
Trans. Japan Soc. Aero. Space Sci.
Vol. X, No. X, pp.1 - 8, 2020
DOI: 10.2322/tjsass.X.1

Hybrid Geomagnetic Attitude and Orbit Estimation Using Time-Differential
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This paper introduces a novel filter for hybrid attitude and orbit estimation of spacecrafts with geomagnetic mea-
surements and its time-differential information. Geomagnetic measurements can be used for simultaneous attitude and
orbit estimation of spacecrafts. In practice, the attitude estimation from a single magnetometer is achieved by fusing the
magnetometer readings and their time derivatives together. The orbit will also be estimated according to the relation-
ship between the geomagnetic model and spacecraft coordinates in the Earth geodetic frame. However, the magnetic
time derivatives have not participated in estimating the orbit elements. According to the mathematical structures of the
geomagnetic models, the time-differential feedback can effectively enhance the estimation of the velocity and thus will
provide better performance for the position loop. This paper first introduces such direct feedback and formulates a new
filter with better characteristics. The simulation study of a medium Earth orbit (MEO) Nadir-pointing satellite mission
shows that the proposed filter achieves faster convergence and lower estimation errors.
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1. Introduction

It has been studied recently that multiple sources can be
employed for orbit determination, including the visual infor-
mation, temperature variation and laser scanning measure-
ments.1–3) In fact, most of the spacecrafts will carry magne-
tometer according to its universality in scientific research and
the low costs along with light weight in the study of nano-
satellites.4) Therefore, the geomagnetic measurements will
be applicable to almost any spacecraft for an autonomous or-
bit determination sub-system. These factors contribute to the
reason that magnetometer is often treated as a backup sensor
for emerging spacecraft state estimation, subject to a mini-
mum equipment list (MEL).5) The dynamical orbit determi-
nation problem can be expressed via nonlinear differential
systems of the orbit elements. Extensive efforts have been
paid to understanding the behaviours of these systems. Also
many efficient integrators have been proposed for more accu-
rate orbit propagation.6) For the geomagnetic orbit determi-
nation, the observation vector can either be the total intensity
or the 3-axis components of the measured geomagnetic field.
The geomagnetic model can be mathematically described via
the spherical harmonic series in terms of the local geodetic
coordinates. As the geomagnetic model is expressed in the
geodetic frame, 3-axis measurements require attitude infor-
mation of the spacecraft, which is not needed by the total
intensity due to the norm invariance of the rotation.7) As the
magnetometer also reflects the attitude information,8, 9) it is
feasible that the attitude and orbit can be simultaneously es-
timated via a single magnetometer.10) Dated back to the late
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1980s, the geomagnetic orbit determination method was first
studied by Psiaki et al.11) Due to high nonlinearity of the
global geomagnetic model and large magnetic uncertainty of
the instruments, the orbit determination accuracy is not so
satisfactory. This was then resolved by introducing external
sources like Sun sensor and star tracker.12, 13) However, as
the magnetometer is quite flexible, the researchers have al-
ways been continuously working on more effective estima-
tion approaches during the past several decades. Juang et
al. applied the magnetometer dynamic calibration to the geo-
magnetic orbit determination and achieved better accuracy.14)

Cheon has proposed a method for target pointing spacecraft
that the included angle between the magnetic vector and the
pointing vector can be used for enhanced geomagnetic orbit
determination.15) It is also shown that combining with mul-
tiple sensors, the spacecraft navigation performance can be
improved.16)

Using filtering techniques like extended Kalman filter
(EKF) and unscented Kalman filter (UKF), it is proven that
drift-free orbit determination can be performed. Although ex-
isting works have shown current feasibility of geomagnetic
orbit determination, a drawback still consists in the conven-
tional model that there is no direct velocity feedback in the
observation model so that the filter typically requires a few
hours or more to converge to a satisfactory estimate.15) This
paper introduces the time-differential information as the di-
rect velocity feedback to the simultaneous geomagnetic atti-
tude and orbit estimation for the very first time. The aim of
this study is to show that such feedback will be efficient. It
is investigated that the closed forms of the time-differential
model can be obtained. A new filter design has been pro-
posed for better estimation performance on the convergence
and accuracy.

