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Abstract— In this paper, we address the issue of pedestrian
tracking in crowd scenarios. People in close social relationships
tend to act as a group which is a great challenge to individually
discriminate and track pedestrians on a LiDAR system. In this
paper, we integrally model groups of people and track them
in a recursive framework based on Gaussian Mixture Model
(GMM). The model is optimized by an extended Expectation-
Maximization (EM) algorithm which can adaptively vary the
number of mixture components over scans. Experimental re-
sults both qualitatively and quantitatively indicate the reliability
and accuracy of our tracker in populated scenarios.

I. INTRODUCTION

A. Motivation

Multi-object tracking (MOT) is crucial for mobile robotics
applications. The host robot monitors the complicated motion
of its surroundings and provides reliable motion estimates
for subsequent decision-making module. It is especially
intractable in crowd scenarios, such as factory and campus,
where pedestrians are the major participants and have special
interactive behaviors [1] [2] [3]. People in intimate social re-
lationships tend to be in close physical position and normally
crowd or walk as a group in public.

The first challenge of tracking groups of people is to
extract individuals. As shown in Fig. 1, friends walk as a
group and have small physical intervals. It is a hardship
for spatial segmentation methods to cluster each individual
from a LiDAR scan. The second challenge is to keep the
association consistency under the interaction of other group
members. The distance between two close pedestrians keep
changing over scans. Sometimes, they can be separately
segmented but in some cases are wrongly considered as
one. This uncertainty in segmentation makes data association
ambiguous and ultimately causes the degradation of tracking
performance.

Tracking groups of people are extensively studied in
camera-based [4] [5] [6], LiDAR-based [2] [3] [7] and
fusion-based [8] [9] system. An inspiring thought is to model
individuals and people groups separately [2] [7] [10] and they
proposed that modeling a group of people as a single object is
more efficient. Pedestrians and people groups are respectively
clustered and modeled in reasonable representation, such as
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Fig. 1. Hybrid view of a crowd scenario. The point cloud is collected
by four RS-LiDAR-16 scanners on our intelligent delivery robot. People
marked by the yellow box are in close proximity and it is challenging to
cluster each individual using spatial segmentation methods.

contours [2] and Gaussian shapes [10]. Afterward, they are
tracked within Bayesian filtering frameworks. Lau et al. [2]
also creatively discussed the interconversion and interaction
between individuals and groups.

Similar to the work of Mucientes et al. [10], we model
pedestrians by using Gaussian shapes. The difference is that
we also model the entire LiDAR scan as a GMM combined
with a uniform clutter model. The number of Gaussian
components, which represents the number of pedestrians in
the scene, is supported by the prior model and it can be
adaptively updated using our extended EM algorithm.

B. Contribution

In this paper, we addressed this issue of individual pedes-
trian tracking in crowd scenarios. The contributions of this
paper are summarized as follows:

• A GMM-based framework focused on tracking individ-
uals in crowd scenarios.

• An extended EM algorithm for GMM parameter learn-
ing which adaptively changes the number of Gaussian
components.

• Quantitative and qualitative evaluation with real scene
data which shows robust tracking performance under
people’s interaction.



C. Organization

The remainder of this paper is structured as follows. Sect.
II systematically introduces state-of-the-art work on LiDAR-
based tracking. Sect. IV-A presents the mixture model while
Sect. IV-B details our extended EM algorithm to solve this
aforementioned model. Sect. IV-C introduces details in our
tracking pipeline. Our tracker is evaluated in Sect. V while
Sect. VI concludes our method and future work.

II. RELATED WORKS

LIDAR-based multi-object tracking has been researched
for decades. We categorize them as model-free and model-
based methods.

