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Abstract— Humans are capable of learning a new behavior
by observing others to perform the skill. Similarly, robots can
also implement this by imitation learning. Furthermore, if with
external guidance, humans can master the new behavior more
efficiently. So, how can robots achieve this? To address the
issue, we present a novel framework named FIL. It provides a
heterogeneous knowledge fusion mechanism for cloud robotic
systems. Then, a knowledge fusion algorithm in FIL is pro-
posed. It enables the cloud to fuse heterogeneous knowledge
from local robots and generate guide models for robots with
service requests. After that, we introduce a knowledge transfer
scheme to facilitate local robots acquiring knowledge from the
cloud. With FIL, a robot is capable of utilizing knowledge from
other robots to increase its imitation learning in accuracy and
efficiency. Compared with transfer learning and meta-learning,
FIL is more suitable to be deployed in cloud robotic systems.
Finally, we conduct experiments of a self-driving task for robots
(cars). The experimental results demonstrate that the shared
model generated by FIL increases imitation learning efficiency
of local robots in cloud robotic systems.

I. INTRODUCTION

In tradition imitation learning scenarios, demonstrations
provide a descriptive medium for specifying robotic tasks.
Prior work has shown that robots can acquire a range of com-
plex skills through demonstrations, such as table tennis [1],
drawer opening [2], and navigation [3]. Nevertheless, there
exist a number of problems in the application of imitation
learning. For example, large amounts of data are required and
sometimes they are heterogeneous. These drawbacks result
in long training time for the robot and limited generalization
performance. Cloud robotic system [4] can be adopted to
increase the “learning efficiency” of robots, and federated
imitation learning algorithm is proposed to fuse the shared
knowledge of robots.

The cloud fuses knowledge which is from local robots.
However, data heterogeneity hinders the process. This issue
is generally regarded as a major challenge of cloud robotic
systems [5]. To overcome this issue, a novel framework
named FIL has been proposed. It increases imitation learning
of local robots in heterogeneous data condition. As shown
in Fig.1, it is inspired by the case that humans can learn
more effectively if they have external guidance. With FIL,
a robot is capable of taking advantage of knowledge from
other robots. The student/teacher imitation learning in local
robots will be incrseased with the guide model provided by
FIL. To evaluate it, we conduct an autonomous driving task.
Experimental result indicates that FIL enables robots to ab-
sorb knowledge from other robots and apply the knowledge
to increase imitation learning efficiency and accuracy. Videos
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Fig. 1. The child on the upper left acquires the ability to ride a bicycle
by observing an adult. This is the process of imitation learning in humans.
Correspondingly, the upper right robot acquires skills by training data. This
is the process of imitation learning in robots. The bottom left child not only
acquires bicycling skills by observing an adult, but also gets helps from an
adult. This makes his learning more efficient. Inspired by this, in this work,
FIL enables the bottom right robot not only acquires skills by training data,
but also gets knowledge from other robots through the cloud robotic system.

of the results can be found on the supplementary website1.
Overall, this paper makes the following contributions:

• We present a novel framework named FIL. It provides a
knowledge fusion mechanism for cloud robotic systems.

• We propose a knowledge fusion algorithm in FIL. It
enables the cloud to fuse knowledge from local robots
and generate guide models for robots with service
requests.

• Based on transfer learning, we present a knowledge
transfer scheme to facilitate local robots acquiring
knowledge from the cloud.

II. RELATED WORK

In this work, FIL is proposed to increase the learning
efficiency of each local robot in the cloud robotic system.
The cloud generates a shared model and provides guidance
services for each local robot. Methods that can achieve
similar goals include transfer learning and meta-learning.
Compared with these two approaches, FIL achieves hetero-
geneous knowledge fusion without raw data sharing. The
related work are introduced as follows.

1The video is available at https://sites.google.com/view/federated-
imitation



A. Transfer learning

Transfer learning aims at improving the performance
of target learners on target domains by transferring the
knowledge contained in different but related source domains,
which is similar to the goal of FIL. In recent years, transfer
learning research communities are mainly focused on deep
transfer learning [6]. The techniques used in deep transfer
learning include four categories: instances-based transfer
learning, mapping-based transfer learning, network-based
transfer learning, and adversarial based transfer learning [7].