The remainder of this paper is organized as follows: Sec-
tion II contains the proposed geomagnetic attitude and orbit
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estimation filter design. Section III presents the simulation
results and the concluding remarks have been drawn in Sec-
tion IV.

2. Time-Differential Geomagnetic Model

The magnetometer mounted on the spacecraft measures the
geomagnetic field Bb in the body frame b. According to the
attitude dynamics, the geomagnetic measurement and its time
derivative can be related as follows4)Bb = Rb

NEDBNED

Ḃb = Rb
NEDḂNED − ω ×

(
Rb

NEDBNED
) (1)

where BNED denotes the geomagnetic reference vector in the
local North-East-Down (NED) frame and Rb

NED defines a
transformation matrix from NED frame to the b frame. ω
represents the angular rate vector of the spacecraft body with
respect to the reference frame. The spacecraft attitude dy-
namics follow that17)

ω̇ = −I−1 [ω × (Iω + u)] + I−1(T − u̇) (2)

with I the inertia matrix, u the angular momentum of the
reaction wheel and T the external torques imposed on the
spacecraft, including the aerodynamic drag, geopotential gra-
dient, equivalent magnetic disturbance torque from space-
borne currents and etc. Abdelrahman et al. employ (1)
as the observation model for the simultaneous attitude and
orbit determination by setting an augmented dynamics ex-
tended Kalman filter (ADEKF) with a state vector incorpo-
rating angular rate, quaternion, position, velocity and drag
coefficient.7) It has been proven to be efficient in real mis-
sions due to the fact that at least two vector measurements
guarantee the observability of full attitude of Rb

NED. One cur-
rent drawback of their method is that the time derivatives of
the geomagnetic measurements in both body and reference
frames are computed via the polynomial extrapolation. That
is to say, in their observation model, both Ḃb and ḂNED are
computed from historical measurements. Therefore, there is
no direct or indirect differential feedback to the attitude and
orbit. Thus the orbital convergence of the ADEKF subject
to large initial state bias, will be slow. Besides, the model
(1) does not consider the time-varying magnetometer distur-
bance that may severely impact the navigation performance.

The magnetometer model can be further revised to

Bb = Rb
NEDBNED + b + η (3)

where b and η are the dynamical disturbance and the additive
noise item subject to the Guassian distribution η ∼ N(η̄,Ση)
with η̄ the mean value and Ση the covariance matrix. Soken
et al. have recently proposed an attitude-independent obser-
vation model for estimation of b:18)∥∥∥Bb

∥∥∥2
−

∥∥∥BNED
∥∥∥2

= 2Bb · b − ‖b‖2 + ξ (4)

where

ξ = 2(Bb − b) · η (5)

subject to the Gaussian distribution such that

ξ ∼ N
[
−tr Ση, 4

(
Bb − b

)>
Ση

(
Bb − b

)
+ 2tr Ση

]
(6)

In Soken’s work,18) ḃ = 0 has been assumed as the system
model of b. However, for fast varying magnetic disturbances
like those caused by geomagnetic storms, this constant as-
sumption will no longer be feasible. Differentiating (3) in
terms of the time gives

Ḃb = Rb
NED ḂNED − ω ×

(
Rb

NEDBNED
)

+ ḃ + η̇

⇒ ḃ = ω ×
(
Rb

NEDBNED
)
− Rb

NEDḂNED − Ḃb − η̇
(7)

which can be used as the dynamical system model of b. What
needs to be point out is that here the system model of b is no
longer attitude-free.

