRAPH CONVOLUTIONAL NETWORKS WITH ATTENTION LEARNED FROM HUMAN GAZE 5

Algorithm 1: Deep V-learning

Input: collected state-value pairs < S, V' >
/* Imitation learning */
1: for epoch = 1 to num of epochs do
20 V=F (Ser,w)
3: e=MSE(V,V)
4: w = backprop (e, w)
5: end for
/* Reinforcement learning */

6: for episode =1 to num of episodes do
7: while not reach goal, collide or timeout do
8: u; = argmax,,cv R (SE,,u;) + 7 F (St w),
where S%+1 = propogate (u;, S?).
9: Store < St R (St u) >.
10: S+l = update (ug, St);t=1+1

11: end while

12: Update replay buffer O.

13: Train value network with data from O.
14: end for

ETH

40 /frame‘ 26 /frame 36 /frame 7 /frame 6 /frame 6 /frame

Fig. 4: Datasets used in the simulation environment. The col-
ored lines show pedestrian trajectories. For better visualization,
the trajectories shown are down sampled by ten times. The
black triangles show the starting positions and goals of the
robot, which are 4m away from the center. The average number
of humans per frame in the dataset is shown below each image.

a Gaussian mixture density over space by placing a Gaussian
at each gaze point from a temporal window from -0.1 to +0.1
seconds around the current time point. The Gaussian standard
deviation was set to two degrees of visual angle so that it
covered the entire foveal region and part of the periphery.
We assigned attention weights to each node by first sampling
from this Gaussian mixture density at each node location, and
then normalizing so that the attention weights of all nodes
summed to one. We collected gaze data for multiple starts
with varying crowd sizes and densities, resulting in around
1700 state-attention pairs.

We used the L1 loss function and trained the network
for 400 epochs until convergence using the data from the
Students001 dataset. Dropout was applied after each graph
convolutional layer with a drop probability of 0.5. The data
collected from the StudentsO03 dataset was reserved for test-
ing. The network trained on the StudentsO01 dataset was used
to set the attention weights in all experiments.

We trained the crowd aggregation and value networks simul-
taneously following the deep reinforcement learning approach
described in [9] [11f]. For completeness, we describe the
approach briefly here, and refer the reader to the original
publications for more details.

The training algorithm is shown in the table titled Algorithm
1. The value function F(-) is computed by the cascade of
the crowd aggregation network and the value network, as
described above. The reward function R(:) awards the robot

for reaching its goal and penalizes it for getting too close to
or colliding with humans [11].

Training consisted of two stages: imitation learning fol-
lowed by reinforcement learning. All training was performed
using the robot simulator with human data from the Stu-
dents001 dataset, example trajectories of which are shown in
Fig. [d] Start frames were selected randomly, as were starting
positions and goals (shown as opposite pairs of black triangles)
We used the same unicycle robot model as used in [9].
Collected datasets were augmented by mirroring.

In the first stage, the crowd aggregation and value networks
were trained with supervision. They learned to imitate the
demonstrations of ORCA, which drives the robot through the
crowd to the destination. We collected data in the simula-
tion environment from the augmented crowd dataset, which
contains real human trajectories with high crowd density. We
simulated the sequential state update of humans as the robot
navigated inside the crowd. Both successful cases and failure
cases were recorded in the training dataset. For imitation
learning, we collected 3000 episodes.

In the second stage, the networks were refined by reinforce-
ment learning in the simulation environment. For each episode,
we sampled multiple actions from the action space (U) at
every step. For unicycle robot, U is defined to be a set of
action pairs < v,60 >, where v € (0, vpref], 0 € [—7/4,7/4].
We either selected the optimal action according to the current
value function, or chose randomly to ensure exploration. The
percentage of random actions decreased over time. States of
the robot and humans were then updated. State-value pairs
were stored in the replay buffer. We kept a size limit on the
buffer so the old pairs were replaced by new ones gradually.
For the state prediction (S'zjl), we assumed the humans move
following a constant velocity model. For the state update
(S’Z;H), we obtained the new states from the next frame of
the dataset. The robot always moved with constant velocity
(ut) between timesteps. For reinforcement learning, we ran
20000 episodes and set the buffer size to 100000 state-value
pairs. We followed the buffer size setting of SARL [9]], and
doubled the episodes for training, as the training environment
is more complicated and we need more episodes to get a stable
reward. Training was conducted in the Students001 dataset.