The above approaches have made efforts for knowledge
transferring between domains. Unfortunately, the difference
between domains in a cloud robotic system can be large.
Sometimes the data are collected with different kinds of
sensors. Therefore, the datasets of local robots in the cloud
robotic system may be heterogeneous. It is not possible
to directly use the transfer learning technology. Therefore,
the proposed framework first fuses heterogeneous knowledge
rather than using transfer learning technology directly.

B. Meta-learning

Meta-learning and the proposed framework have the same
ultimate aim. Meta-learning, or learning to learn, is the
science of systematically observing how different machine
learning approaches perform on a wide range of learning
tasks, and then learning from this experience, or meta-data,
to learn new tasks much faster than otherwise possible [8].
Applications of meta-learning in robotics have achieved good
results. Among these, One-Shot Visual Imitation Learning
[9] and Domain-Adaptive Meta Learning (DAML) [10] by
Abbeel’s lab are representative. Compared with the former
that can enable robots to perform imitation learning from
action videos of robots, DAML is an improved approach,
which enables the robot to imitate human actions directly.
DAML enables a robot learning to visually recognize and
manipulate a new object after observing just one video
demonstration from a human user. To enable this, DAML
uses a meta-training phase where it acquires a rich prior over
human imitation, using both human and robot demonstrations
involving other objects. DAML extends a prior meta-learning
approach to allow for learning cross domain correspondences
and includes a temporal adaptation loss function.

However, the phase of meta-training is essential in DAML
or other meta-learning approaches. It means that we have to
obtain data of all local robots because the step of calculating
loss to update gradients requires all task data (corresponding
local data in the cloud robotic system). It is an impossible
task considering limited communication. The more effect
of meta-learning requires more data and a higher-capacity
model to support. Nevertheless, it is difficult for the cloud
to get all the data of local robots. Therefore, meta-learning
approaches are unsuitable for the cloud robotic system in
this work, although they may get higher accuracy.

C. Knowledge sharing in cloud robotic system

Knowledge sharing is the key in the work, which means lo-
cal robots share knowldge with each other. For this purpose,

[11] presented a mental simulation service for the existing
OPENEASE cloud engine. With this service available, agents
can delegate computationally-expensive simulations to more
powerful computing services. In addition, they created a
SWI-Prolog library so that the developers and robots can
describe the world state, self abilities and the problem. [12]
proposed a framework for robots to reason on a central
knowledge base which has ontologies and execution logs
from other robots. This approach achieves knowledge ex-
changing with cloud robotic. [13] presented a platform that
supports large-scale on-demand data collection for robot. All
of the above three approaches can realize the fusion of local
knowledge. Unfortunately, they can’t fuse the knowledge
from heterogeneous data, which is addressed by this work.

III. METHODOLOGY

In this section, we will present the details of the pro-
posed framework and algorithms, which includes knowledge
acquiring technology, framework of FIL, knowledge fusion
algorithm and knowledge transferring algorithm.

A. Knowledge acquiring by imitation learning

Local robots acquire knowledge through imitation learning
in FIL. Imitation learning is commonly posed either as
behavioural cloning [14] or as inverse reinforcement learning
[15], both of which require demonstrations. Imitation learn-
ing has empowered recent advances in learning robotic ma-
nipulation tasks by addressing shortcomings of reinforcement
learning such as exploration [16] and reward specification
[17]. The knowledge acquiring approach used in FIL of
local robots belongs to behavioural cloning, which focuses
on learning the expert’s policy using supervised learning.
The way behavioural cloning works is quite simple. Given
demonstrations of robots, we will divide these into state-
action pairs. We treat these pairs as i.i.d. examples and
finally, we apply supervised learning.

B. Framework of FIL

The framework of FIL is performed in Cloud-Robot-
Environment setup. There are local robots, cloud servers,
communication services and computing device. Local robots
learn skills through imitation learning and the cloud server
fuses knowledge. We develop a federated learning algorithm
to fuse private models into the shared model in the cloud.
With the shared model, the cloud server is capable of
generating guide models corresponding to requests of local
robots. After that, the local robots perform transfer learning
based on the guide model. Finally, the final policy will be
quickly obtained. As illustrated in Fig.2, we will explain the
methodology in FIL with the example of a self-driving task.

