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Abstract

Forecasting human trajectories is critical for tasks such as robot crowd navigation
and autonomous driving. Modeling social interactions is of great importance for accurate
group-wise motion prediction. However, most existing methods do not consider infor-
mation about coherence within the crowd, but rather only pairwise interactions. In this
work, we propose a novel framework, coherent motion aware graph convolutional net-
work (CoMoGCN), for trajectory prediction in crowded scenes with group constraints.
First, we cluster pedestrian trajectories into groups according to motion coherence. Then,
we use graph convolutional networks to aggregate crowd information efficiently. The
CoMoGCN also takes advantage of variational autoencoders to capture the multimodal
nature of the human trajectories by modeling the distribution. Our method achieves state-
of-the-art performance on several different trajectory prediction benchmarks, and the best
average performance among all benchmarks considered.

1 Introduction
Forecasting human trajectories is of great importance for tasks, such as robot navigation
in crowds, autonomous driving, and crowd surveillance. For autonomous robot systems,
predicting the human motion enables feasible and efficient planning and control.

However, making accurate trajectory predictions is still a challenging task because pedes-
trian trajectories can be affected by many factors, such as the topology of the environment,
intended goals, and social relationships and interactions [20]. Furthermore, the highly dy-
namic and multimodal properties inherent in human motion must also be considered.

Multimodality in trajectory prediction has been studied recently [2, 7, 13, 14, 21]. Most
past work uses generative adversarial models (GANs) to generate multiple predictions. How-
ever, GANs suffer from the instability of adversarial training, which is sensitive to hyperpa-
rameters and structure [26]. As an alternative, variational autoencoder (VAE) is relatively
more stable. Lee et al. present a CVAE based framework to predict future object locations
[14]. A recent work adopted CVAE for trajectory prediction [11]. This paper takes advantage
of the VAE to capture the multimodality of human trajectories.

Recently, some works have proposed to model the dynamic interactions of pedestrians
by combining information from pairwise interactions, through pooling mechanisms such as
max-pooling [7] and self-attention pooling [21]. However, those works do not completely
capture important information about the geometric configuration of the crowd. Furthermore,
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these works rely on some ad-hoc rules to handle varying numbers of agents, such as setting a
maximum on the number of agents and using dummy values for non-existing agents [21]. To
avoid such ad-hoc assumptions, Chen et al. [5] propose to use graph convolutional networks
(GCN) to aggregate information about neighboring humans for robot crowd navigation tasks.
The GCN can handle varying numbers of neighbors naturally, and can be extended to mod-
ulate interactions by changing its adjacency matrix. In this paper, we use a similar graph
structure for crowd information aggregation in a different task: trajectory prediction.

Most previous work has focused only on the interactions between pairs of humans. Co-
herent motion patterns of pedestrian groups, which encode rich information about implicit
social rules, has rarely been considered. This lack of attention may be due in part to the lack
of information about social grouping in current benchmark datasets, such as the commonly
used ETH [19] and UCY [15] datasets, for trajectory prediction. To address this unavailabil-
ity, we add coherent motion cluster labels to trajectory prediction datasets using a coherent
filtering method [29], and leverage DBSCAN clustering to compensate for the drawbacks
of the coherent filtering method in the small group detection. These coherent motion labels
provide a mid-level representation of crowd dynamics, which is very useful for crowd anal-
ysis. We incorporated the coherent motion constraints into our model by using GCNs for
intergroup and intragroup relationship modeling.

There are several main contributions of our work:

• We introduce graph convolutional networks (GCN) to better model social interactions
within human crowds. The use of GCNs enables our approach to handle varying
crowd sizes in a principled way. Interactions between humans can be controlled easily
by modifying the adjacency matrix.

• Unlike past work that considered pairwise interactions between individuals only, we
take into account coherent motion constraints inside crowds to better capture social
interactions.

• We developed a hybrid labeling method to add coherent motion labels to trajectory
prediction datasets. We will release the re-labelled dataset publicly for use by other
researchers.