The internal reason that (1) can estimate the orbit is that
BNED is a function of the geodetic coordinates r, θ, ϕ, namely,
the radial distance to the center of the Earth, the co-elevation
and the latitude. The geomagnetic potential at one point is
given by spherical harmonic series

V(r, θ, ϕ, l) =

Re

q∑
n=1

(Re

r

)n+1 n∑
m=0

(
gm

n cos mϕ + hm
n sin mϕ

)
Pm

n (cos θ)

(8)
where Pm

n (cos θ) denotes the Schmidt associated Legendre
function with degrees n and m up to l that is orthogonal
on a sphere; gm

n and hm
n are required Gaussian coefficients

which have been extensively studied via historical geomag-
netism observations. The International Geomagnetic Refer-
ence Field (IGRF), the Enhanced Magnetic Model (EMM)
and the World Magnetic Model (WMM) are all based on the
same geopotential V(r, θ, ϕ, l) with different values of gm

n and
hm

n . Theoretical spherical harmonic analysis have proven that
the geomagnetic vector in the NED reference frame is the so-
lution to the Laplacian equation ∇2V(r, θ, ϕ, l) = 0, i.e.

BNED = −∇V(r, θ, ϕ, l) =
(
Br, Bθ, Bϕ

)>
(9)

which yields

Br =

l∑
n=1

(Re

r

)n+2

(n + 1)
n∑

m=0

(
gm

n cos mϕ + hm
n sin mϕ

)
Pm

n (cos θ)

Bθ = −

l∑
n=1

(Re

r

)n+2 n∑
m=0

(
gm

n cos mϕ + hm
n sin mϕ

) ∂Pm
n (cos θ)
∂θ

Bϕ =

−
1

sin θ

l∑
n=1

(Re

r

)n+2 n∑
m=0

m
(
−gm

n sin mϕ + hm
n cos mϕ

)
Pm

n (cos θ)

(10)
To decrease the shortcomings of the filters by Abdelrahman
et al., the following filter framework is proposed:

1. State Vector: The state vector includes the angular rate
ω, rotation vector φ parameterizing the rotation matrix
Rb

NED, orbit position pECI, orbiting velocity uECI in the
Earth centered inertial (ECI) frame and the magnetome-
ter disturbance b so that the state can be represented in
the form of

x =
(
ω>, q>, p>ECI, u

>
ECI, b

>
)>

(11)
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2. Process Model:
(a) Angular Dynamics: The equation in (2).
(b) Quaternion Dynamics:

φ̇ = ω +
1
2
φ × ω +

1
12
φ × (φ × ω) (12)

where the coning correction is considered.19)

(c) Position and Velocity:{ ṗECI = uECI

u̇ECI = adyn + aext
(13)

where adyn represents the geopotential dynamical
acceleration while aext describes all the external
disturbance accelerations, including atmospheric
drag, solar radiation pressure, Sun/Moon gravita-
tional forces and etc. In this paper, the the grav-
ity model with items up to J4 has been employed,
which is as adyn shown in (26) in the appendix. For
aext, the atmospheric drag is neglected according to
relatively high altitude of the flight trajectory.

(d) Magnetic Disturbance: The equation in (7).
3. Observation Model: The measurement vector is

z =

[(
Bb

)>
,
(
Ḃb

)>
,
∥∥∥Ḃb

∥∥∥2
,
∥∥∥Bb

∥∥∥2
−

∥∥∥BNED
∥∥∥2

]>
(14)

where Bb and Ḃb are three-axis geomagnetic measure-
ment and its time derivative in the spacecraft body
frame;

∥∥∥BNED
∥∥∥ is the total intensity of the magnetometer

and may usually derived from the scalar magnetometer;
The squared norm of the Ḃb follows that∥∥∥Ḃb

∥∥∥2

=
[
Rb

NED ḂNED − ω ×
(
Rb

NEDBNED
)]>[

Rb
NEDḂNED − ω ×

(
Rb

NEDBNED
)]

=
∥∥∥ḂNED

∥∥∥2
+ ‖ω‖2

∥∥∥BNED
∥∥∥2
−

2
(
Rb

NED ḂNED
)
·
[
ω ×

(
Rb

NEDBNED
)]

(15)

It can be seen that when ‖ω‖2 is a tiny number, denot-
ing that the angular rate with respect to the NED frame
is tiny, such as the Nadir alignment attitude profile, the
main factor in Ḃb will be

∥∥∥ḂNED
∥∥∥2

. The measurement
of Ḃb also comes from the scalar magnetometer and
one may observe in (15) that