For testing of the entire system, we performed navigation
experiments on the five real world pedestrian trajectories
datasets shown in Fig. [4} the Students003 dataset [30]] (average
crowd size 26), NYC Grand Central dataset [31] (average
crowd size 30), the ZARA2 dataset [30] (average crowd size
7), the Hotel dataset [32] (average crowd size 6), and the the
ETH dataset [32] (average crowd size 6). These datasets cover
a wide range of crowd sizes and traffic patterns.

We evaluated the performance of models by success rate and
average navigation time in successful trials. For each dataset,
we collected the results of each model over 2500 trials. During
testing, we used greedy action selection (no exploration) to
select the best action for each step.

V. EXPERIMENTAL RESULTS

This section evaluates the performance of our system with
example trajectories and summary statistics: success rate and

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2020

) ¢ * Goal
0.05
7 -~ Robot
Q\03 ~” Human
* Gaze
0.29
0.02 036
- 0.16
L 0.01
0.01 ~
- -~
0.02
0.01 N
0.01 002
0.01 o
S~
0 0
- -

Fig. 5: Estimated attention weights from our attention network
are shown by the radius of the purple circle surrounding each
human and by the numerical labels. Blue stars indicate the
gaze points in the 0.2 second window used to compute ground
truth attention weights. Blue lines link temporally adjacent
gaze points. Red arrows indicate the instantaneous velocities.

average navigation time in successful trials. We also encourage
readers to view the videdl] for a better understanding of the
system dynamics.

A. Attention network evaluation

Fig. [5] compares the estimated attention weights with the
gaze trajectory of the human operator for a test crowd scene
from the StudentsO03 dataset. The figure shows a top down
view similar to that shown by the simulator to the human
operators.

The robot’s path to the goal was blocked by two humans
moving to the left. To avoid them, the human operator steered
the robot so that it followed the human moving to the right.
The human operator’s gaze is concentrated on the two humans
moving left. The learned attention weights are also the largest
for those two. This suggests that the attention network has
learned to infer correctly which humans in the crowd are most
important for trajectory planning. Videos of this and more
examples can be found on our website'.

To evaluate the predicted attention weights quantitatively,
we calculated the similarity between predicted attention
weights and the ground truth weights using two standard
metrics: the Kullback-Leibler divergence (KLD) and the Cor-
relation Coefficient (CC). Smaller KL and larger CC denote
better similarity. As shown in Table [l the attention weights
predicted by our network closely match the ground truth
weights. The KL divergence for the predicted attention weights
is 50.5% smaller than for the distance related weights and
46.7% smaller than for the weights computed by SARL.
Similarly, the CC for the predicted attention weights is 21.3%
larger than for the distance related weights and 17.5 % larger
than for the weights computed by SARL.

! Available from the supplementary files or the website: https:/sites.google.
com/view/gazenav

B. System Performance

We first compare the performance of our proposed G-
GCNRL network with the state of the art, SARL. We then give
the results of ablation studies showing the impact of the use
of the graph representation and the use of attention weights
trained by human gaze. We conclude with an analysis of the
performance of our system in different environments.

1) Comparison with SARL: Fig. [6] shows example trajec-
tories generated by G-GCNRL and SARL in a sparse environ-
ment (Zara2) and a dense environment (NYC-GC). For both
environments, G-GCNRL achieves the goal faster than SARL:
12.4 seconds vs. 14 seconds (sparse) and 9.2 seconds vs. 10
seconds (dense). SARL took more conservative policies, i.e. the
robot waited somewhere or changed direction unnecessarily,
whereas G-GCNRL drove the robot more smoothly. In the
sparse environment, the SARL robot almost stopped between
6 and 8 seconds, whereas the velocity of the G-GCNRL
robot remained fairly constant. In the dense environment, the
path taken by the G-GCNRL robot after 6 seconds is much
straighter than the path taken by the SARL robot.

We used two measures to quantify the smoothness of each
robot trajectory: the standard deviation of the speed std(||v]|)
and the average absolute angular difference between two
successive steps mean(|Af|). Both measures capture the idea
that we wish the robot to move at a fairly constant speed
with only small velocity variations. Lower values of both
metrics suggest better smoothness. We compute the metrics
over all the robot trajectories by our G-GCNRL and SARL.
We find the average std(||v||) over all datasets for G-GCNRL
(0.161) is significantly lower than for SARL (0.255). The
average mean(|Af|) over all datasets for G-GCNRL (0.358)
is significantly lower than SARL (0.426). Both have p-value <
0.001.

Table |lIf compares the success rate and average navigation
time of G-GCNRL with SARL on all of the testing environ-
ments. On average, G-GCNRL has an 18.4% higher success
rate and a 16.4% shorter navigation time.