• We take advantage of the VAE to handle multimodality in trajectory modeling.

• With the above mechanisms, the CoMoGCN achieves state-of-the-art performance on
several different trajectory prediction benchmarks, and the best average performance
across all datasets considered.

2 Related works

2.1 Crowd Interaction
A pioneering work for crowd interaction modeling, the Social Force Model (SFM) proposed
by [9], has been applied successfully to many applications such as abnormal crowd behavior
detection[17] and multi-object tracking [19]. However, as discussed in [1], the social force
model can model simple interactions, but fails to model complex crowd interactions. There
are also other hand crafted feature based models, such as continuum dynamics [23], discrete
choice [3] and Gaussian Process models [24]. However, all the above methods are based on
hand-crafted energy functions and specific rules, which limit their performance.
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2.2 RNN for Trajectory Prediction
Recently, Recurrent Neural Networks (RNN), such as the Long Short Term Memory (LSTM),
have achieved many successes in trajectory prediction tasks [1, 8, 16, 22, 27, 28]. Alahi et
al. proposed a social pooling layer to model neighboring humans [1]. Gupta et al. proposed
a pooling module, which consists of an MLP followed by max-pooling to aggregate infor-
mation from all other humans [7]. Sadeghian et al. [21] adopted a soft attention module to
aggregate information across agents. More recent work uses GCNs to aggregate information
by treating humans as nodes and modeling interaction through edge strength for robot nav-
igation [5]. Similarly, a variant of the GCN, the Graph Attention Network (GAT), has been
used to model the social interactions [10, 13]. However, the use of multi-head attention in the
GAT increases the number of parameters and the computational complexity of the GAT in
comparison to the GCN. In this work, we integrate information across humans using GCNs,
which enables our method to handle varying crowd sizes.

2.3 Coherent Motion Information for Motion Prediction
Most previous work only pay attention to interactions among pairs of pedestrians. However,
the pedestrian trajectories are also influenced by more complex social relations between
humans. Coherent motion patterns inside crowds, which encode implicit social information,
have been shown to be useful in many applications, such as crowd activity recognition[25].
Bisagno et al. [4] considered intragroup interactions for trajectory predictions, but neglected
intergroup interactions. Current benchmark datasets for trajectory prediction do not provide
coherent motion labels.

Several works have been done in detecting coherent motions [29] and measuring the
collectiveness of crowds [18]. Zhou et al. [29] proposed the coherent filtering that detects
invariant neighbors of every individual, and measures the velocity correlations for motion
clustering. It shows good performance on collective motion benchmark and can detect co-
herent motions given the crowd trajectories in a short time window. In this paper, we use
the coherent filtering method to label trajectory prediction datasets. In addition, we leverage
DBSCAN clustering to compensate for the disadvantages of the coherent filtering method in
small group detection. Based on the labels, we incorporate the coherent motion information
into our model for better interaction modeling.

3 Method

3.1 Problem Definition
The goal of this work is to generate the future trajectories of all humans in a scene at the
same time. The trajectory of a person i is defined using xt

reli
= (xt

i ,y
t
i) which denotes the

relative position of human i at time step t to the position at t− 1. Consistent with previous
works [7, 21], the observed trajectory of all humans in a scene is defined as x(1:tobs)

rel1,...,N
for time

steps t = 1, ...tobs; the future trajectory to be predicted is defined as x(tobs+1:tobs+T )
rel1,...,N

for time
step t = tobs +1, ..., tobs +T , where the number of humans N may change dynamically. The
model aims to generate trajectories x̂(tobs+1:tobs+T )

rel1,...,N
whose distribution matches that of ground

truth future trajectories of all humans x(tobs+1:tobs+T )
rel1,...,N

.
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FC+LSTM

FC

72

GCN_diff

50 x 18

FC

72

GCN_same

50 x 18

LSTM+FC

: Concatenation : Repeatr
Loop times

r

① Data pre-processing

to obtain coherent motion

② Establish graphs for 

intergroup and intragroup

...
...

