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Abstract—In many pose estimation problems, rotation matrices
can not always be estimated subject to all nonlinear rigidity con-
straints. Therefore, engineers tend to obtain the nearest rotation
matrix of an improper one, which is called the rotation orthonor-
malization problem. In this paper, we show a circuit synthesis of
such problem by using only simple algebraic components. We give
theoretical convergence analysis of the designed circuit. By using
the proposed circuit, rotation orthonormalization can be easily
performed without the need of previous sophisticated processes
like singular value decomposition (SVD) and eigen-decomposition
(EIG). Experiments of the developed method’s characteristics are
conducted. The circuitized scheme has also been implemented on
an FPGA platform.

Index Terms—Rotation orthonormalization, circuit synthesis,
algebraic circuits, pose estimation, 3-D registration

I. INTRODUCTION

A. Background

ROTATION matrices in 3-D space are useful in many
applications involving pose estimation. In the field of

computer vision, estimating camera poses from visual mea-
surements can provide autonomous perception of robots. By
introducing inertial sensing technology, object poses can be
obtained by inertial integration mechanisms [1], [2]. In these
approaches, all rotation matrices must be proper, i.e. they
belong to the special orthogonal group SO(3) such that
SO(3) :=

{
R ∈ R3×3|R>R = I,det(R) = 1

}
. Namely,

one rotation matrix is an orthogonal one with a positive
determinant, such is the rigidity nature of rotation. In many
algorithms for pose estimation, due to the nonlinear constraints
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of R, one may usually obtain an improperly orthonormalized
rotation and then find the nearest rotation to it. For instance, in
the problem of perspective-n-point (PnP) [3], given 2-D image
points in the image plane p and corresponding 3-D coordinates
in the world frame v, the rotation R ∈ SO(3) and translation
t ∈ R3 satisfy the following equality

s
(
u>, 1

)>
= K (Rp+ t) (1)

in which s denotes the scale factor which is a function of R
and t, while K is the camera intrinsic matrix consisting of
focal length and principal point. The direct linear transform
(DLT) seeks an approximate R by vectorizing (1). According
to the noise in p and v, R should be projected on SO(3),
which is the kernel problem we discuss in this paper, i.e.
rotation orthonormalization. This aspect is so frequent that,
in almost all pose estimation problems, we require rotation
orthonormalization. This is not only because of the use of
algorithm with improper rotation estimation but also due to
the fact that, in most cases rotation parameters are stored
with limited word-length. Thus, reading them from files may
require re-orthonormalization to guarantee rigidity.

Rotation orthonormalization is not an easy problem for
all computational platforms. The reason is that conventional
works mainly consider singular value decomposition (SVD)
and eigen-decomposition (EIG), which are sophisticated for
platforms without efficient floating-number supports, e.g. low-
cost microcontrollers, field-programmable gate array (FPGA)
and graphics processing unit (GPU). Most floating-number
operations of modern computers are accelerated thanks to
the invention of the float point unit (FPU). However, it
does not appear so frequently in parallel platforms due to
bus parallelization problems. Therefore, an efficient rotation
orthonormalization with simple algebraic steps will be re-
quired. Mentioned below are some representations regarding
the previous development of this problem.

B. Related Work

Rotation orthonormalization is a classical problem, starting
from inertial integration of rotation using inertial measure-
ments:

Ṙ = Rω× (2)

in which ω = (ω1, ω2, ω3)
> is the angular-rate vector, and

ω× is the skew-symmetric form of ω. Integrating (2) over
time will gradually generate an improper rotation sequence
that needs to be further orthonormalized. Bar-Itzhack et al.
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proposed the first solution in [4] by conducting iteration with
indices n = 1, 2, · · · for orthonormalizing a noisy rotation
matrix B with initial condition of D0 = B, such that
Dn = Norm [(adjDn−1 +Dn−1) /2], where adj denotes the
adjoint matrix and the operation Norm denotes normalizing
the matrix in terms of all rows. Rotation orthonormalization
is actually the essence of the 3-D registration problem [5],
provided that two point clouds bi ∈ {B} and ri ∈ {R} with
N point correspondences are to be aligned via

bi = Rri + t, i = 1, 2, · · · , N. (3)

Least-square solution of (3) is called the Wahba’s problem
initialized in 1965. It can be reduced to

arg min
R∈SO(3)

tr
(
RB>

)
(4)

in which B = 1/N
∑N

i=1

(
bi − b̄

)
(ri − r̄)