A. Model-free Methods

Model-free methods can generally adapt to objects with
various shapes and sizes. Firstly, They extract objects from
a LiDAR scan in the form of clusters using spatial cues,
such as distance [11] [12] and angle [13], or using motion
cues [14] [15]. Later, observation is aligned with existing
tracks via their position or feature similarity. Finally, the
track state of each object is independently or jointly updated
under a Bayesian filtering framework. These methods using
spatial cues are implemented under an intuitive pipeline.
However, the performance of the data association is highly
related to the prior segmentation procedures. Under- and
over-segmentation frequently occur and alignment ambiguity
is brought into data association, which ultimately degrades
tracking performance.

Methods using motion cues [14] distinguish objects via
their movement difference and is rarely affected by asso-
ciation ambiguity. However, pedestrians in group usually
share similar movement and motion-based methods can not
perfectly separate individuals.

B. Model-based Methods

In model-based methods, objects are detected and asso-
ciated with the knowledge of priori geometric models. For
vehicle tracking, Petrovskaya et al. [16] used a rectangle
measurement model in their likelihood-field-based frame-
work while Fortin et al. [17] proposed a polyhedron-like
one. For pedestrians tracking, Shackleton et al. [3] proposed
a pedestrian surface model. They collect a set of contour
descriptions on people’s surface over scans and align them
using a surface matching technique. Spinello et al. [18]
proposed a sliced pedestrian model. They subdivide a person
into multiple layers defined by height and learn a specialized
classifier for each layer. Mucientes et al. [10] modeled groups
of people as Gaussian shapes. They consider data association,
clusters split and join within an MHT framework.

Our work is a model-based one and we make an assump-
tion that people can be represented as Gaussian shapes. The
difference is that we also integrally model an entire LiDAR
scan by a mixture model. The number of mixture components
is adaptively updated over scans.
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Fig. 2. System pipeline of the proposed method. The system inputs of each
scan are the previous track states and the incoming point cloud. After the
state propagation and point cloud filtering, the inputs are used to initialize
a GMM-based mixture model which is then optimized by our extended EM
algorithm. Group split is afterward considered and the final outputs are the
cluster results and the updated track states.

III. OVERVIEW

The pipeline of our pedestrian tracking framework is
shown in Fig. 2. We assume that our robot benefits from
a good localization system, so the uncertainty of ego-motion
can be negligible over the time scale of the whole track.

RS-LiDAR-16 scanners, which are used in our LiDAR
system and suffer from a poor vertical resolution of 1◦,
are not sufficient for 3D segmentation. Meanwhile, our
intelligent delivery robot is deployed on the road surface
and objects in the workspace can be constrained on the 2D
plane. Like other autonomous driving applications [19] [20],
points are converted to 2D representation in the top-down
coordinate system.

IV. METHODOLOGY

A. GMM-based Scan Modeling

After ground and ROI filtering, a LiDAR scan can be
represented as

X = [x1, ...,xi, ...,xN ] ∈ R2×N , (1)

where N denotes the number of points which are in 2D
format. Inspired by Horaud et al. [21], we model X as a
Gaussian mixture model with an uniform distribution

p(xi) =

K∑
k=1

πkN (xi|µk,σk) +
π0
h
. (2)

The number of Gaussian components K represents the
amount of observed objects in the scan. µk and σk are the
parameters of the k-th Gaussian component and πk denotes
the mixture coefficient where

∑K
k=0 πk = 1. The parameters

of our model can be denoted as

Θ = {{πk}Kk=0, {µk}Kk=1, {σk}Kk=1}. (3)



The clutter is modeled as a uniform distribution and its
coefficient π0 is manually set to control the proportion
of outliers. h represents the area of 2D workspace which
contains all the data points. π0 and h mutually determine
the stability of Gaussian shapes and we will give a detailed
discussion in Sect. V-B.

Traditional methods choose K empirically. It is difficult
to directly determine the number of pedestrians in a scan.
We initialize the first scan by DBSCAN [22], a spatial
segmentation method which does not need a selected K.
GMM parameters in the current scan propagate and are used
to initialize the mixture model in the next scan.