③ Trajectory prediction 

Figure 1: System overview. There are three procedures: 1. We obtain coherent motion labels
for each human in an offline data pre-processing procedure. 2. Based on the coherent motion
labels for each human, we establish graphs capturing intergroup and intragroup relationships.
The encoder LSTM takes past trajectories as input and feeds the encoded features into two
GCNs. 3. The embeddings from the two GCNs are concatenated and forwarded to an MLP
to create a distribution with mean µzand variance Σz. Then, features are sampled from the
distribution and fed into a decoder LSTM for trajectory prediction.

3.2 Overall Model
Figure 1 shows the overall framework of our method for trajectory prediction. Data pre-
processing is applied offline to obtain the coherent motion pattern for each human. For
feature extraction, we first use a single layer MLP (FC) to encode each pedestrian’s relative
displacements as a fixed-length embedding. These embeddings are fed to an LSTM as shown
below:

ei = LST Men(MLPenc(xreli ;Wenc),henci ,Wen) (1)

where Wenc is the weight of FC layer, and Wen is the weight of the encoding LSTM. On the
other hand, for specific person i, the relative position of other humans are fed into an FC
layer to obtain social information pi which is similar to the pooling module in Social GAN
[7].

Then the features from each person itself ei and his/her social information pi are con-
catenated together as the input to the two GCNs for intergroup and intragroup interaction
aggregation:

Vintrai =GCNsame([ei, pi],Aintra,Wintra) (2)
Vinteri =GCNdiff([ei, pi],Ainter,Winter) (3)

where Aintra and Ainter denote the adjacency matrices as described in more detail in Section.
3.4. Wintra and Winter are weight matrices.

The features computed by the outputs of the two GCNs are then concatenated together
and input to an MLP, which computes the mean and variance of a distribution over the feature
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vectors to be input to the decoder:

µz,Σz = MLPvae([Vintrai ,Vinteri ],Wvae) (4)

where Wvae is the weight matrix. We sample an input feature vector to the decoder stage, z,
from this distribution z ∼ N(µz,Σz) and concatenate it with the embedding computed from
an embedding of the last predicted state. The resulting features c are fed into the decoder
LSTM cell for trajectory prediction:

x̂reli = MLPdec(LST Mde(c,hdei ;Wde);Wdec) (5)

where Wde is the weight for decoder LSTM and Wdec is the weight for decoder MLP.

3.3 Coherent Motion Clustering for Pedestrian Groups
For coherent motion detection, we use the coherent filtering proposed by [29]. The process
takes the positions of humans from consecutive frames t1 to tk and generates a clustering
index for each human and for each frame. Humans sharing the same index are considered
to have coherent motion. The process of coherent filtering mainly includes three steps: a)
finding K nearest neighbors b) finding the invariant neighbors of a individual c) measuring
the time-averaged velocity correlations of the invariant neighbors to the individual. Among
these individual-neighbor pairs, pairs with correlation intensity above a threshold are marked
as coherent pairs.

Though this method is effective for crowds with large crowd densities, it performs poorly
for sparse crowds and fails to detect small groups. To compensate, we apply an extra cluster-
ing step, the DBSCAN method [6], for the unlabeled humans. As a density based clustering
method, it relies on the distance to find the neighbors. We account for moving direction and
calculate the angular distance of each pair of humans. These differences are used to classify
humans into clusters.

Our hybrid labeling method improves the labeling yield and generates better labels than
the coherent filtering alone. Figure 1 of the supplementary file shows examples of detection
by coherent filtering on each dataset. The quantitative evaluations of the coherent filtering
and of our hybrid labeling method are shown in Table 2 and 3 of the supplementary file.
Figure 2 of the supplementary file shows a qualitative comparison between the coherent
filtering and our method. The parameter settings are shown in Table 1 of the supplementary
file.