Both G-GCNRL approach and SARL assign different im-
portance to different humans. There are two main differences
in their approaches. G-GCNRL uses a GCN to estimate the
value function and uses human gaze data to learn the attention
weights. To evaluate the effect of these two differences, we
implemented an intermediate model, SA-GCNRL, which used
the GCN but the attention weights from SARL. SA-GCNRL
achieves a 7.9% higher success rate and a 6.0% shorter
navigation time on average than SARL, demonstrating the
advantage of using the GCN to estimate the value function.
G-GCNRL achieves a 9.7% higher success rate and an 11.1%
shorter navigation time than SA-GCNRL, demonstrating the
advantage of using attention weights trained from human gaze.
Thus, both innovations are important in achieving the reported
improvement.

2) Ablation studies: To evaluate the benefits of learning
attention from human gaze, Table [[II] compares the results of
G-GCNRL with GCNRL where the weights in the adjacency
matrices were set according to SARL (SA-GCNRL), the dis-
tance from the robot (D-GCNRL) and uniformly (U-GCNRL).
Using attention weights learned from human gaze resulted

https://sites.google.com/view/gazenav
https://sites.google.com/view/gazenav

CHEN et al.: ROBOT NAVIGATION IN CROWDS BY GRAPH CONVOLUTIONAL NETWORKS WITH ATTENTION LEARNED FROM HUMAN GAZE 7

KLD CC
Predicted attention weights 0.49 0.74
Distance related weights 099 0.61
SARL [9] weights 092 0.63

TABLE I: Similarity of attention estimates. KLD denotes
Kullback-Leibler divergence (smaller better) and CC denotes
Correlation Coefficient (larger better).

in the best performance (10.5% higher than SA-GCNRL and
D-GCNRL, and 5.0% higher than U-GCNRL). When crowd
size is small (Zara2, Hotel, ETH), the gain in success rate
by using attention (G-GCNRL vs. U-GCNRL) is around 1-
2%. However, as crowd size increases, such as Students003
and NYC-GC, the gain in success rate of G-GCNRL reaches
10%. The navigation time of G-GCNRL is also shorter. This
suggests that when crowd size grows larger, the network
should allocate attention correctly.

To evaluate the benefits using the GCN structure to estimate
the crowd state, Table compares the performance when
using a SARL-like network to estimate the value function
with the performance when using a GCN to estimate the
value function. If uniform weights are used (U-GCNRL vs.
UARL), using GCN improves success rate by 23.7% and
reduces navigation time by 23.2%. If SARL weights are used
(SA-GCNRL vs. SARL), success rate improves by 7.9% and
navigation time reduces by 6.0%.

3) Performance in different environments: Comparing
across Tables [[IIV] we find all models had the worst per-
formance on the NYC-GC dataset, which is the most complex
one with on average 30 humans/frame and the most diversity
in crowd movement. In this complex situation, the success rate
of the models with uniform attention (UARL and U-GCNRL)
performed the worst. For datasets with lower density crowds
(Zara2, Hotel and ETH), the performance of different models
was relatively even. Our intuition: when crowd size is small,
it is relatively easy to keep track of all the humans, but when
crowd size grows, attention becomes critical in preventing
the system from becoming overwhelmed, by allowing it to
focus on the most important parts of the crowd. Across all
environments, G-GCNRL achieves highest success rate.

VI. DISCUSSION

Interestingly, we find U-GCNRL achieves shortest naviga-
tion time on the datasets with small crowd size (shown in
Table [[I). The reason might be that when the crowd size
becomes small, the attention is no longer a critical factor.
This suggests that a hybrid strategy depending on the crowd
size may achieve better results. For example, we could train
multiple attention networks with different variances of the
Gaussian distributions used to assign the ground truth attention
weights. Small variances could focus attention on only a few
humans near the gaze points whereas variances near infinity
could allocate attention uniformly. Different attention networks
could be used for different crowd sizes.

VII. CONCLUSION

This paper presents a crowd navigation method for mobile
robots and demonstrates its efficacy on real-world dense

pedestrian data. The proposed method outperforms the state-
of-the-art. There are two key innovations in our work. The first
innovation is the introduction of a graph convolutional network
(GCN) for reinforcement learning to integrate information
about the environmental context of the robot. The GCN makes
our approach immediately extensible to varying crowd sizes in
a simple and principled way. The influence of different agents
can be controlled by changing the adjacency matrix. The
second innovation is the introduction of an attention network
trained using human gaze data for assigning adjacency values.
The two innovations enhance the performance of the network,
and may also be useful in other applications.

