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Globally Optimal Symbolic Hand-Eye Calibration
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Ming-Zhe Dai, Chengxi Zhang, Member, IEEE , Yi Jiang, Member, IEEE and Chong Li

Abstract— Hand-eye calibration (HEC) is a kernel technique
guaranteeing precision industrial visual servoing and robotic
grasping. Extensive studies have been conducted to various
closed-form and iterative solutions to HEC problems using differ-
ent pose parameterizations. However, these approaches are either
sensitive to input noise or time-consuming for implementation.
This paper provides a new perspective on a deterministic solution
to two major branches of HEC problems of forms AX = XB and
AX = YB. We use symbolic methods to derive a globally optimal
solution. Different from representatives based on optimization,
this method is not only the most accurate against others but
also with repeatability of 100%. Experiments via industrial robotic
manipulator verify the superiority of the proposed algorithm.

Index Terms— Hand-eye calibration, robotic per-
ception, symbolic computation, robotic manipulator,
global solution.

I. INTRODUCTION

A. Motivations

VARIOUS industrial tasks require accurate grasping of
cargos and objects using robotic manipulators. The

visual measurements provide such a technique for perception
but the frame of the mounted camera may usually not be
united with that of the manipulator’s flange [1], [2]. Hand-eye
calibration (HEC) aims to solve this problem by computing
the extrinsic parameter between the camera and the robotic
end-effector [3]. It is also noted that hand-eye relationship
is also useful for attitude determination with respect to an
ellipsoidal object like astroid [4], [5]. Depicted in Fig. 1, the
classical HEC problem takes the form of AX = XB in
black, where A, B are relative transformations of the camera
(red part) and the end-effector (blue part), respectively. An
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improvement of the AX = XB HEC considers the eye-
hand transformation X and the robot-world transformation
Y simultaneously so that the equation AX = Y B is
established. Note that the matrices A,B have the different
meaning with that in HEC problem of AX = XB, i.e. A
denotes the camera-world transformation and B is the pose
of end-effector in the robot frame. In the following contents,
we do not use additional colors to distinguish the two HEC
problems. Rather, they are considered more in a mathematical
manner.

In this paper, a global semi-symbolic solution to HEC
problems has been reported. This work has the purpose of
solving some longstanding challenges in accurate and efficient
HEC computation, i.e.:

1) Although many closed-form solutions have been de-
veloped, they are sensitive to input noise and outliers.
This is because hand-eye calibration is essentially non-
convex thus any closed-form solution will only be an
approximate answer.

2) The AX = XB and AX = Y B problems are both
nonlinear so optimizers may sink into local minima.

3) As many searchings are trivial, finding the globally
optimal solution is always computationally inefficient.

The above three challenges are not well solved in previ-
ous literatures and still preserve large potential to benefit
the community. In fact, online finding a globally optimal
solution efficiently is important for industrial robots, as for
some cases the eye-hand extrinsic parameters may vary while
working. Also, the accuracy of obtained HEC results will be
significantly influential to further tasks including grasping and
uncertainty evaluation.

B. Related Work

The background of the studied problems are presented in
the 3-dimensional (3-D) world. Thus the homogeneous trans-
formations are parameterized via the 3-D special Euclidean
group SE(3), which is formed by homogeneous combination
of 3-D rotation R and translation t such that a homogeneous
transformation T is constructed by the SE operator

T =

(
R t
0 1

)
= SE(R, t) ∈ SE(3). (1)

HEC problems are nonlinear mainly because the rotation ma-
trix R has nonlinear constraints R>R = I,det(R) = +1 i.e.
R being an element of the special orthogonal group SO(3).
Therefore, since 1980s, many efforts have been paid to give
closed-form solutions based on diverse pose parameterizations,
including rotation vector [6], quaternion [7], dual quaternion
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Fig. 1. The hand-eye and robot-world relationships AX = XB and AX = Y B. The standard object is a box of quick response (QR) codes,
which denotes the world frame.