3.4 Graph Convolutional Networks
Dealing with the large and varied numbers of humans in a scene is one of the main challenges
for multi-human trajectory prediction. Previous works adopted ad-hoc solutions such as
setting a maximum number of humans[21]. In this work, we address this problem in a
simpler and more principled way through graph representations. Nodes in the graph denote
humans in the crowd. In the following, we denote the number of humans in the crowd by N.

We adopt a two-layer graph convolutional networks (GCNs) [12] to aggregate informa-
tion in crowds. To each node in the network, we associate a feature vector, which contains
important information about the node. The graph convolutional layer is the main building
block of GCNs. It takes input feature vectors for each node and converts them to output
feature vectors for each node by integrating information both within and across nodes. We
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use I to denote the dimension of the input feature vectors and O to denote the dimension
of the output feature vectors The input feature vectors of layer l are represented by matrix
Hl ∈ RN×I . The input feature matrix is converted to output vectors represented by a matrix
Hl+1 ∈ RN×O based on the layer-wise forward rule:

Hl+1 = σ

(
AHlWl

)
(6)

Wl ∈ RI×O is a trainable weight matrix for layer l. A ∈ RN×N is the adjacency matrix of the
graph, whose values determine how information from different nodes is aggregated. Each
row of A is normalized to sum to one. σ(·) is Relu activation function.

The adjacency matrix reflects the connections between nodes of the graph. The vanilla
GCN assumes that the qualitative influence of each human on another (as determined by Wl)
is the same and only the strength of that influence can be modulated (through the adjacency
matrix). However, we think that the qualitative effect of humans in the crowd on a particular
human’s trajectory are different, based on whether the humans are in the same group or not.
A single GCN can not handle this. Thus, we propose to use two GCNs. As shown in Fig.2,
for each human, we modulate the adjacency matrix by multiplication with two coherence
masks which encodes the intergroup and intragroup labels. Then we obtain two adjacency
matrix denoting intergroup connection (Ainter) and intragroup (Aintra) connection separately
for each human by pixelwise multiplying the adjacency matrix (A) with the masks. We set
the value in the adjacency matrix by first constructing a binary matrix denoting connections
between nodes, and then normalizing each row.

By modulating the adjacency matrix of GCNs with coherent motion information, we
incorporate implicit social relations into our network for better interaction modeling.

Adjacency matrix Coherency mask Modulated adjacency matrix 

Figure 2: An example of how the adjacency matrices of the GCNs for crowd information
aggregation and determined. The example considers the adjacency matrix for the GCNs of
human i = 3, who is in the same cluster as humans 1,2 and 4, but not humans 5, 6 and 7.

3.5 Implementation Details
We trained the network with Adam optimizer. The mini-batch size is 64 and the learning
rate is 1e-4. The models were trained for 200 epochs. The encoder encodes the relative
trajectories by a single layer of MLP (MLPenc) with dimension of 16 followed by an LSTM
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(LST Men)with a hidden dimension of 32. The embedding output from LSTM was then con-
catenated with the features extracted from relative position from other humans by a single
MLP with dimension of 16. The concatenated features are then fed into two GCNs for fea-
ture integration. Then hidden number for two graph convolutional layer has the dimension
of 72 and 8 separately. Then an MLP (MLPvae) was used to take state of humans to create a
distribution with mean and variance. Then we sample z from this distribution with a dimen-
sion of 8, and fed it into an LSTM (LST Mde)with dimension of 32 and followed by an MLP
(MLPdec)with dimension of 2 for decoding.

4 Experiments
In this section, we evaluate our method in two public datasets ETH [19] and UCY [15]. The
ETH datasets contain two scenes (ETH and Hotel) while the UCY datasets contain three
scenes (Zara1, Zara2, and Univ). There are five sets of data with four different scenarios and
1536 pedestrians in total.

4.1 Evaluation Methodology
Following the setting in [7], we adopt the leave-one-out approach, i.e. train with four sets and
test in the remaining set. We take trajectories with 8 time steps as observation and evaluate
trajectory predictions over the next 12 time steps.