∥∥∥Ḃb
∥∥∥2

is dependent on the
time derivative of BNED, which can be given by (16).∥∥∥Bb

∥∥∥ provides the direct observability of the position

pECI while
∥∥∥Ḃb

∥∥∥2
gives the feedback of the velocity from

ṙ, θ̇, ϕ̇. The values of ṙ, θ̇, ϕ̇ are converted using predicted
velocity from the ECI coordination system to the lo-
cal geodetic NED frame. Such detailed transformations
can be found in.20) paper that such transformation from
the Cartesian ECI frame to the geodetic spherical frame
in the way of closed-forms does not always guarantee
the least transformation errors and further optimization
techniques are required to decrease such effect.21)

The final item in z considers the magnetic disturbance
estimation, which has been presented in (4). It can be

inferred from this term that the magnetometer calibra-
tion model also contributes to the estimation of the orbit
elements. The designed structure of z therefore consists
of full observability of attitude, orbit and magnetome-
ter disturbance and will own higher accuracy and faster
convergence speed upon implementation.

Ḃr = −
1
Re

q∑
n=1

ṙ
(Re

r

)n+3

(n + 1)(n + 2)×

n∑
m=0

(
gm

n cos mϕ + hm
n sin mϕ

)
Pm

n (cos θ)+

q∑
n=1

(Re

r

)n+2

(n + 1)×

n∑
m=0


m

(
−gm

n ϕ̇ sin mϕ+

hm
n ϕ̇ cos mϕ

)
Pm

n (cos θ)+(
gm

n cos mϕ+

hm
n sin mϕ

)
Ṗm

n (cos θ)



(16a)

Ḃθ =
1
Re

q∑
n=1

ṙ
(Re

r

)n+3

(n + 2)×

n∑
m=0

(
gm

n cos mϕ + hm
n sin mϕ

) ∂Pm
n (cos θ)
∂θ

−

q∑
n=1

(Re

r

)n+2 n∑
m=0


m

(
−gm

n ϕ̇ sin mϕ+

hm
n ϕ cos mϕ

)
∂Pm

n (cos θ)
∂θ

+(
gm

n cos mϕ+

hm
n sin mϕ

)
∂2Pm

n (cos θ)
∂θ∂t


(16b)

Ḃϕ = −θ̇ cot θBϕ+

1
Re sin θ

q∑
n=1

ṙ
(Re

r

)n+3

(n + 2)×

n∑
m=0

m
(
−gm

n sin mϕ + hm
n cos mϕ

)
Pm

n (cos θ)−

1
sin θ

q∑
n=1

(Re

r

)n+2

×

n∑
m=0


−m2

gm
n θ̇ cos mϕ+

hm
n ϕ̇ sin mϕ

 Pm
n (cos θ)+

m
(
−gm

n sin mϕ+

hm
n cos mϕ

)
Ṗm

n (cos θ)


(16c)

with derivatives of Legendre functions as follows

Ṗm
n (cos θ) =

∂Pm
n (cos θ)
∂θ

θ̇

∂2Pm
n (cos θ)
∂θ∂t

=
∂2Pm

n (cos θ)
∂θ2 θ̇

(17)
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where

∂2P0
0(cos θ)
∂θ2 = 0

∂2Pn
n(cos θ)
∂θ2 = cos θ

∂2Pn−1
n−1(cos θ)
∂θ2 − sin θ

∂Pn−1
n−1(cos θ)
∂θ

− sin θ
∂Pn−1

n−1(cos θ)
∂θ

− cos θPn−1
n−1(cos θ) , n ≥ 1

∂2Pm
n (cos θ)
∂θ2 = cos θ

∂2Pm
n−1(cos θ)
∂θ2 − sin θ

∂Pm
n−1(cos θ)
∂θ

− sin θ
∂Pm

n−1(cos θ)
∂θ

− cos θPm
n−1(cos θ)

−Km
n
∂2Pm

n−2(cos θ)
∂θ2

(18)
In,4, 7) the time derivatives of the geomagnetic measurements
are computed from Bb using the polynomial extrapolation.
The method is practical but lacks in estimating accurate co-
variance. We hereby introduce the window-recursive ap-
proach (WRA) for estimation of the derivatives.22) WRA
technique has been successfully applied to the estimation of
GNSS real-time kinematic velocity model and can reach to
arbitrary order using historical data.23, 24) An alternative ad-
vantage of the WRA is that it can give accurate covariance
results of the estimates, which has not been considered in the
previous polynomial interpolation based methods.4, 5) In this
work, it is assumed that dḂb/dt = 0, so the WRA owns the
second order.