[8], screw parameters [9] and etc. [10]. Analytical results also
show some strong connections to point cloud matching like
iterative closest point (ICP) [11], [12]. Furthermore, as the
forms of AX = XB and AX = Y B decide that rotation
and translation parts of unknowns X,Y are coupled together,
solving R and t separately does achieve the global optimum
[13]. Therefore, an accurate solution can hardly be obtained
using only closed-form results. Instead, the starting from a
rough analytical solution, iterative solution tries to find out
a refined estimate [14], [15]. However, as a proper initial
guess may not exist in analytical results, such iterative solution
would also tend to fail in datasets with numerous outliers.
Therefore, recently researchers have tend to find globally
optimal solution to HEC problems without the knowledge
of any initial guess. Heller et al. solve the problem based
on a Branch-and-Bound (BnB) strategy for outlier rejection
and rotation searching [16]. For an AX = Y B case as
pose estimation of a quadrotor, Ha et al. developed uniform
sampling on SO(3) for global optimization [17]. Likewise,
for globally optimal ICP solvers, BnB and uniform rotation
sampling are also vital and practical [18], [19]. Actually,
there are many other calibration tasks that can be considered
in a hand-eye manner, e.g. the camera-laser calibration [20],
camera-magnetometer calibration [21], binocular extrinsic cal-
ibration [22] and etc. These multiple data sources also bring
different data structures and will lead to various special cases
in hand-eye calibration, which makes globally optimal solving
the problem more challenging in engineering. However, since
there are infinite possible uniform rotation samplings as initial

guesses, it is not likely to compute a globally optimal result
within short time. And for all these global algorithms, there
is no guarantee that for a certain set we can always find the
globally optimal solution. That is to say, we need to answer a
kernel question: how many local minima are there in hand-eye
problems? This is actually the complete solution classification,
which is the main problem that we need to solve in this paper.

C. Contribution
Guided by existing research results of HEC problems,

contributions of this paper are briefly listed as follows
1) The HEC optimization frameworks have been revisited.

It is shown that the coupling between the rotation
and translation can be fixed, generating a new system
containing unknowns of rotation only.

2) To find the globally optimal solution, the newly derived
system is solved in a symbolic manner. We cast the
problem for the first time into a solvable series of high-
order polynomials, which can be easily simplified and
solved via mainstream computer algebra systems.

3) The global optimum can be found be sorting all the loss
function values while the repeatability of the method is
100%. We give exact numbers of possible local minima
by algebraic theorems.

D. Outline
The remainder of this paper is structured as follows: Section

II presents our new theory and symbolic solution to the HEC
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problems. Synthetic and experimental results have been eval-
uated in Section III show efficiency of the proposed method
compared with representatives. While we draw concluding
remarks in Section IV, some future expectations are illustrated
as well.

II. PROPOSED GLOBALLY OPTIMAL SOLUTION

A. Notations
The n-dimensional real Euclidean space is represented by

Rn containing all real n-dimensional vectors. The Euclidean
norm of a squared matrix X is ‖X‖ =

√
tr (X>X) in which

the symbol tr(·) denotes the matrix trace. For a given arbitrary
matrixX ,X† is called its Moore-Penrose generalized inverse.
Given a 3-D vector x = (x1, x2, x3)

>, its associated skew-
symmetric matrix is defined in

x× =

 0 −x3 x2
∗ 0 −x1
∗ ∗ 0

 (2)

which belongs to the so(3) group and ∗ denotes the skew
symmetry. Any rotation R on the SO(3) has its corresponding
logarithm i.e. x× = log(R) so that exp(x×) = I + x× +
x2
×/2! + · · · . The inverse map i.e. the wedge operation ∧

from the 3 × 3 skew-symmetric matrix to the 3-D vector is
denoted as x∧× = x.