4.1.1 Metrics

Similar to previous works [7, 13, 21], we adopt two standard metrics including Average
Displacement Error (ADE) and Final Displacement Error (FDE) in meter.

ADE: Mean L2 distance between ground truth and predictions of all time steps.
FDE: Mean L2 distance between ground truth and prediction at the final time step.

4.1.2 Baselines

We compare our work with following several recent works based on generative models:
Social GAN (S-GAN) [7]: A generative model using GAN to generate multimodal predic-

tions. It utilizes a global pooling module to combine crowd interactions by an MLP followed
by a max-pooling layer.

Sophie [21]: A improved GAN based model which considers both social interactions and
physical interaction with scene context.

Trajectron [11]: A generative model based on CVAE for multimodal predictions with
spatiotemporal graphs.

Social-BiGAT [13]: A generative model using Bicycle-GAN for multimodal prediction
and GAT for crowd interaction modeling.

4.2 Quantitative results
4.2.1 Comparison to state-of-the-art methods

As shown in Table 1, we compare our models with various baselines. The average displace-
ment error (ADE) and final displacement error (FDE) were reported across five datasets.
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Baselines Ours

Dataset S-GAN Sophie Trajectron Social-BiGAT MLP GCN GAT
GCN+group

(CF)
GCN+group

(Hybrid)
ETH 0.81/1.52 0.70/1.43 0.59/1.17 0.69/1.29 0.73/1.40 0.72/1.31 0.73/1.36 0.71/1.28 0.70/1.26
HOTEL 0.72/1.61 0.76/1.67 0.42/0.80 0.49/1.01 0.45/0.93 0.41/0.81 0.41/0.85 0.37/0.76 0.37/0.75
UNIV 0.60/1.26 0.54/1.24 0.59/1.21 0.55/1.32 0.61/1.31 0.55/1.18 0.55/1.19 0.55/1.19 0.53/1.16
ZARA1 0.34/0.69 0.30/0.63 0.55/1.09 0.30/0.62 0.34/0.72 0.35/0.74 0.35/0.74 0.34/0.72 0.34/0.71
ZARA2 0.42/0.84 0.38/0.78 0.52/1.04 0.36/0.75 0.33/0.71 0.32/0.68 0.31/0.68 0.32/0.68 0.31/0.67
AVG 0.58/1.18 0.54/1.15 0.53/1.06 0.48/1.00 0.49/1.01 0.47/0.94 0.47/0.96 0.46/0.93 0.45/0.91

Table 1: Quantitative results. We adopted two metrics Average Displacement Error (ADE)
and Final Displacement Error (FED) for evaluation over five different datasets (ADE/FDE
in meters). Our full model (GCN +group (hybrid)) achieves state-of-the-art results outper-
forming all baseline methods (lower value denotes better performance).

Following settings in every baseline, we run 20 samples for evaluation.
It is clear to see that our final model with GCN and coherent motion constraints beat

all baselines and obtain more consistent results in both ADE and FDE. Compared to Social
GAN, we achieve 22.4% improvement in ADE and 22.9% improvement in FDE on aver-
age. Compared to Sophie who use additional scene context information, we achieve 16.7%
improvement in ADE and 20.9% improvement in FDE on average. Compared to Trajec-
tron who also uses VAE as backbone network, we achieve 15.1% improvement in ADE and
14.2% improvement in FDE on average. Compare to Social-BiGAT who also considers
graph structure for interaction modeling, we achieve 6.3% improvement in ADE and 9.0%
improvement in FDE on average.

4.2.2 Ablation study

We conduct several ablation studies to validate the benefits of the use of GCN and coherent
motion information.

To show the benefit of the use of GCN, we investigated another model that replaces GCN
with MLP (followed by max-pooling, similar to the pooling module in social GAN [7]) as
shown in Table 1.

