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Abstract— The visual-inertial navigation system (VINS) has
been a practical approach for state estimation in recent years.
In this paper, we propose a general GPS-aided omnidirectional
visual-inertial state estimator capable of operating in ubiquitous
environments and platforms. Our system consists of two parts:
1) the pre-processing of omnidirectional cameras, IMU, and
GPS measurements, and 2) the sliding window based nonlinear
optimization for accurate state estimation. We test our system
in different conditions including an indoor office, campus
roads, and challenging open water surface. Experiment results
demonstrate the high accuracy of our approach than state-of-
the-art VINSs in all scenarios. The proposed odometry achieves
drift ratio less than 0.5% in 1200 m length outdoors campus
road in overexposure conditions and 0.65% in open water
surface, without a loop closure, compared with a centimeter
accuracy GPS reference.

I. INTRODUCTION

A. Motivation

Accurate state estimation is a prerequisite in many robotic
applications such as unmanned aerial vehicles (UAVs), un-
manned ground vehicles (UGVs), and unmanned surface
vessels (USVs). Visual-inertial navigation system (VINS)
estimators have led the trend in state estimation in the past
decade with impressive progress by the community [1]–[3].
However, existing VINS estimators suffer from problems
caused by operating environments and sensor configuration,
limiting their usage in real-world robotic applications. For
stabilizing perceptions, current VINS estimators are tested in
restricted environments and with specific camera mechanical
configuration [4]. In outdoor experiments, VINS estima-
tors are facing challenges such as overexposure, featureless
frames, and tiny pixel parallax for faraway features, resulting
in the loss of stable features tracking. The configuration of
cameras on UGVs or USVs, facing the front, strengthen
these negative impacts. In open water environments near the
coast for USVs, reliable visual measurements are only gained
from nearby static objects from the shore. Current VINS
approaches drift easily when the USV is making turns or
when cameras are facing the sea surface.

It is reasonable to deduce that visual-inertial odometry
(VIO) can achieve an outstanding performance outdoors as
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(a) Hybrid view of the ground experiment by our UGV platform

(b) Hybrid view of the open water experiment by our USV platform

Fig. 1: The hybrid views of outdoor experiments. Red curves
are estimated trajectories, and colored spots indicate 3D
features by height.

long as enough stable features can be observed continuously.
Omnidirectional perception is then necessary to solve out-
door VINS estimation problems. Due to the inevitable drifts
of large-scale outdoor trajectory estimation, precise global
measurements, such as from a GPS, could help improve the
accuracy of the system. Therefore, a GPS-aided omnidirec-
tional VINS is a potential approach for state estimation tasks
in challenging outdoor environments.

B. Contributions

In this work, we propose a novel GPS-aided omnidi-
rectional visual-inertial state estimator, which can perform
accurate motion estimation in indoors and challenging out-
door environments. We extend VINS-MONO [2] to support
flexible numbers of pinhole cameras, reconstruct the feature
extraction and measurement model for omnidirectional visual
perception based on a unit sphere. The tightly-coupled non-
linear optimization module fuses the visual and inertial mea-
surements, with loosely-coupled GPS refinement to decrease



(a) Sensors Structure (b) System Pipeline

Fig. 2: (a) Hardware structure of the omnidirectional cameras with an IMU. 10 cameras are distributed as a cylinder wrapped
with a plastic shell. (b) The pipeline of the proposed GPS-aided omnidirectional visual-inertial state estimator.

the drifts caused by the accumulated error in large-scale
outdoors. Note that our proposed estimator also supports the
GPS-blocked version which achieves a novel performance
than state-of-the-art VINS algorithms.

We demonstrate the performance of our integrated system
in a variety of indoor and outdoor conditions. The trajectory
can be estimated close to the centimeter accuracy GPS
reference with a drift ratio less than 0.7% in challenging
large-scale outdoor experiments. Accordingly, we identify
our contributions as follows:
• A precise and robust omnidirectional visual inertial

system with a flexible number of pinhole camera con-
figuration, online camera-IMU calibration, and fast ini-
tialization from non-stationary states.