B. Hand-Eye Optimization
For measurement noise adjustment, HEC problems are

processed via optimizations, such that

arg min
X,Y ∈SE(3)

L =

N∑
i=1

‖AiX − Y Bi‖2 (3)

in which Ai and Bi are measurements for the i-th time instant
and X,Y are to be figured out which distribute on SE(3).
N denotes the number of measurements that we gathered
historically. When X = Y , the result problem is of the form
AX = XB that only considers the eye-hand relationship.
Note that X and Y here are considered as constants according
to fixed installation of camera and robot base. The target loss
function can be expanded to

L =

N∑
i=1

tr

(
X>A>i A

>
i X

> −B>i Y >AiX

−X>A>i Y Bi +BiY
>Y B>i

)
. (4)

For clarification, L1 and L2 are invoked for representation of
target loss functions of problems AX = XB and AX =
Y B, respectively. Actually, these two problems are highly
related in mathematics. If we transform both sides of the
equation AX = XB using a known transformation Z,
the new formulation is ZAXZ = ZXBZ. By letting
Ã = ZA, X̃ = XZ, Ỹ = ZX, B̃ = BZ, it is able for
us to reconstruct the problem as ÃX̃ = Ỹ B̃. A potential
effect of introducing Y is that using more accurate B matrix,
the X matrix in problem AX = Y B can be estimated
more precisely. To solve these optimization problems, Gwak
et al. and Ha et al. both studied the gradient and Newton
minimization of (4) using Lie algebra, where the approximate

closed forms of the Jacobians are given. Quaternions are also
considered historically by Horaud et al. [14], [15], which has
been improved recently by Heller et al. who introduced the
linear matrix inequality (LMI) relaxation to solve the target
optimization [23]. However, all these classical methods are
derivative-based and tend to suffer from local minima, leading
to an unfortunate fact that finding a globally optimal solution
without initial guess may sometimes be trivial.

Let us rethink about the HEC problem AX = Y B.
Many algorithms solve the problem via Lie algebra of the
rotation. However, according to infinity terms of Lie exponen-
tial, the Jacobian matrix can only be approximated. Besides,
quaternions, dual quaternions, rotation matrices all have their
own nonlinear constraints and will bring burden for further
optimization. Therefore, it is required to use another rotation
parameterization that owns deterministic formula of Jacobian
without any constraint. Historically, this may be achieved by
the Cayley transformation such that one rotation can be written
in the form of

R = (I +G)
−1

(I −G) (5)

where G denotes a skew-symmetric matrix such that g× = G.
Alternatively, R can also be written in terms of

R = (I −G) (I +G)
−1 (6)

The problem AX = Y B can be parameterized independently
via

RARX = RYRB (7)
RAtX + tA = RY tB + tY (8)

where RX , tX and RY , tY denote the rotation and trans-
lation parts of poses X and Y , respectively. Let RX =
(I +GX) (I −GX)

−1, RY = (I +GY )
−1

(I −GY ) and
gX,× = GX , gY ,× = GY . We are able to transform
RARX = RYRB as

(I +GY )RA (I +GX) = (I −GY )RB (I −GX) (9)

which can be arranged as

C +GYD +DGX +GY CGX = 0 (10)

where C = RA −RB and D = RA + RB . Likewise, the
translation part can be evaluated as

(I +GY ) (RAtX + tA − tY )− (I −GY ) tB = 0. (11)

By letting Ei = Ci +gY ,×Di +DigX,×+gY ,×CigX,× and
vi = (I + gY ,×) (RA,itX + tA,i − tY )−(I − gY ,×) tB,i, it
is able to reformulate (3) as

arg min
gX ,gY ,tX ,tY ∈R3

L̃ =

N∑
i=1

tr
(
E>i Ei

)
+ v>i vi (12)

which is an unconstrained optimization for gX , gY , tX , tY .
When we deal with the problem AX = XB, we have gX =
−gY , tX = tY which can be easily computed in a similar
manner. To distinguish the target functions of AX = XB
and AX = Y B, we use L̃1 and L̃2 respectively.
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C. Algebraic Polynomials and Roots