Based on the self-driving task, we typically collected three
types of data. The three agents use three different types of
dataset separately. Datasets of local robots are labeled but
will not be sent to the cloud. Three different policy models
will obtained by local training. RGB images will be trained
by Agent A, and a private policy model (Private Model
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Fig. 2. FIL framework. The work assumes that there are three agents
to fulfil the task. They perform imitation learning to acquire the policy
models with heterogeneous data: RGB images, depth images and semantic
segmentation images. Neither can the raw training data be shared between
agents nor between agents and clouds. Only the parameters of the policy
models will be uploaded and fused, and then the cloud will provide guide
models while robots request.

A) will be obtained. Actions of robots will be determined
by the output which might be some actions or parameters.
Similar processes occur in agent B and agent C. Outputs of
the three private models are with same types. The inputs
to each model are different: RGB images, depth images,
and semantic segmentation images. Then the parameters of
all three models will be uploaded to the cloud and fused
there. Henceforth, the cloud will be capable of generating
guide models for different types of input. When a local robot
requests a service, the cloud will provide a guide model in
correspondence with the type of sensor data. FIL can be
performed either online or offline. As presented in Algorithm
1, the whole framework can be summarized as following
steps:
• Step1: Imitation learning performed by local robots;
• Step2: Parameters (of private models) Transmitting;
• Step3: Fusing (in the cloud) knowledge;
• Step4: Responding to the local requests and generating

guide models for them.
Noted that step1 and step 2 are simultaneous while FIL
performs online. Labels of the cloud data will be updated
simultaneously.

C. Knowledge fusion algorithm in the cloud

Traditional knowledge fusion has been a focus of many
approaches since the end of the 20th century. These stud-
ies focus on the construction of knowledge bases [18] or
knowledge representations [19]. However, the traditional
approaches that define the knowledge representation of the
local robots are unsuitable for cloud robotic systems. We

Algorithm 1: Processing Algorithm in FIL
Initialize action-value Q-network with random
weights θ ;

Input: n: number of local robots ; q: update
frequency.

while cloud server is running do
d θnt ← robotn performs imitation learning
if t%q == 0 then

for i = 0; i < n; i++ do
Send θit to the cloud;

end
labels=fuse(θ1t , θ2t ,· · · ,θnt )

end
if service request=True then

Generate θcloud base on labels; Send θcloud to
local robots;

θlocal=transfer(θcloud).
end

end

cannot determine how local robots obtain data and express
knowledge. It is different from traditional approach that the
proposed framework aims to fuse different types of local
sensor data. After that, it improves local imitation learning
and evolves the shared model. In another word, it is one of
the demonstrations of robot lifelong learning.

Existing machine learning approaches fuse knowledge by
centralizing storage of training data. Consequently, these
approaches are unattainable in cloud robotic systems with
large scale local datasets considering the limited communica-
tions. In [20], the federated learning system was introduced.
Therein, the mobile devices perform computation of model
training locally on their training data according to the model
released by the model owner. Such design enables mobile
device to collaboratively learn a shared model while keeping
all the training data on the device. Similarly, multi-sensor
data fusion is required by many robotic tasks, such as the
navigation of self-driving cars, mobile robot SLAM. But
it is impossible to upload all kinds of sensor data to the
cloud. Therefore, we propose a federated imitation learning
framework in cloud robotic systems to improve the ability
of robots. In the proposed framework and algorithm, there
is no need to upload raw sensor data to the cloud, only the
parameters of the models are shared in the cloud.

Fig.3 presents the knowledge fusion algorithm. Primary
responsibility of the cloud is to label scenes. Before this,
some data collecting for cloud training is necessary, and
the types of these data should at least cover the types
of local datasets. For example, in the self-driving task of
this example, the RGB images, depth images and semantic
segmentation images should be collected for the cloud.
Thus, one scene has three types of sensor data. Each has
a corresponding uploaded private model which provide its
own suggestion of labelling to the cloud. And then, these
suggestions will be congregated to produce a final label for
this scene. The calculation approach of labelling can draw
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Fig. 3. Knowledge fusion algorithm deployed on the cloud in a self-driving case. Agents obtain private models by performing imitation learning. The
cloud stored different types of sensor data of many scenes. Input corresponding sensor data in the cloud dataset to private models. Then calculate the
numerical characteristics of private models outputs to label scene. Noted that these data is not uploaded from local but collected by the cloud, and the
cloud dataset is much larger than each local dataset. With multi types of sensor data, the cloud is capable of generating guide models corresponding to
the sensor type of the local robot.