B. Extended Expectation-Maximization algorithm

The parameter learning of the Gaussian mixture model
is solved via an extended EM algorithm which can be
subdivided into 3 parts: Expectation, Maximization, Pruning
and Appending. For each iteration, the first two steps update
hidden variables Z and model parameters Θ while the last
one considers the variation of component number K.

The hidden variables are defined as Z = {zi}Ni=1, where
zi ∈ {0, 1, 2, ...,K} indicates the component that xi belongs
to. Z can also be considered as the segmentation results of
the scan X . The posterior γik = p(zi = k|xi) denotes the
probability that point xi aligns to the k-th component. The
set of γik is an N × (K + 1) matrix and is denoted as Γ.

1) Expectation: The posteriors Γ, are updated by mixture
model parameters Θ. For each posterior

γik =

{
1
ηπkN (xi|µk,σk), k 6= 0,

1−
∑K
j=1

1
ηπjN (xi|µj ,σj), k = 0,

(4)

where η =
∑K
j=1 πjN (xi|µj ,σj) + π0

h .
2) Maximization: Mixture model parameters Θ are sepa-

rately updated by posteriors Γ. The log-likelihood function
of Eq.2 is

L(X |Θ) =

N∑
i=1

ln(

K∑
k=1

πkN (xi|µk,σk) +
π0
h

). (5)

GMM parameters are respectively calculated by using
standard optimization techniques [23] and we do not restate
the details. One point of which needs to be reminded is
the update of mixture coefficients. As a uniform distribution
is embedded into the mixture model, the sum of Gaussian
coefficients needs to be subjected to 1− π0.

3) Pruning and Appending: In this step, we consider the
variation of component number K. We prune the Gaussian
components of exiting objects and append the incoming ones.

For pruning, we use the Gaussian degeneration in GMM
to judge whether a component needs to be removed. We also
use the other two criteria via the mixture model coefficients
and the relevant point number. We define an indicator func-
tion I(·) that is equal to 1 if the input is true and 0 otherwise.
The indicator of criteria for the k-th component Ik is defined
as

Ik(X , πk,µk,σk) =

3∏
l=1

Ik,l, (6)

where
Ik,1(σk) ,

{
1, |σk| < dminσ,
0, others,

(7)

Ik,2(πk) ,

{
1, πk < πmin,
0, others,

(8)

Ik,3(X ,µk,σk) ,

{
1, nr < nmin,
0, others.

(9)

The threshold nr in Eq. 9 is the number of relevant points

nr =

N∑
i=1

I(N (xi|µk,σk) < α0.005). (10)

The k-th component is trimmed when Ik = 1 and
Kprune =

∑K
k=1 Ik is the number of deleted components.

For appending, the points marked as outliers Xzi=0

are segmented by DBSCAN. The Kappend new clusters
are initialized as new Gaussian components. The mixture
coefficient of a new component πnew,j is initialized as
1/(K −Kprune).

Parameters Γ and {πk}Kk=0 need to be renormalized after
both pruning and appending because the number of com-
ponents changes. After each EM iteration, the number of
Gaussian components is updated as

K∗ = K −Kprune +Kappend. (11)

C. Tracking Cycle

This part describes the steps in a cycle of our pedestrian
tracker and the details are shown in Fig. 2. We use a tracking-
before-detection technique. Firstly, our tracker propagates
people’s position to the current scan. Afterward, it models
the scan as a GMM and performs segmentation by using our
extended EM algorithm. Finally, split and merge of group
people are considered.

1) Track State: We do not implement a general proba-
bilistic filter for pedestrian tracking. The principal reason
is the motion of people can not be simply considered as
physics-based models. Interactive behaviors in a populated
environment make their movement unpredictable.