Equation (12) presents an optimization with least number
of variables. Using x =

(
g>X , t

>
X

)>
and y =

(
g>Y , t

>
Y

)>
as

state vectors of unknown variables X and Y respectively, it
is clear that the gradient searching is achieved by

xk = xk−1 − µ∇xL̃1(xk−1) (13)

zk = zk−1 − µ∇zL̃2(zk−1) (14)

in which z =
(
x>,y>

)>
denotes the unified vector of x and

y, k = 1, 2, · · · is the optimization updating index and µ > 0
stands for a step length. For HEC problems, all feasible local
minima must satisfy

lim
k→+∞

∇xL̃1(xk) = 0, lim
k→+∞

∇zL̃2(zk) = 0. (15)

Here one needs to note that the zero sets of ∇xL̃1(xk) =
0,∇zL̃2(zk) = 0 actually form all possible local minima.
Therefore, solving the two systems algebraically gives com-
plete sets of local minima which provides the global minimum
that corresponds to the least value of loss functions.

Since x,y ∈ R6, ∇xL̃1(xk) = 0,∇zL̃2(zk) = 0 have
the sizes of 6 × 1 and 12 × 1 respectively. Equation (12)
contains a strong multiplicative coupling between rotation and
translation so let us first investigate the structure of the two
system. Via symbolic computation, one can easily verify that
∇xL̃1(x) = 0 can be written in the following form{

f1
(
g3X , g

2
XtX , gXt

2
X , gX , tX

)
= 0 ∈ R3

f2
(
g2XtX , g

2
X , gX , tX

)
= 0 ∈ R3

(16)

where giX denotes the combinatorial terms of gX of order i
and qiXt

j
X stands for all the products between elements of

giX and tjX ; f represents polynomial systems. Equation (16)
is a typical polynomial system of gX and tX whose algebraic
solutions are hard to be found out. From f2 we can compute
tX in terms of gX which is presented in an inverse of a matrix
whose components are g2X and gX . Therefore tX are in the
form with numerator of order up to 4 and denominator of order
up to 6. Thus, replacing tX in (16) thus gives a high-order
system of gX

f3
(
g15X , g

14
X , g

13
X , g

12
X , g

10
X , g

9
X , g

8
X , · · ·

)
= 0 ∈ R3 (17)

The monomials with highest order of 15 has been obtained
by eliminating the denominator of tX such that the term of
highest order is g3X and the order is computed by 3 + 6×2 =
15. Polynomial (17) has at most 243 unique solutions by
Sturm’s theorem and Bezout’s theorem. These theorems have
been extensively applied for root counting of polynomials. For
instance, the renowned software Mathematica has a command
of RootIntervals for exact root counting. The command
RootIntervals has been implemented using Sturm’s the-
orem in combination with Bezout’s theorem for accurate root
counting. For the problem AX = Y B, we are able to obtain

the following polynomials of ∇zL̃1(z) = 0

f4
(
gXg

2
Y , gXgY , g

2
Y , gX , gY

)
= 0 ∈ R3

f5
(
g2Y tX , g

2
Y tY , g

2
Y , gY , tX , tY

)
= 0 ∈ R3

f6

(
gY tXtY , gY t

2
Y , gY t

2
X , g

2
XgY , gY tX ,

gY tY , gXgY , g
2
X , gX , gY , tX , tY

)
= 0 ∈ R3

f7
(
g2Y tX , g

2
Y tY , g

2
Y , gY , tX , tY

)
= 0 ∈ R3

(18)
which has at most 1080 unique solutions in theory. Note that
the solution numbers are given to their largest extent simply
because that in some cases the HEC problems degenerate.
For instance, in some pure translation motions, the rotation
may be unobservable leading to the fact that some degrees
of freedom are lost. In those cases, some symbolic items
may vanish which formulates some new systems with less
complexity. Another condition may possibly occur is that in
some cases, repeated roots will take place, due to which the
number of unique solutions will also be deceased. The solution
numbers are also affected by different N . When N = 1, the
HEC problems are completely unsolvable, leading to multiple
optimal solutions. When N ≥ 2, the systems may be solvable
but also depends on the structure of A and B.