3. Simulation Results

As the orbit propagation presented in the state process
model neglects the external acceleration from atmospheric
drag, in this section, a mission of the medium Earth orbit
(MEO) satellite has been simulated. The Earth-orbiting mis-
sion has been simulated with eccentricity of 0.15 and semi-
major axis of 9966.14 km. The equivalent orbit parameters
in the J2000 ECI frame are

pECI =


6293.3980673746755201
2770.2470960305845438
−11.4819540016413821

 km

uECI =


−2.1591063642755022
4.9273503592517010
5.3877766489578649

 km/s

(19)

The satellite attitude profile is set as Nadir alignment sub-
ject to orbit normal constraint of 3 deg. The spacecraft
weighs at 1000kg and owns the inertia matrix of I =

diag(4500, 4500, 4500) kg · m2. A 3-axis magnetometer and
an independent scalar magnetometer have been installed on
the satellite with 1σ measurement uncertainties of 2 nT and
0.5 nT respectively. The outer geomagnetic environment is
perturbed with the Olson-Pfitzer field.25) The space weather
has been simulated according to the NASA online profiles. A
scenario with time span of 24 hours is created. The attitude
control method used in this paper is based on a proportional-
derivative (PD) design. The estimation problem can be ex-

pressed via the solution to the following system{ẋ = f (x, t) + κ

z = h(x, t) + %
(20)

where f (x, t) and h(x, t) define the process and observation
models respectively, with respect to the state x and time t;
κ and % are additive noise items whose online uncertainties
(covariance) Σκ and Σ% can be evaluated using either the first-
order approximation or the method of sigma points. Repre-
sentative methods utilize the EKF and UKF for state estima-
tion. However, in the proposed models, due to the fact that
the internal variables and their uncertainty descriptions are
deeply coupled and correlated, in the simulation study, the
state-dependent Riccatti equation (SDRE) filtering has been
invoked to avoid the non-optimality of the EKF and UKF.
The SDRE first seeks a model that approximates (20) by{ẋ = F(x)x + κ

z = H(x)x + %
(21)

where F and H can typically be obtained via Jacobians of f
and h at the latest estimate x. The correction update of the
SDRE filtering about the estimated state x̂ is given by

˙̂x = F(x̂)x̂ + K[z − H(x̂)x̂] (22)

with K being the feedback gain matrix subject to the follow-
ing linear design

K = PH>(x̂)Σ% (23)

where P is the symmetric positive semidefinite solution to the
continuous algebraic Riccati equation (CARE) such that

F(x̂)P + PF>(x̂) − PH>(x̂)Σ−1
% H(x̂)P + Σκ = 0 (24)

The total intensity difference between the IGRF model of
degree 12 and the measured magnitude from the spacecraft
body frame using scalar magnetometer is shown in Fig. 2. It
can been seen that due to the space time-varying high-energy
flux and external geomagnetic field, the difference can reach
up to 150 nT. Such mismatch can actually be characterized as
the outer magnetic disturbance, which will be estimated in the
following contents. As the attitude propagates subject to the
Nadir alignment, ‖ω‖2 are quite small. Therefore

∥∥∥ḂNED
∥∥∥2

is

the major contribution to
∥∥∥Ḃb

∥∥∥2
according to (7). The time

derivatives of the geomagnetic total intensity from the simu-
lated NED frame and that from the measured vectors in the
body frame can be observed in Fig. 3. The shown values
indicates such trend and prove that this type of measurement
will be feasible for orbit determination.