REFERENCES

[1] A. Vemula, K. Muelling, and J. Oh, “Modeling cooperative navigation
in dense human crowds,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2017, pp. 1685-1692.

[2] J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obsta-
cles for real-time multi-agent navigation,” in 2008 IEEE International
Conference on Robotics and Automation. 1EEE, 2008, pp. 1928-1935.

[3] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-
body collision avoidance,” in Robotics Research. Springer, 2011, pp.
3-19.

[4] V. V. Unhelkar, C. Pérez-D’ Arpino, L. Stirling, and J. A. Shah, “Human-
robot co-navigation using anticipatory indicators of human walking
motion,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA). 1EEE, 2015, pp. 6183-6190.

[51 S. Kim, S. J. Guy, W. Liu, D. Wilkie, R. W. Lau, M. C. Lin, and
D. Manocha, “Brvo: Predicting pedestrian trajectories using velocity-
space reasoning,” The International Journal of Robotics Research,
vol. 34, no. 2, pp. 201-217, 2015.

[6] P. Trautman and A. Krause, “Unfreezing the robot: Navigation in dense,
interacting crowds,” in 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems. 1EEE, 2010, pp. 797-803.

[71 G. Ferrer, A. Garrell, and A. Sanfeliu, “Robot companion: A social-
force based approach with human awareness-navigation in crowded en-
vironments,” in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems. 1EEE, 2013, pp. 1688-1694.

[8] D. Mehta, G. Ferrer, and E. Olson, “Autonomous navigation in dy-
namic social environments using multi-policy decision making,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2016, pp. 1190-1197.

[9] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction:
Crowd-aware robot navigation with attention-based deep reinforcement
learning,” arXiv preprint arXiv:1809.08835, 2018.

[10] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among dynamic,
decision-making agents with deep reinforcement learning,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 1EEE, 2018, pp. 3052-3059.

[11] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforcement
learning,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA). 1EEE, 2017, pp. 285-292.

[12] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social gan:
Socially acceptable trajectories with generative adversarial networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 2255-2264.

[13] A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, H. Rezatofighi, and
S. Savarese, “Sophie: An attentive gan for predicting paths compliant to
social and physical constraints,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 1349-1358.

[14] C. Liu, Y. Chen, L. Tai, H. Ye, M. Liu, and B. E. Shi, “A gaze
model improves autonomous driving,” in Proceedings of the 11th ACM
Symposium on Eye Tracking Research & Applications. ACM, 2019,
p. 33.

[15] Y. Chen, C. Liu, L. Tai, M. Liu, and B. E. Shi, “Gaze training
by modulated dropout improves imitation learning,” arXiv preprint
arXiv:1904.08377, 2019.

[16] R.Zhang, Z. Liu, L. Zhang, J. A. Whritner, K. S. Muller, M. M. Hayhoe,
and D. H. Ballard, “Agil: Learning attention from human for visuomotor
tasks,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 663-679.

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2020

robot
0s 6s 12s

robot
0s 6s 12s

AN

G-GCNRL" SARL

6.8 x‘\\
e

e~

Fig. 6: Trajectories of robot running in the simulated environments: a sparse environment (Zara2) and a dense environment
(NYC-GC) show here. The highlighted green lines show the robot navigation. The other colors show the human trajectories.
Each circle is timestamped.

(17]

(18]
[19]

[20]

[21]

[22]

[23

[trt

[24]

[25]

Success Rate Navigation Time
Students003 NYC-GC Zara2 Hotel ETH AVG Students003 NYC-GC Zara2 Hotel ETH AVG
SARL 0.692 0.358 0.815 0581 0.657 0.621 13.1 13.8 12.9 13.4 13.9 13.4
SA-GCNRL 0.616 0.431 0.838 0.683 0.782 0.670 12.0 12.0 13.2 12.8 13.0 12.6
G-GCNRL 0.753 0.453 0936 0.703 0.831 0.735 11.2 11.8 10.9 11.1 11.1 11.2
TABLE II: Comparison with the state-of-the-art.
Success Rate Navigation Time
Students0O03 NYC-GC Zara2 Hotel ETH AVG | Students0O03 NYC-GC Zara2 Hotel ETH AVG
G-GCNRL 0.753 0.453 0936 0.703 0.831 0.735 11.2 11.8 10.9 11.1 11.1 11.2
SA-GCNRL 0.616 0.431 0.838 0.683 0.782 0.670 12.0 12.0 13.2 12.8 13.0 12.6
D-GCNRL 0.556 0.405 0.876 0.699 0.790 0.665 12.7 13.8 11.5 9.3 10.3 11.5
U-GCNRL 0.671 0.387 0.928 0.687 0.827 0.700 11.2 12.0 10.1 9.3 10.2 10.6
TABLE III: Ablation study to show the advantage of attention weights trained with human gaze data.
Success Rate Navigation Time
Students003 NYC-GC Zara2 Hotel ETH AVG Students003 NYC-GC Zara2 Hotel ETH AVG
SA-GCNRL 0.616 0.431 0.838 0.683 0.782 0.670 12.0 12.0 13.2 12.8 13.0 12.6
SARL 0.692 0.358 0815 0.581 0.657 0.621 13.1 13.8 12.9 13.4 139 134
U-GCNRL 0.671 0.387 0928 0.687 0.827 0.700 11.2 12.0 10.1 9.3 10.2 10.6
UARL 0.591 0.310 0816 0477 0.636 0.566 12.7 13.1 14.0 14.0 15.0 13.8