• A tightly-coupled nonlinear optimization for visual and
inertial measurements with loosely-coupled GPS refine-
ment for accurate odometry generation.

• A variety of cross-platform experiments in the indoor,
challenging outdoor ground and open water environ-
ments with novel performance.

C. Outline

In Sect IV-A, the processing of sensor measurement is
presented. System initialization, in Sect IV-B, generates the
roughly-estimated IMU bias, local pose state, velocity, and
gravity. Then these parameters will be optimized with the
feature inverse depth, calibration parameters, and frame ro-
tation by the nonlinear optimization (Sect IV-D). The residual
functions for all measures are also defined in this section. The
outlier rejection is introduced in Sect IV-C. We demonstrate
experiments results of indoor and outdoor environments in
Sect V. The conclusions are discussed at the end of the paper.

II. RELATED WORK

Research on vision-based state estimation is extensive. We
focus on applications of omnidirectional cameras and related
research about visual-inertial state estimation.

There are several kinds of omnidirectional cameras. A
dioptric camera uses a shaped lens, like a fish-eye lens [5],
reaching a field of view (FOV) larger than 180 degrees.
A catadioptric camera combines a standard camera with a
shaped mirror, such as a parabolic, hyperbolic, or elliptical
mirror, and provides a 360 degrees horizontal FOV and

a more than 100 degrees vertical FOV [6]. Polydioptric
cameras use multiple cameras, usually pinhole cameras, with
overlapping FOVs [7]. Steffen et al. [8] also used polydiop-
tric model with fish-eye cameras for omnidirectional system.
However, they did not integrate the IMU measurements. In
this paper, we use a polydioptric omnidirectional model with
pinhole cameras because of the simple calibration and the
flexibility of configuration. In addition, the overexposure and
tracking loss of one camera will not affect the performance
of other cameras.

A straightforward method to fuse images and IMU data
is to treat the IMU as an independent module to refine
the vision-only estimated odometry, which is known as
loosely-coupled sensor fusion. The tightly-coupled vision-
inertial method, which unites the IMU and visual mea-
surements to be optimized jointly, is believed to have a
better performance than the former method due to less
information loss [9] [10]. There are two kinds of tightly-
coupled state estimation: extended Kalman filter (EKF) based
[3] [11], and graph-optimization-based [1] [2]. The EFK-
based approach has lower computational cost but suffers
from estimation inconsistency caused by EKF linearization
[12]. Bundle adjustment is utilized for graph-optimization-
based estimation to maintain a bounded-size sliding win-
dow of recent states for solving a nonlinear least-squares
problem. Although its higher computational resource cost
for iterations compared with the EKF-based approach, the
optimization-based method achieves superior results [13] and
real-time performance due to the improvement in hardware
computational power. In this paper, therefore, we adopt the
optimization-based state estimation approach.

III. OVERVIEW

Our proposed GPS-aided omnidirectional visual-inertial
odometry system is shown in Fig. 2(b). Five pairs of stereo
cameras, which are vertically distributed as a cylinder with
little overlap, track features in all directions. Each camera
works separately so the system can generate odometry as
long as there is at least one camera working properly. We
implement the omnidirectional VINS in monocular version,
as Omni-Mono with the top 5 circular cameras, and stereo
version, as Omni-Stereo with all 10 cameras (Fig 2(a)).



Stereo cameras are employed since the rigid baseline be-
tween two cameras provides scale information and more sta-
ble feature matching, which improves system performance in
challenging outdoors. Furthermore, the system initialization
process can be reduced to quite a short time by the rigid
stereo constraints, especially on the seawater surface.

We assume that the intrinsic parameters of the cameras
are known. Initial calibration parameters between cameras
and the IMU are calculated by Kalibr toolbox [14] and our
optimization module supports the online self-calibration for
revision. We also assume the GPS signal is available at the
beginning of the initialization for the GPS-aided versions.