Using the simulated data and the PD control method, the
spacecraft attitude/orbit estimation is conducted. The estima-
tion frequency has been set to 1Hz which is quite enough for
spacecraft state estimation and control. The initial position
bias has been set to 1 × 103 km and the initial velocity bias
is 1 km/s. The initial angular rate and the rotation vector are
set to ω = φ = 0. The initial magnetic disturbance is also
zero that will be estimated in further updates. To be consis-
tent with previous Abdelrahman’s ADEKF,7) the estimated

©2020 JSASS 4
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Fig. 1. The estimated angular rate vectors.

Fig. 2. The total intensity difference between the 12-th IGRF model and
the measured magnitude.

rotation vector φ is cast into the form of unit quaternion such
that26)

q =

(
cos
‖φ‖

2
, sin
‖φ‖

2
φ>

)>
(25)

paper that both q and −q represent the same rotation matrix,
then the post processing for sign ambiguity has been per-
formed according to.27) The estimated angular rate and the
quaternion along with the quaternion errors are shown in Fig.
1 and 4 respectively. One can see that due to the cancellation
of the magnetic disturbance, which is shown in Fig. 5, the
estimation results have been more accurate compared with
the ADEKF. By virtue of the time-differential feedback, there
are now two direct sources for orbit determination and thus
the convergence of the filter has been significantly improved.
The position and velocity estimation results are presented in
the form of errors by Fig. 6. It is evident that the initial con-
verging rate of the proposed filter is much higher than that

Fig. 3. The time derivatives of the geomagnetic total intensity in various
frames.

of the ADEKF. Besides, due to the introduction of direct dif-
ferential feedback, the observability of the velocity has been
enhanced and both the position and velocity errors have been
decreased.

4. Conclusion

The geomagnetic attitude/orbit estimation problem has
been revisited. It is shown that time-differential information
of the geomagnetic field model will benefit the estimation
convergence and accuracy. However, it is worth noting that
the new filter incorporates higher dimension of the observa-
tion model and will require computation of the derivatives of
the IGRF model. Therefore, the computational efficiency of
the proposed algorithms will be obviously worse than some
previous representatives.
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Fig. 4. Estimated quaternions from different sources.

Fig. 5. The estimated magnetic disturbance.

Appendix: J4 Geopotential Model

The J4-perturbed geogravitational model is

adyn = (aECI,x, aECI,y, aECI,z)>

aECI,x = −
µpECI,x

r3 ×

1 +
3
2

J2

(Re

r

)2
1 − 5

p2
ECI,z

r2


+

5
2

J3

(Re

r

)3
3 pECI,z

r
− 7

p3
ECI,z

r3


−

5
8

J4

(Re

r

)4
3 − 42

p2
ECI,z

r2 + 63
p4

ECI,z

r4




aECI,y = −

µpECI,y

r3 ×

1 +
3
2

J2

(Re

r

)2
1 − 5

p2
ECI,z

r2


+

5
2

J3

(Re

r

)3
3 pECI,z

r
− 7

p3
ECI,z

r3


−

5
8

J4

(Re

r

)4
3 − 42

p2
ECI,z

r2 + 63
p4

ECI,z

r4





(26a)

aECI,z = −
µpECI,x

r3 ×

1 +
3
2

J2

(Re

r

)2
3 − 5

p2
ECI,z

r2


+

5
2

J3

(Re

r

)3
6 pECI,z

r
− 7

p3
ECI,z

r3 −
3r

5pECI,z


−

5
8

J4

(Re

r

)4
15 − 70

p2
ECI,z

r2 + 63
p4

ECI,z

r4




(26b)

where pECI = (pECI,x, pECI,y, pECI,z)> is the position in the ECI
frame, µ is the gravitational constant of the Earth, J2, J3 and
J4 are zonal constant of the gravitational field.

References

1) Gu, L., Jiang, X., Li, S., and Li, W.: Optical/Radio/Pulsars Integrated
Navigation for Mars Orbiter, Adv. Space Res., 63, 1, 2018, pp. 512–
525.