To give all possible solutions, automated reasoning methods
are introduced for accurate and efficient solutions. We intro-
duce the Wu’s elimination for solving the algebraic systems
(17) and (18). Wu’s method was proposed by Wen-Tsun Wu in
1970s [24], [25], which was based on the mathematical mecha-
nisms from classical mathematical literatures in ancient China.
For instance the The Nine Chapters on the Mathematical
Art and Dayan Qiuyi Shu are two representatives describing
highly structured algebraic methods for elementary equation
problems, which have large impact on later algorithms e.g.
the RSA encryption algorithm developed in 1977 [26]. Wu
extended the ancient approaches to a systematic theory for
automated reasoning. As such, not only nonlinear algebraic
equations can be solved, proofs of geometric problems can
be completed by computers as well, which is called the
mechanical theorem proving. Consider a general polynomial
system 

I1(p1, p2, · · · , pk) = 0

I2(p1, p2, · · · , pk) = 0

...
Im(p1, p2, · · · , pk) = 0

(19)

where k unknowns can be categorized into a vector p =
(p1, p2, · · · , pk)

> and I1, · · · , Im stand for polynomial sys-
tem of m equations. We call ØIp the set of roots such that the
polynomial set I = (I1, I2, · · · , Im) = 0, which is also called
an ideal in abstract algebra. We call the following polynomial
system a triangularized one

I1(p1) = 0

I2(p1, p2) = 0

...
Im(p1, p2, · · · , pk) = 0.

(20)
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Moreover, a triangularized one is the characteristic set if it
satisfies some conditions. To obtain the characteristic set of
I, one needs to refer to symbolic manipulations, eliminations
and substitutions. Using Groebner bases can also achieve
such simplification. However, Groebner-basis method requires
to determine complete set of monomials involved. When
encountering degenerate cases, previously generated Groebner
bases become ill-posed and require re-computation which is
very slow even for modern computers. Wu’s method focuses
on finding deterministic form of the characteristic set via
computer algebra with a certain series of operations. It will
point out whether I is solvable or not. Then, if I = 0 is
solvable, the set of roots is constructed using Wu’s theorem,
such that

ØIp = ØSp +
∑
i

ØBi
p (21)

in which S denotes the remainder of the polynomial devision
of the polynomial set C using a guessed solution (may come
from iterative methods); Bi denotes the augmented polynomial
set using guessed solution for i-th polynomial. Wu’s method
is computer-friendly and can be implemented using diverses
advanced programming languages e.g. MATLAB, Mathemat-
ica, Maple, Symbolic C++ and etc. We need to note that, for
many mainstream symbolic softwares, floating-point numbers
are not supported for symbolic manipulations. Therefore,
when implementing the related algorithms, the stored floating
numbers should be simultaneously scaled to a large degree so
that they can be converted to integers without loss of precision.

III. EXPERIMENTAL RESULTS

We implement the symbolic computation using combined
approach of Symbolic C++ and MATLAB-C++ interface. All
the experiments are conducted on a MacBook laptop with
CPU of i7-4core 3.5GHz. The compiler is gcc-7 while the
compiling option has been set to -Ofast enabling highest
optimization level. The MATLAB kernel has been offered by
the MATLAB r2018a for Mac. For synthetic experiments, the
poses are simulated using

Ãi = perturb (Ai, α, β)

B̃i = perturb
(
Y −1trueÃiXtrue, α, β

) (22)

in which perturb denotes an operator for adding noise per-
turbation to the true measurements from true poses Xtrue and
Ytrue, in which α and β denote the noise levels of rotational
and translation parts respectively. The perturbation models are

RÃi
= RAi

exp(ξ×), ξ ∼ N (0, αI) (23)

tÃi
= tAi

+ η, η ∼ N (0, βI) (24)

which is the same with models of other poses. In this way, both
Ãi and B̃i are perturbed measurements for HEC computation.
Note that if the problem is AX = XB, the above models
can be adjusted by letting X = Y . During simulation, the
true values of Ai and Bi are generated making sure that the
translational parts are almost normalized so that α and β can
well reflect the signal-noise ratio (SNR). The rotation error of

a computed pose X with respect to its truth Xtrue is defined
by

θX,err = [log (RXRXtrue
)]
∧ (25)

while the translational error is

tX,err = tX − tXtrue
. (26)

These error indices are some times evaluated via ‖θX,err‖ /
√

3
and ‖tX,err‖ /

√
3 to illustrate the mean error for each axis.