> with b̄ and
r̄ being gravitational centers of {B} and {R} respectively
and t = b̄ − Rr̄. (4) precisely defines the mathematical
framework of rotation orthonormalization. To solve R from
(4), SVD can be performed [6], [7] so that UΣV > = B and
R = Udiag [1, 1,det(UV )]V >. If we parameterize R using
unit quaternion q, (4) is equivalent to finding the eigenvector
associated with the maximum eigenvalue λmax of

W =

[
tr(B) z>

z B +B> − tr(B)I

]
(5)

where z = (B23 −B32, B31 −B13, B12 −B21)
>, so that

Wq = λmaxq. This problem has been solved by a branch of
Wahba’s solvers, e.g. [8]–[10]. Recently, the problem has been
revisited, generating two simplified approaches via symbolic
results [11], [12]. New innovative research has also shown that
orthonormalizing 3-D rotation can be performed with higher
numerical accuracy in the 4-D space [13], [14]. Note that
these methods are all numerical ones, including SVD and EIG,
which requires Jacobi rotation or Householder transformation,
that may not be simple to implement in circuits. A recent
research item [15] shows that 3-D registration problem can
be conducted algebraically, but the convergence rate is not so
satisfactory for all cases, which is going to be refined and
circuitized in this paper.

C. Contribution
This paper has the following main contributions:
• A new proportion-integral-derivative (PID)-like corrector

has been proposed for faster convergence of rotation
orthnormalization.

• We design a simple circuit synthesis of rotation orthonor-
malization problem for the first time and give its circuit
prototype.

• Convergence analysis has been detailed, which shows the
reliability of the designed circuit.

D. Outline
This paper is structured as follows: Section II contains our

new theory and convergence analysis. Section III consists of
experimental results and comparisons. Concluding remarks are
drawn in Section IV.

II. PROPOSED WORK

The Power method is an efficient method for solving eigen-
vector of associated with one matrix’s maximum eigenvalue. In
[15], the following system has been obtained to orthonormalize
B by simplifying the Power method to solve eigenvalue
problem Wq = λmaxq:

hx,k = ρk−1 (hx,k−1 + hy,k−1 × hz,k−1)

hy,k = ρk−1 (hy,k−1 + hz,k−1 × hx,k−1)

hz,k = ρk−1 (hz,k−1 + hx,k−1 × hy,k−1)

(6)

for k = 1, 2, · · · and the quasi-normalization factor is ρk−1 =
2/ (αk−1 + 1) with hx,k,hy,k,hz,k establishing three rows or
columns of Hk and H0 = B/max [abs (B)] and αk−1 =
‖hx,k−1‖2 + ‖hy,k−1‖2 + ‖hz,k−1‖2. Such iterations in (6)
are completely algebraic with addition, subtraction, multipli-
cation, and devision only. Thus nonlinear operations like sin
and cos are avoided, which are essential in mainstream SVD
and EIG solutions. In (6), each row or column of the rotation
matrix is orthogonal to others and is orthonormal. Therefore
for limiting case we have hx⊥hy⊥hz and hx = hy × hz ,
hy = hz×hx, hz = hx×hy and ‖hx‖ = ‖hy‖ = ‖hz‖ = 1
along with ρ = 1/2. Thus, for an improper rotation matrix,
the cross product of two rows or columns gives a correction to
the other previous column or row. Note that ρk is optimal only
in the sense of the Power method solving Wq = λmaxq. In
this way, we can write out the error term between successive
recursions (backward)

∆hx,k−1 = hx,k−1 − ρk−1 (hx,k−1 + hy,k−1 × hz,k−1)

= (1− ρk−1)hx,k−1 − ρk−1 (hy,k−1 × hz,k−1)

= (1− ρk−1)hx,k−1 + ρk−1 (hz,k−1 × hy,k−1)

∆hy,k−1 = (1− ρk−1)hy,k−1 + ρk−1 (hx,k−1 × hz,k−1)

∆hz,k−1 = (1− ρk−1)hz,k−1 + ρk−1 (hy,k−1 × hx,k−1) .
(7)

We can clear see from (7) that the error term is presented in
a complementary-filter form with equalizing factor of ρk−1;
while in these filters, the correction terms are hz,k−1×hy,k−1,
hx,k−1 × hz,k−1 and hy,k−1 × hx,k−1 respectively. The
structure of (7) provides another intuitive convergence analysis
as follows, taking hx as an example
• When 0 < ρk−1 < 1, we have αk−1 > 1. In this way

0 < 1 − ρk−1 < 1 then hz,k−1 × hy,k−1 approaches
−hx,k−1 and eventually ∆hx = 0.