2) Nasihati Gourabi, F., Kiani, M., and Pourtakdoust, S. H., “Autonomous
Temperature-Based Orbit Estimation,” Aerosp. Sci. Tech., 86, 2019,
pp. 671–682.

3) Psiaki, M. L.: Laser Ranging To Unknown Objects for Initial Orbit
Determination: A Feasibility Study, AIAA J. Guid. Control Dyn., 2019.

4) Abdelrahman, M., and Park, S. Y.: Sigma-Point Kalman Filtering for
Spacecraft Attitude and Rate Estimation using Magnetometer Mea-
surements, IEEE Trans. Aerosp. Elect. Syst., 47, 2, 2011a, pp. 1401–
1415.

5) Abdelrahman, M., and Park, S. Y.: Integrated Attitude Determination
and Control System via Magnetic Measurements and Actuation, Acta
Astronaut., 69, 3-4, 2011b, pp. 168–185.

6) Woollands, R. M., Bani Younes, A., and Junkins, J. L.: New Solutions
for the Perturbed Lambert Problem Using Regularization and Picard
Iteration, AIAA J. Guid. Control Dyn., 38, 9, 2015, pp. 1548–1562.

7) Abdelrahman, M., and Park, S. Y.: Simultaneous Spacecraft Atti-
tude and Orbit Estimation using Magnetic Field Vector Measurements,
Aerosp. Sci. Tech., 15, 8, 2011c, pp. 653–669.

8) Ahn, H. S., and Lee, S. H.: Gyroless Attitude Estimation of Sun-
Pointing Satellites using Magnetometers, IEEE Geosci. Remote Sens.
Lett., 2, 1, 2005, pp. 8–12.

9) Roberts, T. M., Lynch, K. A., Clayton, R. E., Disbrow, M. E., and
Hansen, C. J.: Magnetometer-Based Attitude Determination for De-
ployed Spin-Stabilized Spacecraft, AIAA J. Guid. Control Dyn., 40,
11, 2017, pp. 2941–2947.

©2020 JSASS 6



Trans. Japan Soc. Aero. Space Sci., Vol. X, No. X, 2020

Fig. 6. Position and velocity errors derived from the estimated results.

10) Deutschmann, J. K., and Bar-Itzhack, I. Y.: Evaluation of Attitude
and Orbit Estimation using Actual Earth Magnetic Field Data, AIAA J.
Guid. Control Dyn., 24, 3, 2001, pp. 616–623.

11) Psiaki, M. L., Huang, L., and Fox, S. M.: Ground Tests of
Magnetometer-Based Autonomous Navigation (MAGNAV) for Low-
Earth-Orbiting Spacecraft, AIAA J. Guid. Control Dyn., 16, 1, 1993,
pp. 206–214.

12) Psiaki, M. L.: Autonomous Orbit and Magnetic Field Determination
using Magnetometer and Star Sensor Data, AIAA J. Guid. Control
Dyn., 18, 3, 1995, pp. 584–592.

13) Psiaki, M. L.: Autonomous Low-Earth-Orbit Determination from
Magnetometer and Sun Sensor Data, AIAA J. Guid. Control Dyn., 22,
2, 1999, pp. 296–304.

14) Juang, J. C., Tsai, Y. F., and Tsai, C. T.: Design and Verification of
A Magnetometer-Based Orbit Determination and Sensor Calibration
Algorithm, Aerosp. Sci. Tech., 21, 1, 2012, pp. 47–54.

15) Cheon, Y. J.: Fast Convergence of Orbit Determination using Geo-
magnetic Field Measurement in Target Pointing Satellite, Aerosp. Sci.
Tech., 30, 1, 2013, pp. 315–322.

16) Wang, X., Zhang, Q., and Li, H.: An Autonomous Navigation Scheme
based on Starlight, Geomagnetic and Gyros with Information Fusion
for Small Satellites, Acta Astronaut., 94, 2, 2014, pp. 708–717.

17) Ma, H., and Xu, S.: Magnetometer-Only Attitude and Angular Veloc-
ity Filtering Estimation for Attitude Changing Spacecraft, Acta Astro-
naut., 102, 2014, pp. 89–102.
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