When comparing the model using GCN with MLP, we can see that the one with GCN
achieves 4.1% improvement in ADE and 6.9% improvement in FDE.

To show the benefit of the incorporation of coherent motion information, we compare
our full model with the one without considering coherent information (only using GCN),
and GAT (same implementation with [10]).

When compare the full model with the one using GCN only, we can see that our full
model with coherent motion information achieves 4.3% improvement in ADE and 3.2%
improvement in FDE. When compare the full model with GAT, we can see that the full
model achieves 4.3% improvement in ADE and 5.2% improvement in FDE.

The above ablation studies clearly demonstrate the benefits of the use of GCN and the
introduction of coherent motion information.

We further investigated trajectory prediction performance of models with different coher-
ent detection method, Coherent Filtering method (CF) [29] vs. our hybrid labeling method
(hybrid). We can see that model with our hybrid coherent detection method (Coherent Filter-
ing + DBSCAN) outperforms model with Coherent Filtering method by 2.2 % improvement
in ADE and 2.2 % improvement in FDE on average. The improvements are consistent over
all five datasets.
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0 5m

Proposed

S-GAN

(a) (b) (c) (d)

Figure 3: Examples for generated human trajectories visualization for S-GAN and our model
across several scenes. The observed trajectories are shown in solid lines, ground truth future
trajectories are shown in wide dashed lines, generated 20 samples per model are shown in
thin dashed lines. The dot-dashed lines denote the predictions of our VAE based model by
applying the mean value (µz) of the distribution. Different humans are denoted by different
colors.

4.3 Qualitative results

In order to better understanding the benefits of our model in capturing social interactions
between humans, we visualize several examples of the generated trajectories across testing
sets as shown in Fig.3.

From the four examples, we can see that the predictions of our model generally have
lower variance than S-GAN, which means we can generate model in a more efficient way.
Also, the examples show that our model better captures the interactions of pedestrians walk-
ing in the crowds which obtain more accurate predictions (shown in (d)). It is clear to see
that our model generates more realistic predictions avoiding collisions as shown in example
(b). Besides, S-GAN tends to predict slower motion in dataset HOTEL (as shown in (c)).

For qualitative results of the ablation study, please refer to Fig. 3 in supplementary file.
We can observe consistent results with the quantitative evaluation. The proposed full model
make more accurate and realistic predictions.

5 Conclusion

In this paper, we propose a novel VAE based generative model for trajectory prediction which
outperforms state-of-the-art methods. We introduce graph convolutional networks (GCNs)
for efficient crowd interaction aggregation. Furthermore, we provided coherent motion in-
formation for the trajectory prediction datasets. The coherent motion labels that significantly
enrich the social information for the commonly used datasets (ETH and UCY) will be re-
leased to the research community later. Then we incorporated the coherent motion informa-
tion, which contains rich information about implicit social relationship among the humans,
into our methods. We show that the introduction of GCNs and coherent motion information
significantly improve the performance for accurate trajectory prediction.



414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

10 AUTHOR(S): COHERENT MOTION AWARE TRAJECTORY PREDICTION WITH GCN

References
[1] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-

Fei, and Silvio Savarese. Social lstm: Human trajectory prediction in crowded spaces.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 961–971, 2016.

[2] Javad Amirian, Jean-Bernard Hayet, and Julien Pettré. Social ways: Learning multi-
modal distributions of pedestrian trajectories with gans. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pages 0–0, 2019.

[3] Gianluca Antonini, Michel Bierlaire, and Mats Weber. Discrete choice models of
pedestrian walking behavior. Transportation Research Part B: Methodological, 40(8):
667–687, 2006.

[4] Niccolo Bisagno, Bo Zhang, and Nicola Conci. Group lstm: Group trajectory predic-
tion in crowded scenarios. In The European Conference on Computer Vision Work-
shops, September 2018.