on some methods of ensemble learning which can be defined
according to different application scenarios, in this case, we
choose the median of outputs. As private models will output
the steer of the agent. Agents usually make decisions of
following the road, turning, obstacle avoiding, etc. Generally
speaking, the output of the model includes two extreme
cases: turning and no turning, where errors occur most.
While Median can avoid extreme values in the evaluation.
For example, if there were 5 local models and outputs of
them for one scene are: -0.1, -0.3, 0.4, 0.4, 0.5. We will take
0.4 as the label of current scene. As data being labeled, cloud
models will be trained immediately. Formula (1) to Formula
(5) have summarized the whole process:
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is the dataset of

the local robot i. L represents the loss function.θ repensents
parameters of models. xi are original data and yi are labels.
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Di
represents
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θ
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The Formula (2) presents training targets of local robots. It
is the structure risk minimization criteria. Rstruct

D represents
structure risk in datasets.

lin = fθ i (scenein) (3)

In the above formula, scenein is the training data in the cloud.
i represents sensor types, n represents the number.

Mein = Median(lin) (4)
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In Formula (4) and (5), Mein is the median of lin, θ ∗i(cloud) is
the training targets in the cloud. M represents the number of

sample data. θ is the regularization term of L2 norm, which
is used to reduce the parameter space and avoid over-fitting,
lambda is used to control the intensity of regularization. y
is true labels in the dataset. l means the prediction from the
model we trained. ”in” means the n-th scene of the i-th type
of data.

Noted that we only use the shared model in the cloud as a
guide model for local robots. The shared model maintained
in the cloud is a cautious policy model, which means it
will not make serious mistakes in some private unstructured
environments but the action might not be the best. Thus, it is
necessary for every local robot to train its own policy model
based on the shared model received from the cloud. This is
the transfer learning process in FIL.

D. Transfer the shared model

There have been a lot of valuable studies on transfer
learning. Current research mainly focuses on transferring
through the relationship between source domain distribution
and target domain distribution. This method is unsuitable
for cloud robotic systems because it requires raw data of
local robots. Under the constraints of the above conditions,
Layer Transfer is the transferable learning method that can
be implemented. Layer Transfer means that some layers in
the model trained by source data are copied directly and the
remaining layers are trained by target data. The advantage
of this is that target data only needs fewer parameters to
be trained, thus avoiding over-fitting. It has faster training
speed and higher accuracy. On different tasks, the layers
that need to be transferred are often different. For example,
in speech recognition, we usually copy the last layers and
retrain the first layers. This is because the first layers of
speech recognition neural network are the way to recognize
the speaker’s pronunciation, and the last layers are the
recognition. The latter layers have nothing to do with the
speaker. In image recognition, we usually copy the front
layers and retrain the back layers. This is because the first
layers of the image recognition neural network are to identify
whether there is a basic geometric structure, so it can be



transferred. The latter layers are often abstract and cannot
be transferred. So, which layers to be transferred are case by
case.
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Fig. 4. A transfer learning approach of FIL. The upper part represents
the cloud model and the lower represents the local model. The blue parts
of the two models represent the feature extraction layers. The cuboid parts
(including light green in the upper and dark green in the lower part of the
figure) represent the fully connected layers, and the rightmost parts (cube)
represent the output decisions.

As presented in Fig.4 [21], in the work, we use front
layers as feature extractors in the case of imitation learning.
The decision model in the cloud can be used as the initial
model for local training. In this way, cloud model can play
a guiding role. It can speed up local training and increase
the accuracy of local robots. In the training of local robots,
the feature extraction layer is frozen and only the full
connection layers are trained. If necessary, it can also adjust
the relevant parameters in the process of back propagation.
For example, some work may increase learning rate. After
transfer learning, local robots successfully utilize knowledge
from other robots in cloud robotic systems.