TABLE I: Nomenclature.
Notation Explanation

F Frame, where FB , FW , and FG represent the IMU
body frame, the world frame and the global East-
North-Up (ENU) frame, respectively;

R Rotation matrix in SO(3), where Ra
b represents the

rotation from Fb to Fa ;
q Quaternion under Hamilton notation, with qa

b corre-
sponding to Ra

b ;
p, v Translation and velocity vector in R3, where pa

b and
va
b represents the translation and velocity, respectively,

from Fb to Fa defined in Fa ;
m Translation vector in R3 for GPS measurement, where

mA
s represents the translation in FA with state s;

b IMU bias in R3, where bat , bgt represents the IMU
acceleration bias and gyroscope bias at time t;

ã, ω̃ωω Raw measurements of acceleration and angular veloc-
ity, respectively, in R3 from the IMU;

gW Gravity vector in the world frame;
X States to be estimated, including IMU states xk , cali-

bration parameters tB
ci

between the ith camera and the
IMU, the inverse depth of features, and the rotation
from FW to FG ;

tB
ci

Calibration parameters between the ith camera and
IMU;

xk State vector of IMU when the kth image is captured;
r Residual, where rB , rC , and rG represent the IMU

residual, the camera residual and the GPS residual.
z̃ The raw sensor measurements;
Pl The lth feature observed from the camera;
cik Camera i, where k indicates the kth frame

The nomenclature is defined in Table I. We indicate (̃·) as
the noise measurement or estimate of the accurate quantity,
and ⊗ as multiplication between two quaternions.

IV. METHODOLOGY

A. Measurements Preprocessing

There are three kinds of measurements in our system: the
sparse features from images, the IMU and the GPS measure-
ments. The images and IMU measurements are preprocessed
then incorporated into the estimation. The sliding window
runs on the image frequency, and the low-frequency GPS
measurements are bonded with the same time stamp image.

1) Visual Feature Extraction For Multi-cameras: We
evenly divide each new incoming image into 3×3 subsec-
tions and equally extract features from each part. New corner
features are detected by Harris Corner Detect [15] to main-
tain a maximum number of 80 features in each camera for
real-time performance, and the existing features are tracked
by the KLT sparse optical flow algorithm [16]. Features

Fig. 3: Illustration of the sliding window for GPS-aided
omnidirectional VIO. The GPS signal is available for at most
one frame in the window because of the low frequency. For
Omni-Stereo, the camera indicates the stereo cameras pair.

are maintained with their specific indexes and are sent to
the optimization module as an omnidirectional point cloud.
Note that we only implement the feature matching between
the vertical stereo cameras pair, also by KLT algorithm,
due to the few overlapping between the horizontal cameras.
Features observed from a vertical stereo pair are independent
with the features from the other stereo pairs.

2) IMU Pre-Integration: Multiple IMU measurements
will be pre-integrated during [k, k + 1] to avoid re-
propagation. We utilize the IMU pre-integration model pre-
sented in [17], which involves the IMU bias correction. The
measurements of acceleration and angular velocity from the
IMU, ã and ω̃ωω, in the body frame are defined as

ãt = at + bat
+ Rt

W gW + na

ω̃ωωt = ωωωt + bgt + ng,
(1)

combined with Gaussian acceleration noise na and gyroscope
noise ng . To avoid the large computation of re-propagation,
we translate the world frame to the body frame.

B. System Initialization

1) Omnidirectional Initialization: The accuracy of the
initialization process dramatically affects the results of the
VINS estimator, especially in real-world applications . The
performance of monocular VIO initialization is limited by
scale recovery. Sufficient motion and rotation are required to
accumulate enough keyframes to refine the state parameters,
which takes several seconds for initialization [2]. Regarding
the stereo system, with the known calibration parameters
between two cameras, the initialization needs only solve the
IMU bias, velocity, and gravity.

We first introduce the initialization for GPS-blocked ver-
sions of proposed approaches. For the Omni-Mono, we
follow the same initialization process as [2]. For the Omni-
Stereo, we construct the stereo visual initialization of the
sliding window, including pose and feature position, and then
align it with the IMU integration results. Each frame taken
from the stereo cameras can be treated as a keyframe be-
cause of the known calibration parameters. Through loosely-
coupled alignment between the stereo visual odometry and



the IMU metric pre-integration information, the gravity,
velocity, and gyroscope bias can be roughly recovered.
According to our test, the initialization of the stereo system
is less than 1 second without sufficient movements required.
After initialization, the Z-axis of the world frame precisely
aligns with the gravity vector.