• When 1 ≤ ρk−1 ≤ 2, we have −1 ≤ 1 − ρk−1 ≤
0. The error term can be formulated as ∆hx,k−1 =
βk−1 (−hx,k−1)+(1+βk−1) (hz,k−1 × hy,k−1) in which
0 ≤ βk−1 = ρk−1 − 1 ≤ 1. The convergence of this case
can be cast into the first case, leading to the limiting result
that ∆hx = 0.

This convergence analysis shows that the recursion is globally
convergent for arbitrary composition of hx,hy and hz . It
also gives an intuitive reason that a renowned cross-product
based complementary filter in [16] is conditionally conver-
gent. Iterations of (6) usually converge within 10 steps. The
proposed recursion can be expedited by introducing PID-
like parameters. Consider a PD corrector with proportional
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Fig. 1. The designed simple algebraic circuit prototype for 3-D rotation orthonormalization.

parameters of KP and KD. To make the following iteration
also satisfies the global convergence analysis shown above:

hx,k = ρk−1 (KPhx,k−1 +KDhy,k−1 × hz,k−1)

hy,k = ρk−1 (KPhy,k−1 +KDhz,k−1 × hx,k−1)

hz,k = ρk−1 (KPhz,k−1 +KDhx,k−1 × hy,k−1)

(8)

with ρk−1 = 2/
(
‖hx,k−1‖2 + ‖hy,k−1‖2 + ‖hz,k−1‖2 + 1

)
,

the steady-state equality must hold ‖hk‖ = 1, i.e.

1 = ρ2k

(
K2

P ‖hx,k‖2 +K2
D ‖hy,k × hz,k‖2 +

2KPKDh
>
x,khy,k × hz,k

)
(9)

so we have (KP +KD)2 = 4 and then KD = 2−KP . (8) is
globally convergent. The reason is simple: such selection of

KP and KD does not break the inequality condition shown
previously. Here KP and KD are not exactly the correction
parameters that appear in PID observers and controllers.
Rather, they are presented in a similar fashion for the fast
convergence of the recursion (6). It is also noted that the
new structure (8) does not require an additional type of
algebraic operations, so the circuitization will be simple and
efficient. Denoting hx = (x1, x2, x3)

>, hy = (y1, y2, y3)
>

and hz = (z1, z2, z3)
>, using the cross-product formula

hx × hy = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1)
>, the

first simple fast 3-D rotation orthonormalization circuit is
shown in Fig. 1.
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III. EXPERIMENTAL RESULTS

The circuit shown in Fig. 1 is discrete and can be imple-
mented using digital addition, subtraction, multiplication and
division components. If analog signals are taken into account,
(8) should be converted into an approximate continuous form.
However, analog devices are highly sensitive to temperature,
input bandwidth and working frequency. Thus, in this paper,
the circuit (8) is implemented on an FPGA platform in a
discrete manner. We first show some characteristics of the
new algorithm compared with representatives. For common
orthonormalization tasks, we generate a set of 10000 initial
B matrices whose column are subject to Gaussian distribution
with covariance of I . Using different parameters of KP

and KD satisfying KP + KD = 2, the mean convergence
performance of the designed new algorithm (8) is shown in
Fig. 2. The algorithm Original denotes the one that uses
KP = KD = 1 in [15]. The reference rotation is denoted
as Rtrue which has been generated using SVD orthonormal-
ization [6]. We can see that there are some combinations
of parameters that outperform the original algorithm with
slightly faster convergence speed. For most algorithms, they
reach satisfactory orthonormalization within 10 iterations. This
indicates that this group ofB matrices are easy to be orthonor-
malized.

Fig. 2. Convergence performance of orthonormalization algorithms with
different parameters for B matrices with columns subject to Gaussian
distribution with covariance of I .

A set of 100000 uniformly random rotation matrices are
generated using [17]. We contaminate these rotation matrices
in there columns by taking white Gaussian noise ξ into
account, such that ξ ∼ N (0, σ2I), where σ is the standard
deviation. We perform an experiment with different σ. For
each σ, we generate 100000 samples to evaluate the mean
errors. The root mean squared errors (RMSEs) are in Table
I. We can see that using k = 10 iterations, for higher σ,
the one with KP = 0.8 behaves better than else ones. For
those rotation matrices are almost not noisy (σ = 10−3),
the original one conducts better orthonormalization and the
differences between algorithms are negligible.