IV. EXPERIMENTS

In this section, we will present our experimental setup
and the results. To verify the effectiveness of FIL, we have
to answer two questions: 1) Is FIL capable of generating
an effective shared model based on shared knowledge in
cloud robotic systems? 2) Have the shared model of FIL
improved the learning process or accuracy of local robots?
To answer the first question, we have conducted experiments
to generate cloud models and compare its performance with
general models. To answer the second question, we then have
conducted experiments to compare the learning process and
accuracy of local robots with FIL and without FIL.

A. Experimental setup

Self-driving car can be regarded as an advanced robot. So
it is enough to use cars to verify robot control algorithms.
In the work, we have used Microsoft AirSim and CARLA
as our simulator to evaluate the presented approach. In
addition to have high-quality environments with realistic
vehicle physics, AirSim and CARLA have a python API
which allows for easy data collection and control.

In order to collect training data, a human driver is pre-
sented with a first-person view of the environment (cen-
tral camera). The simulated vehicle is controled using the
keyboard by the driver. The car should be kept at a speed
around 6m/s, collisions with cars or pedestrians should
strive to be avoided, but traffic lights and stop signs will
not be considered. As Fig.5 presents, we have used three
different types of sensor data: RGB images, depth images

(a) Data collection for local

Data collection for local robots (Three different 
environments corresponding to three different types of data)

Data collection for the cloud (Collect data 
simultaneously in may environments)

(b) Data collection for the cloud

Fig. 5. As presented in subfigure (a), we collected training data for local
robots in three different environments corresponding to three different types
of data. As presented in subfigure (b), we collected different types but
simultaneous data in many different environments.

and semantic segmentation images. Any of these three types
of sensor data can make the agent to perform obstacle
avoidance tasks within tolerable errors. The policy network
mainly consists of convolution layers and fully connected
layers. Then a linear layer followed by a softmax, and the
value function by a linear layer. Its architecture presented in
Fig. 6 is similar to VGG-16.
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Fig. 6. Network architecture of imitation learning in experiments

As for the cloud robotic systems, the server and agent
communicate via HTTP requests, with the data server uti-
lized the Django framework to respond to asynchronous
requests. Our cloud programs run on the Microsoft Azure
cloud. We conduct local robot experiments with a single
NVIDIA Quadro RTX 6000, which allows us to run our
simulator to receive photo-realistic images for training.

B. Evaluation for the shared-model generating method in
FIL

In this section, the robot (car) will challenge the tasks
such as avoiding collisions and making timely turns. The
observations (images) are recorded by one central camera.
The recorded control signal is the steering angle. The steering
angle is scaled between -1 and 1, with extreme values corre-
sponding to full left and full right, respectively. Considering
the actual driving, we transfer the steering angle between
-0.69 radians and 0.69 radians.

Once the three private policy networks been trained, the
cloud will work to fuse their knowledge. As mentioned
before, we assume that there are three companies train their
policies by imitation learning with heterogeneous sensor
data. Sharing the training data between agents or sending the
raw data to the cloud is forbidden. So, the cloud server only
gets the parameters of the three local networks and performs
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the knowledge fusion algorithm. Different types of sensor
data is collected simultaneously from different environments
in CARLA and Airsim before that. Then every scene in
cloud will be labelled. The cloud generates local policy
network 1 for company 1 based on RGB images, local policy
network 2 for company 2 based on semantic segmentation
images, and local policy network 3 for company 3 based
on depth images. Then the parameters of these three private
networks will be uploaded to the cloud. Finally, the cloud
gets labels of datasets in the cloud. It will generate policy
networks corresponding to different sensor requests. In this
experiment, three policy networks will be generated. They
are named cloud policies. The process in the cloud is
unsupervised learning. There is no manual labels but cloud
generation. For evaluation, we labeled some scenes to mark
the result. In the simulation environment, the controller uses
the policy network to control the robot.

TABLE I
RESULTS OF LOCAL POLICIES AND CLOUD POLICIES.