TABLE IV: Ablation study to show the advantage of the graph structure.

J. Chen, T. Ma, and C. Xiao, “Fastgcn: fast learning with graph
convolutional networks via importance sampling,” arXiv preprint
arXiv:1801.10247, 2018.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

D. Helbing and P. Molnar, “Social force model for pedestrian dynamics,”
Physical Review E, vol. 51, no. 5, p. 4282, 1995.

G. Ferrer, A. G. Zulueta, F. H. Cotarelo, and A. Sanfeliu, “Robot
social-aware navigation framework to accompany people walking side-
by-side,” Autonomous Robots, vol. 41, no. 4, pp. 775-793, 2017.

S. F. Chik, C. F. Yeong, E. L. M. Su, T. Y. Lim, F. Duan, J. T. C. Tan,
P. H. Tan, and P. J. H. Chin, “Gaussian pedestrian proxemics model
with social force for service robot navigation in dynamic environment,”
in Asian Simulation Conference. Springer, 2017, pp. 61-73.

P. Long, W. Liu, and J. Pan, “Deep-learned collision avoidance policy
for distributed multiagent navigation,” IEEE Robotics and Automation
Letters, vol. 2, no. 2, pp. 656-663, 2017.

L. Tai, J. Zhang, M. Liu, and W. Burgard, “Socially compliant navigation
through raw depth inputs with generative adversarial imitation learning,”
in 2018 IEEE International Conference on Robotics and Automation
(ICRA). 1IEEE, 2018, pp. 1111-1117.

M. Pfeiffer, U. Schwesinger, H. Sommer, E. Galceran, and R. Siegwart,
“Predicting actions to act predictably: Cooperative partial motion plan-
ning with maximum entropy models,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 1EEE, 2016, pp.
2096-2101.

H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially

[26]

[27]

[28]

[29]

[30]

[31]

(32]

compliant mobile robot navigation via inverse reinforcement learning,”
The International Journal of Robotics Research, vol. 35, no. 11, pp.
1289-1307, 2016.

P. Long, T. Fanl, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards
optimally decentralized multi-robot collision avoidance via deep rein-
forcement learning,” in 2018 IEEE International Conference on Robotics
and Automation (ICRA). 1EEE, 2018, pp. 6252-6259.

T. Xie and J. C. Grossman, “Crystal graph convolutional neural networks
for an accurate and interpretable prediction of material properties,”
Physical Review Letters, vol. 120, no. 14, p. 145301, 2018.

P. Veli¢kovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.
C. Shang, Q. Liu, K.-S. Chen, J. Sun, J. Lu, J. Yi, and J. Bi, “Edge
attention-based multi-relational graph convolutional networks,” arXiv
preprint arXiv:1802.04944, 2018.

A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by example,”
in Computer Graphics Forum, vol. 26, no. 3. Wiley Online Library,
2007, pp. 655-664.

B. Zhou, X. Wang, and X. Tang, “Understanding collective crowd
behaviors: Learning a mixture model of dynamic pedestrian-agents,” in
2012 IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, 2012, pp. 2871-2878.

S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool, “You’ll never walk
alone: Modeling social behavior for multi-target tracking,” in 2009 IEEE
12th International Conference on Computer Vision. 1EEE, 2009, pp.
261-268.

	Introduction
	Related Work
	Robot navigation in crowds
	Graph representation learning
	Human attention in visuomotor learning

	Network Architecture
	Graph convolutional networks for crowds
	Attention Network
	Crowd aggregation network
	Value network

	Training and Testing
	Experimental Results
	Attention network evaluation
	System Performance
	Comparison with SARL
	Ablation studies
	Performance in different environments

	Discussion
	Conclusion
	References