TABLE I
MEAN RMSE STATS OF VARIOUS ALGORITHMS FOR 3-D ROTATION

ORTHONORMALIZATION (k = 10)

Algorithms σ = 10−3 ‖Hk −Rtrue‖F abs[det(Hk)− 1]

Proposed (KP = 1.2) 0.00161837959101 7.04277902663× 10−14

Proposed (KP = 0.8) 0.00161837959099 3.01829250482× 10−14

Original 0.00161837959099 2.90934381900× 10−14

Algorithms σ = 10−2

Proposed (KP = 1.2) 0.0164549084574 7.10930847525× 10−13

Proposed (KP = 0.8) 0.0164549084567 2.14273043753× 10−13

Original 0.0164552370284 2.87822521370× 10−13

Algorithms σ = 10−1

Proposed (KP = 1.2) 0.156878515087 9.64848179130× 10−13

Proposed (KP = 0.8) 0.156878515061 9.44470168739× 10−13

Original 0.156878554842 9.52028619368× 10−13

For those matrices with unbalanced elements, orthonormal-
ization becomes harder. What we are going to show next is
an example

B =

(
0.001 0.002 0.003
0.004 −0.005 −0.001
0.009 −0.007 99.8

)
(10)

which owns a major entry in the last row and column. Its true
orthonormalized one is

Rtrue =

(
−0.8945 −0.4472 7.936e− 5
0.4472 −0.8945 −0.0001
0.0001 −6.5650e− 5 0.9999

)
. (11)

Several tests with different parameters of KP and KD are
also arranged; those results are shown in Fig. 3. For initial
iterations of k = 1 ∼ 10, the orthonormalization errors are
large, indicating a stage of equalizing the largest number in
B. After k = 10, all the algorithms converge rapidly. Among
all candidates, the one with KP = 0.8,KD = 1.2 converges
the fastest. This shows that better parameters indeed improve
the convergence performance of the orthonormalization.

Fig. 3. Convergence performance of orthonormalization algorithms with
different parameters for B matrix shown in (10).

From (10), we have det(B) = −0.001297. The SVD of
B = UΣV > indicates that det (UV ) = −1. Therefore,
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when using SVD for orthonormalization, the result is R =
Udiag [1, 1,−1]V >. For the proposed method, using different
KP and KD, it is able for us to illustrate the evolution of
determinant of Hk (see Fig. 4). The results show that even
for extreme case like (10), the developed algorithm is able
to orthonormalize B with negative determinant exactly into
SO(3) such that det(Hk) = 1 when k →∞. Detailed reason
has been shown in [15] that when k → ∞, it theoretically
follows that det (Hk) = 1. If we do not perform a key step
H0 = B/max [abs (B)] as initialization, the convergence
inequalities in [15] would not hold. Then (6) will only be
valid for non-SO(3) orthonormalization, which may result in
det (Hk) = −1.

Fig. 4. Convergence performance of det (Hk) with different parameters for
B matrix shown in (10).

The proposed digital circuit is implemented with Ver-
ilogHDL language and deployed on a Xilinx Kintex-7 FPGA
chip with a part number of XC7K325T. The implementa-
tion reports indicate that this design occupied very limited
resources with 17 registers, 2 digital slices and 2 DSP units.
The power consumption of this functional block is 6 mW,
which was an admirable result, but it can be significantly
reduced by using an application specific integrated circuit
(ASIC) implementation for high-end applications. Regarding
the implementation of previous popular algorithms like SVD
and EIG, the computational resources are much more em-
ployed. For the target platform, the SVD takes 127 digital
slices for Householder transform. Note that the SVD algorithm
has been simplified to its best, e.g. important sub-blocks like
coordinate rotation digital computer (CORDIC, [18]) has been
efficiently provided by the internal library. SVD consumes a
power level of 297 mW, which is much higher than that of
the developed method. This shows that the proposed method is
more suitable for compact, low-cost and low-power industrial
electronics.

IV. CONCLUSION

The rotation orthonormalization problem has been revisited
in this paper. For the first time in the community, we design a

very simple and efficient algorithm that can be easily imple-
mented on various platforms. It is shown that the introduction
of a PID-corrector can significantly improve the convergence
speed without loss of accuracy. The proposed algorithm is
also more efficient for those orthonormalization tasks with
extremely unbalanced matrix entries. Since only four elemen-
tary algebraic operations are involved, the designed globally
convergent algorithm circuitized has been tested successful
on Xilinx FPGA platform. Future efforts need to be paid to
simplify a related system design for ultra low-cost and low-
power ASIC.
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