2) Rotation From World frame to Global frame: The
initial point is defined as the GPS measurement at the origin
of the world frame. The rotation RG

W is initialized by the
initial point mG

init and the next GPS point mG
next with the

assumption that there is only yaw rotation from the global
frame to the world frame, and the distance between the two
GPS points meets the minimum threshold. In this way, we
can obtain the initial estimate of rotation by

θ = arccos
(mG

next −mG
init) · pW

B

‖(mG
next −mG

init)‖‖pW
B ‖

, (2)

where θ is the yaw angle between the world frame and the
global frame and ‖ · ‖ is the l2 norm.

C. Outlier Rejection

Reliable visual measurements are only from nearby static
objects. They can help the calibration parameters converge
quickly and provide strong constraints to the state param-
eters. Matched features from the sea surface, the sky, and
faraway islands will influence the estimation negatively and
are treated as unreliable features. We define inconsistent
matched and unreliable features as outliers.

Outlier rejection is firstly performed using 2D-2D
RANSAC with the fundamental matrix model [18] in the
measurement preprocessing stage introduced in Sect. IV-A.
Then we adopt 3D-2D PnP RANSAC [19] outlier rejection
based on the 3D feature position, which is estimated in
the local sliding window, and on the 2D coordinates in the
camera plane. We also utilize the Huber loss in the optimiza-
tion module to reduce adverse effects by outliers with large
residuals. Finally, we remove the features with unreasonable
large depth values after each optimization iteration.

D. Nonlinear Optimization

We propose a sliding-window-based nonlinear optimiza-
tion for real-time state estimation, as shown in Fig. 3. We
utilize the IMU measurement model in [2] for IMU residual.

1) Formulation: The state vector is defined as

X = [xn, · · · , xn+N , tBc0 , t
B
c1 , · · · , tBcI , dm, · · · , dm+M ,qG

W ],

xk = [pW
Bk
, vWBk

,qW
Bk
,ba,bg], k ∈ [n, n+N ],

tBci = [pB
ci ,q

B
ci ], i ∈ [0, I],

(3)
where dm is the inverse depth of the mth feature from its
first observation. I,N, and M is the total number of cameras,
IMU states in the sliding window and features, [20]. The
calibration parameters tBc will be updated in optimization
when they converge to a reasonable value.

We extend the measurement residuals to handle the mul-
tiple cameras, IMU and GPS for the maximum posterior

(MAP) estimation:

X ∗ = arg min
X

{
‖rp −HpX‖2 +

∑
k∈B

‖rB(z̃Bk

Bk+1
,X )‖2

Θ
Bk
Bk+1

+
∑
i∈I

∑
(l,j)∈Ci

‖rCi(z̃c
i
j

l ,X )‖2
Θ

ci
j

l

+ ‖rG(z̃G0

Gu
,X )‖2

Θ
G0
Gu

}
,

(4)
where [rp,Hp] is the prior information [2]. B, C, and G are
the set of IMU, camera, and GPS measurements, respectively.
Ci is the set of all observations by camera i. And j, l
are image frame indexes and feature indexes, respectively.
G0, Gu are the initial and current GPS measurements.
ΘBk

Bk+1
and Θ

cij
l are the covariance matrix of the IMU and

visual measurements, respectively. The covariance of the
GPS measurements ΘG0

Gu
is measured from the GPS directly.

To solve this nonlinear MAP problem, Ceres Solver [21] is
used. We adopt the Huber loss as the loss function to penalize
outliers with large residual for better system robustness. The
inverse matrices of Θ for different sensor measurements are
employed as the regularization weights to balance the loss.
Because of the low frequency of the GPS sensor, the GPS
residual is only added to the optimization module when
the GPS data is received with acceptable covariance in the
current frame. Otherwise, the nonlinear optimization only
considers the marginalization, IMU and visual residuals.