Fig. 2. Loss function values in terms increasing number of measure-
ments.

A. Synthetic Experiment: Common Case
Using the simulation model (22), it is able for us to study the

noise characteristics and computational efficiency of multiple
methods. We simulate 9 cases where the numbers of mea-
surement pairs ranging from 2 to 10. Each cases are randomly
simulated using different combinations of noise levels α and β.
Each experiment has been repeated for 1000 times to generate
averaged results. Given a certain set of α = 1×10−2 and β =
1 × 10−2, the accuracy sensitivities of AX = XB solvers
in terms of the number of measurements are summarized in
Fig. 2, in which we compare the proposed method with other
representatives. For AX = XB, we use methods of Park et
al. [11], Tsai et al. [6], Andreff et al. [13] and BnB method by
Heller et al. [16]. To study the sensitivities of various methods
subject to different input noise levels, we conduct 1000 random
simulations for mean performance. The methods of Park et al.,
Tsai et al. and Andreff et al. are all analytical but Andreff’s
method solves the AX = XB problem in a simultaneous
manner for rotation and translation. From Fig. 3 and Fig. 4,
we are able to see that Andreff’s method outperforms the other
two analytical approaches. With increasing noise level, the
errors of all candidates raise accordingly. The BnB method is
a globally optimal one for AX = XB solving. The proposed
method achieves the same accuracy as that of BnB. Thus they
are the most accurate ones for problem AX = XB.

For AX = Y B problem, the algorithms of Shah [27],
Zhuang et al. [28], Dornaika et al. [15] and Ha et al. [17] have
been compared. Note that for Dornaika’s method, we use the
iterative one and for the two methods of Dornaika et al. and
Ha et al. the gradient-descent step lengths are set identically
to γ = 0.1 for stable convergence. From Fig. 5 and Fig. 6,
the noise sensitivity of pose errors will be depicted. In these
comparisons, the noise level has been visualized in a mixed
manner simply because here X and Y is coupled together.
One may observe that the error scale also goes up with
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Fig. 3. Sensitivity of AX = XB pose errors to different rotational
noise levels α.

Fig. 4. Sensitivity of AX = XB pose errors to different translational
noise levels β.

increasing mixed noise levels. The methods of Shah, Zhuang
et al are analytical ones which can not achieve good accuracy
with large noise levels. While the algorithm of Dornaika et
al. performs better, it is not likely to be more accurate than
the method of Ha et al., which was designed as a global
optimizer. However, since there are infinite uniform samplings
on SO(3), it is hard to guarantee that the method of Ha et al.
will always reach the global optimum. Besides, gradient-based
optimizers often suffer from uncertain step lengths. Using a
set of synthetic data, we are able to perform two convergence
plots, as presented in Fig. 7 and Fig. 8. For each simulation,
200 trials are performed to search global optimum and each
trial has the maximum iteration of 500.

We can see that according to different values of γ, the
gradient optimizer of Ha et al. can not always find the
global optimum. Rather, for γ = 0.01, all the trials are
trivial. In engineering, for different cases, it is hard for us
to give a certain γ that is universal for all kinds of datasets.

Fig. 5. Sensitivity of pose errors ofX inAX = Y B to different mixed
noise levels αβ.

Fig. 6. Sensitivity of pose errors of Y inAX = Y B to different mixed
noise levels αβ.

The proposed method, however, is free of online gradient
evaluation and will not be subjected to uncertain step lengths.
Thus, in summary, the proposed method achieves all local
minima and finally obtains the global optimum by sorting all
loss function values. From theoretical results shown previously
in this paper, it is concluded that the total amount of local
minima can reach up to 1080. That is to say for a complete
classification of all roots, gradient searching will be at least
performed for 1080 times for global optimum, which brings
about large computational burden in engineering.