Our tracker uses the Gaussian shape model in Sect .IV-A
directly. We define a track T as a sequence of measurements
over scans which are assumed to derive from the same object.
For n-th object, its track state is Sn = {µn,σn,vn} and
T n = {Sn,t}Tt=1. µn = (x, y)T is the position vector
and σn ∈ R2×2 represents the shape of target pedestrian.
We need to clarify that in tracking pipeline, the subscripts
lose their particular meaning in Sect. IV-A and are only
used to indicate specified track. The part of velocity vn =
(vx, vy)T is differentially calculated and smoothed using
Kalman smoother.

2) Prediction: At the beginning of a tracking cycle, we
propagate previous track states to the current scan and make
them the initial values for our GMM-based segmentation.
The µn and σn in track state is predicted as{

µ̄n = µn + vnδt,
σ̄n = σn +Rδt,

(12)



Fig. 3. State Propagation for an object. After adding uncertainty to the
prediction step, points are more likely to converge to close-by Gaussian
components instead of the clutter. The optimization of GMM may converge
incorrectly when directly using the covariances from the former scan. The
ellipse denotes the one-sigma Gaussian boundary.

where δt denotes the interval between adjacent scan. R ∈
R2×2 represents a pedestrian’s maximum motion in a unit
time.

Motion uncertainty can give bad initial values for EM
optimization which may lead to mistakes that points converge
to incorrect components. We add this motion uncertainty
directly into a pedestrian’s shape model to improve the sta-
bility of EM initialization. In Expectation step, γik becomes
larger accompanied with the increase of σk and surrounding
points are more likely related to the Gaussian component
than outliers. R takes effect on σk only once for a scan. After
the first Maximization step, the covariance will converge to
the proper size.

3) Joint Segmentation and Data Association: We use a
tracking-before-detection technique to perform segmentation
and data association simultaneously. Segmentation results
are derived by the optimized mixture model while data
association is realized by the propagation and update of
model parameters over scans. The details are described in
Sect. IV-B.

4) Tracking Management: The entrance of the new ob-
jects and exit of the existing ones are also considered by our
extended EM algorithm in Sect. IV-B.

We also implement some traditional tracking techniques
in our tracker. When our tracker loses an object, we do not
discard its track immediately but continue a prediction for 5
scans. Gating is also realized in our tracker. It is adjusted by

(a) LiDARs configuration on our
platform.

(b) A glance of hard dataset with
ground truth annotation.

Fig. 4. Our intelligent delivery robot and pedestrian tracking dataset.

the clutter model and the details will be specifically discussed
in Sect. V-B.

D. Group Merge and Split

In this part, we discuss the merge of individuals and the
split of people groups.

1) Merge: When two pedestrians reunion, they can be
separated no matter how close they are because they are
already modeled as two Gaussian components in previous
scans. These two closed-by persons may not be perfectly
divided in point level, but they have already been able to
ensure tracking consistency.

2) Split: When two persons are initially modeled as one
and walk away from each other in subsequent scans, they
are still modeled as one Gaussian distribution, even though
they can be spatially separated.

We implement an additional DBSCAN algorithm for the
whole scan and its result is only used to validate our
GMM-based segmentation. The segmentation output from
DBSCAN is represented as C = {ci}Ni=1, which has a
similar representation as Z. We define the point index of
the j−th component in our model as IZj = {i|zi = j}. For
each cluster m in C, we calculate their ratio

r =

∣∣ICm
∩ IZj

∣∣∣∣IZj

∣∣ , (13)

where |·| indicates the cardinality of the index set. If rmin <
r < 1 and

∣∣ICm ∩ IZj

∣∣ > nmin, we model each ICm ∩ IZj

as a new Gaussian component.

E. Initialization

An incoming scan is pre-processed by a ground and ROI
filter. Ground points are filtered by a Gaussian-Process-
Regression-based method [24]. The 3D ROI filter removes
points out of our robot’s motion space. For the initialization
of our tracker’s first scan, DBSCAN is implemented to
perform a spatial segmentation. DBSCAN is also used in
our extended EM algorithm and group people split module.