2) Omnidirectional Multi-Camera Measurement Model:
To utilize the benefits of the omnidirectional camera, the
camera measurement residual is defined on a unit sphere, as
proposed in [17]. The camera residual is defined as:

rCi(z̃
cij
l , X ) =

[
h1 h2

]T · (P̃ cij
l −

P
cij
l

‖P cij
l ‖

), (5)

P̃
cij
l =

[
x̃
cij
l ỹ

cij
l z̃

cij
l

]T
(6)

is the observation of the lth feature in the jth frame from the
ith camera. h1 and h2 are two arbitrarily selected orthogonal
bases which span the tangent plane of P̃

cij
l .

Note that we also store the first captured camera index,
mth, and frame indexes, vth, of the lth feature. Thus, the
formulation of camera measurements of the lth feature is

P
cij
l = −RB−1

ci pB
ci

+ RB−1

ci

(
−RW−1

Bj
pW
Bj

+ RW−1

Bj
PW
l

)
,

PW
l = pW

Bv
+ RW

Bv
(pB

cm + RB
cm

1

λl
· P cmv

l ),

(7)

where P
cmv
l is the noiseless first observation of the lth

feature that happens in the vth frame, from the mth camera.
Especially, as for the feature of the monocular camera, the
first captured camera is the current captured camera, m = n.



3) GPS Measurement Model: Different from the IMU
residual, the GPS residual is defined based on the initial and
current GPS measurements, not on the two continuous slid-
ing windows, because of the low GPS frequency compared
with the sliding window. For any current GPS point, we have

mG
cur −mG

init = RG
BmB

cur − RG
W mW

init + RG
W pW

B , (8)

where mB
cur and mW

init are the same because of the fixed
translation from the GPS to the IMU regardless of the
coordinates. mG

cur and mG
init are GPS positions in the global

frame. In this way, residual can be defined as

rG(z̃G0

Gu
,X ) = mG

cur −mG
init

− RG
W (RW

B mB
cur −mW

init + pW
B ).

(9)

V. EXPERIMENTS

A. Implementation Details

An OCCAM Omni-Stereo camera, an Xsens MTi-10 IMU
and a low-cost G-STAR IV GPS comprise our system
(Fig 2(a)). A real-time kinematic (RTK) GPS, COMNAV
T300 GNSS, with centimeter accuracy is adopted as the
outdoor evaluation reference. The multi-camera system has
10 cameras, and each camera captures monochrome 752 ×
480 images at 15 Hz. Cameras are hardware synchronized
by the manufacturer. The IMU provides the acceleration and
angular velocity at 400 Hz and the GPS signal frequency is
at 1 Hz. Our UGV platform is a golf car and USV platform
is the OceanAlpha as shown in Fig. 1.

TABLE II: Indoor Experiment Results
Algorithm Drift(m) Drift-Ratio(%)

MSCKF-VIO Stereo 0.426 2.43
OKVIS Stereo 0.581 3.31

VINS-FUSION Stereo 0.302 1.72
Our Stereo 0.15 0.85

Our Omni-Mono 0.06 0.33
Our Omni-Stereo 0.05 0.30

TABLE III: Ground Experiment Results

Trajectory
Total

Length (m)
GPS

Aided
Omni-Mono Omni-Stereo

Drift (m) Ratio (%) Drift (m) Ratio (%)

Campus 1207.9
NO 31.32 2.59 11.64 0.96
YES 17.96 1.48 5.50 0.46

B. Indoor Experiments

With a motion tracking system as the ground truth, the
indoor experiments are executed in our lab office. We intend
to prove the accuracy of our omnidirectional VIO system in
GPS-blocked conditions by moving the sensors with hands.
We compare our proposed Omni-Mono and Omni-Stereo
with MSCKF-VIO [22], OKVIS [9] and VINS-FUSION
[23]. We also run our Omni-Stereo with only one stereo pair
as a reference. All algorithms are tested without loop closure.
We execute the algorithms 10 times with the same data,
and the drift results are shown in Table II with total length
of 17.52 m. The drift is calculated based on the absolute
trajectory error (ATE). Our one pair stereo VIO has a lower

TABLE IV: Open Water Experiment Results

Trajectory
Total

Length (m)
GPS

Aided
Omni-Mono Omni-Stereo

Drift (m) Ratio (%) Drift (m) Ratio (%)

U-Turn 284.30
NO 4.55 1.60 2.41 0.84
YES 3.25 1.14 1.85 0.65

drift ratio than other stereo frameworks. The Omni-Mono
and Omni-Stereo both greatly improve accuracy.