B. Synthetic Experiment: Singular Case
For most HEC tasks, the data will be reasonable for compu-

tation. However, in some online calibration works, it is hard
to select optimal motion sequences. The example presented
in this sub-section shows that some local minima are quite
close to each other, making the optimization searching very
tough in engineering. A typical case is the pure translational
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Fig. 7. Typical convergence of the loss function value when the step
length of method of Ha et al. [17] is γ = 0.1 of 200 trials.

Fig. 8. Typical convergence of the loss function value when the step
length of method of Ha et al. [17] is γ = 0.01 of 200 trials.

motion. For instance, a simulative case is shown in Fig. 9.
In such a case, the rotational motion is neglectable, leading
to unobservability of translational parts. To illustrate such
example, we generate a synthetic dataset with only two pose
pairs for HEC problem AX = XB. The ground truth is

Xtrue =

 0.24107 0.96967 −0.04024 0.30248
−0.28382 0.11009 0.95254 0.67896
0.92808 −0.21821 0.30175 0.67485

0 0 0 1

 .

(27)
The measurements are

A1 =

 1 %11 %12 −1.16410
−%11 1 %13 −0.43029
−%12 −%13 1 −0.45538
0 0 0 1

 (28)

Fig. 9. A pure-translation case.

A2 =

 1 %21 %22 0.31605
−%21 1 %23 0.73459
−%22 −%23 1 0.88189
0 0 0 1

 (29)

B1 =

 1 %31 %32 −0.58113
−%31 1 %33 −1.07680
−%32 −%33 1 −0.50043
0 0 0 1

 (30)

B2 =

 1 %41 %42 0.68616
−%41 1 %43 0.19490
−%42 −%43 1 0.95311
0 0 0 1

 (31)

(32)

in which the parameters are

%11 = 1.39189247687321× 10−12 (33)

%12 = 1.30861934823665× 10−12 (34)

%13 = 1.69398839073174× 10−13 (35)

%21 = 3.33074698336478× 10−13 (36)

%22 = −4.74495911429954× 10−13 (37)

%23 = −8.21458870144532× 10−13 (38)

%31 = −1.09043432460593× 10−12 (39)

%32 = 4.00144747045421× 10−13 (40)

%33 = 2.64665852962922× 10−12 (41)

%41 = −4.26681754439078× 10−13 (42)

%42 = −4.78662744237887× 10−13 (43)

%43 = −1.6696207320982× 10−12. (44)

Using the developed algorithm, it is able for us to compute
all the local minima, of which the least several loss function
values among total 243 ones in ascending order are

L = 2.18140848054451× 10−22

L = 2.09547579288484× 10−9

L = 3.72529029846192× 10−8

L = 5.96046447753907× 10−8

L = 0.0170645634643734

L = 0.0174178176093847

L = 0.0261864693893585

L = 0.0267650652676821

L = 0.028603101382032

L = 0.0294563099741936

L = 0.521159673109651.

(45)
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Note that the above rotational parts are generated using the
small-angle approximation (infinitesimal) of rotation matrix
(See Eq. 6 in [29] and Eq. 25 in [30]). From these values, one
may see that the differences between successive loss function
values are small. This will lead to quite tough searching by
using gradient optimizers. And eventually, the method of Ha
et al. fails for this case even if the step length γ has been tuned
for multiple times. This extreme case shows that previous
methods are not always able to locate all possible local
minima. The proposed method guarantees that all local minima
can be found so the global optimality is strictly guaranteed.

Fig. 10. Experimental setup for industrial hand-eye calibration.

C. Real Experiment: Industrial Hand-Eye Calibration

An industrial robotic manipulator UR5 from Universal
Robot is employed for validation (see Fig. 10). A 12 × 9
standard chessboard with each block of 30mm width has
been used as the origin plane of the world frame. An Intel
Realsense D435i camera has been attached to the flange of
the robotic manipulator where another industrial gripper is
installed for visually aided grasping. We use the algorithm
in [31] to detect the corners of chessboard. The command
perf is invoked for run-time stats and the parallelization has
been enabled by the compiler option -Ofast. The hand-eye
problem now turns into finding out the unknown transform
X between the flange frame and the Realsense camera. This
can be achieved independently by using solvers of AX =
XB and AX = Y B problems. The calibration accuracy
can be estimated by mapping the pose back into the 2D
imaging plane, which produces the reprojection errors between
detected corners of the checkerboard. We generate different
poses of manipulators to acquired perspective imaging of the
chessboard. The reprojection errors using AX = XB for one
of the generated datasets are shown in Fig. 11.