Controller Hit the
obstacle

Miss
turns

Mistakes
in straight

Local controller for RGB images 3.45% 12% 16.67%
Cloud controller for RGB images 0.69% 0 0
Local controller for depth images 0 20% 0
Cloud controller for depth images 0 4% 0

Local controller for segmentation images 0 12% 6.67%
Cloud controller for segmentation images 0 4% 0

Fig. 7 presents results of these six policy networks in some
main challenging scenes to the car. From Fig.7, it is clear
that the cloud model presents higher accuracy than local
models. So that it can avoid errors of local models training
from single training set collected by one type of sensors.
We conducted 3 experiments, each one sets a different
starting point. Then we evaluated the performance of robots
in obstacle avoidance, turning and straight forward tasks.
The results are summarized in Table 1. It can be seen from
the experimental results that the cloud knowledge improves
the local controller that is trained using general imitation
learning. The controller based on cloud policies performs
better. Especially the controller for RGB images.

C. Evaluation for the knowledge-transfer ability of FIL

avoid 
obstacle

go straight

make a turn

Fig. 8. Challenges in the self-driving task

We conducted the experiment as illustrated in Fig. 8 to
evaluate the knowledge-transfer ability in FIL. As presented
in Fig. 9, we compare the six models in a neighborhood
environment. Corresponding to every type of training data,
we obtained a pair of policies: a transferred policy and a
general policy. So, there are three pairs of policies generated
in the experiment. The performance of controllers based on
these policies in key challenging tasks are presented in Fig.
10. The results are summarized in Table 2. From the results,
we can see that the imitation learning models obtained in
cloud robotic system perform significantly better in accuracy,
compared with general models that trained by traditional
imitation learning without shared knowledge. FIL improves
the training process of imitation learning with the help of
shared knowledge. There is a pre-trained model from the
cloud for transfer in local imitation learning. So, there is
no need for local robots to learn from scratch. We present
the comparison of train process in Fig 10. From the figure,
we can see that the transferred policies have lower error
starting point and the error value. Local policy models trans-
ferred by FIL also have better generalization. Controllers
based on transferred policies from FIL perform better in
different weather compared with policies trained by general
imitation learning. As presented in Fig.12, we conducted the
experiments for controllers in different weathers. The results
are presented in the last three rows of the Table 2. The
results showed that the model from FIL could improve the
accuracy of the controller from general imitation learning in
bad weather.
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TABLE II
PERFORMANCE COMPARISON OF STANDARD CONTROLLERS AND TRANSFERRED CONTROLLERS IN DIFFERENT BAD WEATHER CONDITIONS

Controller Error rate in normal Error rate in rain Error rate in snow Error rate in fog Error rate in dust

Standard controller for RGB images 17.39% 26.09% 30.43% 34.78% 52.17%
Transferred controller for RGB images 4.35% 8.70% 17.39% 31.82% 39.13%
Standard controller for depth images 13.04% 4.35% 8.70% 8.70% 17.39%

Transferred controller for depth images 10.87% 4.35% 8.70% 8.70% 15.22%
Standard controller for segmentation images 2.17% 2.17% 6.52% 21.74% 36.36%

Transferred controller for segmentation images 2.17% 2.17% 5.43% 17.39% 31.82%

Bold values are winning results
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Fig. 11. Training process comparison of general learning and transfer
learning in FIL

(a) Rain (b) Snow (c) Fog (d) Dust

Fig. 12. Bad weather conditions, rain, snow, fog, sand and dust. We con-
ducted data collection and comparison experiments in these environments

V. CONCLUSION

In this work, we propose an imitation learning framework
for cloud robotic systems with heterogeneous sensor data
sharing, named Federated Imitation Learning (FIL). FIL
is capable of improving imitation learning efficiency and
accuracy of local robots by taking advantage of knowledge
from other robots in the cloud robotic system. Additionally,
we propose the knowledge fusion algorithm and introduce a
transfer method in FIL. Our approach is able to fuse hetero-
geneous knowledge of local robots. Finally, the framework
and algorithms are verified in a self-driving task.

For future work, we expect to research the scalability
problem of the platform. For example, real-time issues [22,
23], distributed issuses [24] and resource allocation [25, 26].
How to scale FIL if there are more autonomous cars or more
types of sensor data? Although FIL is capable of dealing this
issue by simpily expanding the cloud dataset, further work
on convergence justification of the fusion process is needed.
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