(a) Estimated Trajectory aligned
with satellite

-100 0 100 200
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-200

-100

0

100

y
 [

m
]

Omni-Mono No GPS

Omni-Mono With GPS

Omni-Stereo No GPS

Omni-Stereo With GPS

RTK GPS Reference

(b) Trajectory comparison.

Fig. 4: (a) The estimated trajectory aligned in the satellite
map. The yellow and blue spots are the start and end points.
(b) Comparison of the estimated trajectories.

C. Outdoor Ground Experiments

The outdoor experiments are first executed on the HKUST
campus road. All the stereo frameworks mentioned in indoor
experiments drifted hugely for this task because of the
overexposure, long distance motion, and feature detection
failure. We compare the performance of the proposed Omni-
Mono and Omni-Stereo with GPS enabled and disabled.

The results are shown in Fig. 4. We align the estimated
trajectory [24] in the satellite map in Fig. 4(a) . Although the
drifting rates are higher than those in the indoor experiments,
the estimated odometry accurately aligns with the RTK-GPS
reference in large-scale experiments by extracting enough
features in all directions without a loop closure module. The
drift results are also calculated based on the ATE and are
shown in Table III. Omni-Stereo has better performance in
such large-scale path estimation than Omni-Mono. The GPS-
aided approach helps refine the drifts for both approaches.

D. Outdoor Open Water Experiments

We test our algorithms on a USV platform in an open
water area. We operate the USV following the coast with
a U-turn which is shown by the GPS in Google Maps in
Fig. 5(a). The velocity of the USV is around 1.5 meters
per second. Note that the USV works on the sea surface
without a stationary initial state. All stereo frameworks
mentioned in Table II drifted a lot when the USV facing
to the sea surface showing in Fig. 5(b). From the results in
Table IV, our proposed omnidirectional VIO could recover
the trajectories precisely for the complex U-turn path. Omni-
Stereo has a better performance than Omni-Mono because of
the additional cameras and stereo constraints.
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-80 -40 0

x (m)

0

30

50

y
 (

m
)

MSCKF-VIO

OKVIS

VINS-FUSION

RTK GPS REF

(b) Stereo Frameworks Drifted Results
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Fig. 5: (a) GPS trajectory shown in Google Maps. The red
pin is the end point. (b) Stereo frameworks drift with the
U-Turn path. (c) Comparison of our estimated trajectories.

E. Discussion

For the indoor experiments with blocked GPS measure-
ments, our proposed Omni-Mono and Omni-Stereo improve
the accuracy of state estimation with the drift ratio around
0.3% without loop closure, which outperform state-of-the-art.
For the outdoor experiments without tremendous stationary
features and stable lighting conditions, our proposed system
still achieves remarkable results while other stereo systems
fail. The Omni-Stereo achieves a drift ratio less than 1%
without GPS and 0.5% with the benefit of GPS in the large-
scale overexposure outdoor environment (Table III). In the
open water experiments, limited reliable visual features are
only from the coast, so the number of reliable features is
much lower compared with the indoor and outdoor ground
conditions, leading higher drift ration results around 0.8%
shown in Table IV. The long-distance features, strong expo-
sure under the sun and the low camera resolution may also
lead to these results. The performance has the potential to
be better with high-resolution cameras.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, a novel GPS-aided omnidirectional VIO
state estimator, suitable for a variety of severe operating
environments, has been presented. We extended state-of-the-
art monocular VIO to adopt a flexible number of cameras
to compose omnidirectional monocular and omnidirectional
stereo systems. We also added the GPS factor into the
nonlinear-optimization-based, multi-sensor fusion to reduce
the drift in outdoor large-scale trajectories. The accuracy and
robustness of the proposed system have been demonstrated
with indoor and outdoor experiments. We open source our

implementation1. Further research is still necessary for better
system performance, and we are interested in loop closure
and mapping integration to our next proposed system.
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