V. EXPERIMENTS

In this section, we introduce the datasets and our selected
baseline methods. We also detail the implementation pa-
rameters and evaluate our method in tracking performance,
cardinality estimates and timing.

A. Datasets

For experimental evaluation, we collected two datasets
with different challenge levels. The data is captured by our
intelligent delivery robot (Fig. 4(a)) in a populated area of
an industrial park. Our LiDAR system is composed of four
spinning RS-LiDAR-16 scanners. All LiDARs are hardware
synchronized and calibrated [25]. The details of these two
datasets are as follows:

• easy: A specific dataset that contains 6 independent
sequences. There are only several tracks per sequence,
but all of these tracks last more than 100 scans. Group



(a) Ground truth (b) Scan 1 (c) Scan 51 (d) Scan 110 (e) Scan 124

Fig. 5. Qualitative analysis of our tracker. Three pedestrians with the same motion are first tracked with ID No.3 and No.4. (b) Our tracker is initialed by
DBSCAN which clusters two individuals as one object. (c) Occlusion makes a wrong split and creates a new observation for clutter (No.11). It vanishes in
5 scans but causes an ID switch from No.4 to No.10. (d) A person (No.15) passes across the people of three. Our tracker handles this interactive condition
effectively. (e) Another one (No.19) walks by the group. They are too close that their points mix together but our tracker can still separate them. It is
important to point out that our tracker can not subdivide the two people on track No.3. Their distance never exceeds the split threshold. However, it is
reasonable to track them as one because they share the same motion.

(a) pi0 = 0.01 (b) pi0 = 0.001

Fig. 6. The Gaussian one-sigma ellipse with a different choice of π0. The
man is waving his hand and the shape of point cloud has a great change
over scans. When using a larger π0, points away from the Gaussian center
are snatched by the clutter model.

merge and object entrance happen but in a limited
number.

• hard: A general sequence on a populated street, which
lasts for 395 scans and contains 36 tracks and 2667
observations. The major participants are pedestrians but
several cyclists are also included. The dataset is more
complicated where group merge and split, occlusion,
object entrance and exit are fully contained.

We use our initialization procedure in Sect. IV-E to filter
ground points and the ones out of ROI. The remained points
are hand-labeled for each individuals.

B. Implementation Details

The values of π0 and h are crucial for modeling. As shown
in Fig. 6, the component π0/h in our model represents the
strength of clutter and it affects the actual range of each
Gaussian model in segmentation. It can be considered as a
gating function which contributes to the association between
model components and raw points. We assume that the
effective range of RS-LiDAR-16 for detecting pedestrians is
±10m, so the area of our workspace in the clutter model
h = 400m2. Combined with the selection of h, we set
π0 = 0.001.

The rest of the parameters are determined empirically. EM
optimization terminates with a maximum iteration nmax =
10 and a convergence criterion that the average variation
of µk is under 0.01m. In pruning and appending step,
dminσ = 0.01, πmin = 0.005 and nmin = 3. In DBSCAN
algorithm, the minimum number of points is the same as

nmin and the radius threshold in Sect. IV-E and Sect. IV-B
is 0.2m . The radius threshold of DBSCAN is set as 0.5m
in Sect. IV-D to balance under-segmentation with occlusions
cases. In tracking cycle, pedestrians motion uncertainty R =
diag([1.0, 1.0]). In group split, the ratio threshold for split
people group rmin = 0.3.

C. Baseline Methods

We implement a segmentation method of Wang et al.
[11] which is based on Euclidean Minimum Spanning Tree
(EMST). As the background points in our dataset have been
filtered, we do not achieve foreground extraction in their
original work. The threshold for breaking the EMST is set
as 0.2m. We make an additional data association module
achieved by the Munkres algorithm and each cluster is
associated via the similarity of their gravity center.