[5] Yuying Chen, Congcong Liu, Bertram E Shi, and Ming Liu. Robot navigation in
crowds by graph convolutional networks with attention learned from human gaze. IEEE
Robotics and Automation Letters, 5(2):2754–2761, 2020.

[6] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Proceedings
of the Second International Conference on Knowledge Discovery and Data Mining,
volume 96, pages 226–231, 1996.

[7] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi. Social
gan: Socially acceptable trajectories with generative adversarial networks. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
2255–2264, 2018.

[8] Irtiza Hasan, Francesco Setti, Theodore Tsesmelis, Alessio Del Bue, Fabio Galasso,
and Marco Cristani. Mx-lstm: mixing tracklets and vislets to jointly forecast trajecto-
ries and head poses. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6067–6076, 2018.

[9] Dirk Helbing and Peter Molnar. Social force model for pedestrian dynamics. Physical
review E, 51(5):4282, 1995.

[10] Yingfan Huang, HuiKun Bi, Zhaoxin Li, Tianlu Mao, and Zhaoqi Wang. Stgat: Mod-
eling spatial-temporal interactions for human trajectory prediction. In Proceedings of
the IEEE International Conference on Computer Vision, pages 6272–6281, 2019.

[11] Boris Ivanovic and Marco Pavone. The trajectron: Probabilistic multi-agent trajectory
modeling with dynamic spatiotemporal graphs. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 2375–2384, 2019.

[12] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolu-
tional networks. arXiv preprint arXiv:1609.02907, 2016.



460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505

AUTHOR(S): COHERENT MOTION AWARE TRAJECTORY PREDICTION WITH GCN 11

[13] Vineet Kosaraju, Amir Sadeghian, Roberto Martín-Martín, Ian Reid, Hamid
Rezatofighi, and Silvio Savarese. Social-bigat: Multimodal trajectory forecasting using
bicycle-gan and graph attention networks. In Advances in Neural Information Process-
ing Systems, pages 137–146, 2019.

[14] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B Choy, Philip HS Torr, and
Manmohan Chandraker. Desire: Distant future prediction in dynamic scenes with inter-
acting agents. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 336–345, 2017.

[15] Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski. Crowds by example. In
Computer Graphics Forum, volume 26, pages 655–664. Wiley Online Library, 2007.

[16] Matteo Lisotto, Pasquale Coscia, and Lamberto Ballan. Social and scene-aware trajec-
tory prediction in crowded spaces. In Proceedings of the IEEE International Confer-
ence on Computer Vision Workshops, pages 0–0, 2019.

[17] Ramin Mehran, Alexis Oyama, and Mubarak Shah. Abnormal crowd behavior de-
tection using social force model. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 935–942. IEEE, 2009.

[18] Ling Mei, Jianghuang Lai, Zeyu Chen, and Xiaohua Xie. Measuring crowd collective-
ness via global motion correlation. In Proceedings of the IEEE International Confer-
ence on Computer Vision Workshops, pages 0–0, 2019.

[19] Stefano Pellegrini, Andreas Ess, Konrad Schindler, and Luc Van Gool. You’ll never
walk alone: Modeling social behavior for multi-target tracking. In 2009 IEEE 12th
International Conference on Computer Vision, pages 261–268. IEEE, 2009.

[20] Andrey Rudenko, Luigi Palmieri, Michael Herman, Kris M Kitani, Dariu M Gavrila,
and Kai O Arras. Human motion trajectory prediction: A survey. arXiv preprint
arXiv:1905.06113, 2019.

[21] Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki Hirose, Hamid Rezatofighi,
and Silvio Savarese. Sophie: An attentive gan for predicting paths compliant to social
and physical constraints. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1349–1358, 2019.

[22] Hang Su, Jun Zhu, Yinpeng Dong, and Bo Zhang. Forecast the plausible paths in crowd
scenes. In International Joint Conferences on Artificial Intelligence, volume 1, page 2,
2017.

[23] Adrien Treuille, Seth Cooper, and Zoran Popović. Continuum crowds. In ACM Trans-
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