The results indicate that the proposed symbolic method
is accurate, with mean reprojection errors of 0.12 pixels
in vertical direction and 0.11 pixels in horizontal direction.
We would also like to study the computational efficiency of
various algorithms. Using different numbers of poses, all can-
didates compared in previously are chosen for computational

Fig. 11. The reprojection errors of the AX = XB calibration.

evaluation. The main computational stats on the employed
laptop are summarized in Table I and Table II in which the
mean performances have been visualized. We can see that the
global iterative methods like BnB and method of Ha et al.
are quite time-consuming for large datasets. This is because
these algorithms will either require extensive matching or
conduct huge loads of loss-function evaluation. Analytical
methods are computationally efficient but they can not achieve
global optimum and sometimes may fail in the presence of
datasets with outliers. The proposed method, however, does
not need computation of gradient over and over again. Instead,
it directly solves the polynomial system algebraically. Thus the
computational performance for large datasets will be much
more satisfactory than other globally optimal representatives.
Further applications are not limited to industrial hand-eye
calibration but may also include camera/camera, camera/laser,
camera/inertial calibration as well.

IV. CONCLUSION

Two classical HEC problems AX = XB and AX = Y B
have been revisited in this paper. A new error formulation
using Caylay transform has been proposed for the first time.
This new formulation allows for a unified approach for AX =
XB and AX = Y B simultaneously. Using the generated
optimization target, algebraic polynomial system has been
derived. The new aim has been shifted to algebraically solve
this system for all possible roots. Wu’s elimination method
has been invoked to achieve this goal and the accuracy has
been proven to be optimal. We reveal the fact the maximum
numbers of possible local minima is bounded as 243 for
AX = XB and 1080 for AX = Y B. It is investigated
that the proposed method is also robust for some extreme
cases while some representatives can not give global optimum.
Industrial hand-eye calibration tasks also validate the accuracy
and better computational performance compared with recent
representatives.

However, we could see that the numbers of possible local
minima are large, leading to sophisticated symbolic elim-
ination. Future efforts should be devoted to find a better
framework to significantly reduce such symbolic manipula-
tions. Improvements may be conducted via advanced symbolic
reduction techniques regarding the specific hand-eye problem.



J. WU et al.: GLOBALLY OPTIMAL SYMBOLIC HAND-EYE CALIBRATION 9

TABLE I
COMPUTATIONAL PERFORMANCES OF VARIOUS ALGORITHMS FOR AX = XB PROBLEM (SEC)

Measurement Number N Park Tsai Andreff Branch-and-Bound Proposed (AX =XB)

5 3.7× 10−3 6.4× 10−3 7.4× 10−4 5.5× 10−1 7.2× 10−1

100 8.9× 10−3 3.3× 10−2 2.7× 10−3 6.1 8.3× 10−2

1000 4.6× 10−2 9.2× 10−2 8.3× 10−3 82 1.1
10000 9.3× 10−2 3.2× 10−1 2.6× 10−2 907 2.4
100000 4.4× 10−1 1.6 9.1× 10−1 14321 4.6

TABLE II
COMPUTATIONAL PERFORMANCES OF VARIOUS ALGORITHMS FOR AX = Y B PROBLEM (SEC)

Measurement Number N Shah Zhuang Dornaika Ha Proposed (AX = Y B)

5 1.4× 10−3 8.2× 10−3 7.6× 10−2 9.7× 10−2 3.8
100 3.2× 10−2 5.1× 10−2 6.3× 10−1 6.1 4.6
1000 4.3× 10−2 9.7× 10−2 3.5 9.3 6.2
10000 8.7× 10−2 7.2× 10−1 32 206 8.3
100000 3.9× 10−1 4.5 301 3783 10.1
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