Spectral Clustering (SC) method uses higher-dimensional
features and we suppose it will have a better performance
than spatial segmentation on close pedestrians. Spectral Clus-
tering is sensitive to the number of clusters (K in GMM),
which needs to be set prudently. We directly initial the cluster
number from ground truth to achieve the best performance.
We also use the Munkres algorithm for data association.

For further discussion, we do not implement specific
pedestrian tracking methods such as [2] [7] [10]. They
discuss group people as an independent tracking element and
do not try to separate them. These methods will be unfairly
evaluated in our point-level annotation.

D. Evaluation: tracking

We evaluate the tracking performance of our method both
qualitatively and quantitatively.

The qualitative results are demonstrated in Fig. 5. We
analyze a typical group tracking example in our hard dataset.

The quantitative results are shown in Table I. We use
several metrics [26] [27] which are widely used in multi-
object tracking and can evaluate the precision and accuracy
of a tracker. The selected MOT metrics are as follows:



TABLE I
EVALUATION:TRACKING

Dataset Method MOTA↑ MOTP↓ FN↓ FP↓ IDS↓

easy
EMST 0.800 0.038 213 33 3

SC 0.936 0.083 25 29 37
ours 0.999 0.004 0 2 0

hard
EMST 0.493 0.041 604 655 83

SC 0.634 0.064 322 392 262
ours 0.920 0.017 156 24 16

• MOTP: The average errors between estimated positions
and their corresponding ground truth.

• MOTA: The ratio of correct data association and it
indicates the ability to keep accurate trajectories.

• FP (false positives): The number of false alarms.
• FN (false negatives): The number of missed detections.
• IDS (identity switches): The number of mismatches.
Our method has the best performance in both datasets,

especially in hard dataset which contains a certain amount of
pedestrians in the scene and complex people interaction. We
get a higher MOTA score of 0.920 in hard dataset, compared
to the SC with 0.634 and the EMST with 0.493. In MOTP
score, our method has an average error of 0.017m which is
observably lower than the SC with 0.064m and the EMST
with 0.041m. It should be noted that compared to FP and
IDS, our method suffers more from FN. The hard dataset
contains special instances that people crowd as a group in the
whole sequence (Fig. 5). Our method sometimes clusters and
tracks them as one object so the number of missed detections
increases.

E. Evaluation: cardinality estimates

We also evaluate the cardinality estimates, which in this
paper means the number of predicted pedestrians in each
scan. The cardinality estimates of our method and the EMST
baseline method are shown in Fig. 7.

Our average error in pedestrian number per scan is 0.4557
while the EMST has 0.4633. The difference is not significant
between our method and the EMST baseline, but it is obvi-
ously in Fig. 7 that our tracking number changes more gently
than the EMST method. This conclusion is also confirmed
by the MOTA score in Table I.

F. Evaluation: timing

After ground and ROI filtering, the number of remained
points is approximately 2000 which is stress-free for DB-
SCAN. We set the maximum iterations as 10, but our model
optimization is totally converged for an average times of 3.6.

Our method is tested and evaluated on MATLAB R2019a.
We also implement a ROS CPP version on a PC with an
Intel i5-8600K CPU and 8 GB RAM. The consuming time
per scan is averagely 51.47ms, which is sufficient for online
use on our platform.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a pedestrian tracking frame-
work in crowd scenarios based on Gaussian Mixture Model.
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Fig. 7. Relationship between the cardinality estimates and the scan number.

The model is optimized by an extended Expectation-
Maximization algorithm which can adaptively vary the num-
ber of mixture components over scans. Both qualitative and
quantitative evaluation on tracking performance indicates
that the proposed method shows robustness and accuracy in
populated scenarios.

Our method shows good stability in pedestrian modeling.
However, vehicles are sometimes contained in the scene
which can be ambiguous in Gaussian representation. One
extension of our work is to embed a 3D LiDAR detection
CNN into our tracking module. Vehicles can be pre-treated
and our framework can be expanded to a more general
scenario.
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