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Abstract—Using different sensors in an autonomous vehicle
(AV) can provide multiple constraints to optimize AV loca-
tion estimation. In this paper, we present a low-cost GPS-
assisted LiDAR state estimation system for AVs. Firstly, we
utilize LiDAR to obtain highly precise 3D geometry data. Next,
we use an inertial measurement unit (IMU) to correct point
cloud misalignment caused by incorrect place recognition. The
estimated LiDAR odometry and IMU measurement are then
jointly optimized. We use a lost-cost GPS instead of a real-
time kinematic (RTK) module to refine the estimated LiDAR-
inertial odometry. Our low-cost GPS and LiDAR complement
each other, and can provide highly accurate vehicle location
information. Moreover, a low-cost GPS is much cheaper than
an RTK module, which reduces the overall AV sensor cost. Our
experimental results demonstrate that our proposed GPS-aided
LiDAR-inertial odometry system performs very accurately. The
accuracy achieved when processing a dataset collected in an
industrial zone is approximately 0.14 m.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a very
important function in autonomous vehicles (AVs) [1]. Using
AV sensor data and perception output, a SLAM module can not
only estimate the location of an AV, but also build and update
a 3D world map [2]. A highly accurate global navigation
satellite system (GNSS), e.g., a real-time kinematic (RTK)
module or a differential Global Positioning System (GPS),
can provide centimeter-level AV localization accuracy [3], [4].
RTK modules utilize carrier-phase positioning data provided
by base stations to compensate for the estimation error during
transmission. However, the base station coverage can limit the
available area of the RTK GPS receiver [5]. Furthermore, RTK
modules cannot solve the signal multipath problem and GPS
signal shielding problem, which can occasionally make the
GPS-based localization approach infeasible [6].

Although many researchers have managed to deal with the
aforementioned problems, the solutions are very limited [6].
On the other hand, LiDAR can provide accurate depth infor-
mation, and therefore, is generally used for highly precise AV
localization [2], [7], [8]. In practice, LiDAR-based localization
methods perform very well in a static environment containing
good geometry features. However, these methods can easily
fail when there exists a dynamic object, e.g., a truck or a
pedestrian. In an open environment, it is very difficult to
find geometrical features when using only LiDAR; however,
GPS can work consistently. Conversely, for an environment
with many buildings, LiDAR can find useful features for

point cloud, but GPS will lose signal [2]. In addition to GPS
and LiDAR, inertial measurement units (IMUs) are generally
used for ego-motion estimation [2], yet it can suffer greatly
from dual integration error accumulation. The fusion of data
collected by GPS, LiDAR and IMU will compensate the
defects of each other. Therefore, multi-sensor systems are
commonly used in autonomous cars.

A. System Overview

In this paper, we present a novel and robust LiDAR, IMU,
and GPS state estimator for an AV. The system pipeline
is shown in Fig. 1. The input of the system is the raw
point cloud data collected using LiDAR. The point cloud is
then processed to extract useful features. Next, the extracted
features are used to register two different point clouds. A high-
frequency IMU is used to give an initial guess for LiDAR
registration. The preintegration of the IMU is considered as
an edge constraint and is optimized together with the LiDAR
odometry constraint. The LiDAR-inertial module can produce
an optimized odometry at 10 Hz. The odometry is further
optimized by integrating the GPS data at about 1 Hz. Finally,
AV locations can be accurately estimated. The environment
map is also built with undistorted point clouds and merged
into the previous map based on loop closure detection.

In the optimization process, we consider both the sensor
measurement as well as the extrinsic parameters. The proposed
pose graph is shown in Fig. 2. Between each pair of LiDAR
frames, the IMU output is used to obtain an initial guess for
point cloud registration. The measurement is pre-integrated
and added to a pose graph [9], and then non-linear graph
optimization is applied to refine the vehicle state. The GPS
measurement is also added to the pose graph to establish an
additional constraint. Based on accurate state estimation, we
can build a precise environment map. To deal with the LiDAR
distortion caused by movement, we introduce a continuous-
time spline to de-distort each frame of the point cloud from
the LiDAR. [10]–[12] give us the ability to interpolate the
quaternion, and the continuous-time odometry spline technique
is given in [13] and [14]. For the reusability of the 3D map,
we also merge the map on the pose graph with the method
introduced in [15]. The odometry is mapped to the local east,
north, up (ENU) coordinate of the start point. We tested our
system in a variety of environments. We use Ceres Solver [16]
to solve the non-linear least square problems in our program.
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Fig. 2. Pose graph illustration.

B. Contributions

The contributions of this work include:
• A low-cost odometry and mapping system where the

GPS constraint edge is integrated into the pose graph to
optimize the LiDAR-inertial odometry.

• A practical mapping method that can merge a pre-built
map and newly added map, and refine each frame of the
point cloud to provide a more accurate reusable map.

• Two datasets, one collected in an industrial zone and the
other a harbor.

C. Paper Structure

The remainder of this paper is structured as follows: Sec-
tion II discusses the related work. Section III presents our
LiDAR-inertial odometry method. Section IV introduces our
proposed GPS optimization approach. Section V presents our
3D continuous mapping algorithm. The experimental results
are illustrated and the system performance is discussed in
Section VI. Finally, Section VII concludes the paper and
provides recommendations for future work.

II. RELATED WORK

Over the past two decades, many researchers have utilized
GPS to achieve accurate odometry results [3], [4]. However,
as discussed in Section I, the GPS signal is vulnerable to
environment changes. Therefore, researchers have been work-
ing on environment perception and AV state estimation with
the use of multiple sensors [7], [8], [17]–[19]. For example,

passive sensors such as cameras can be used to capture 2D/3D
visual data of the environment [20], [21]. In [17], a vision-
based odometry system named ORB-SLAM is presented,
where the image feature points are used to register different
input frames. However, the robustness of such a system can
be easily effected by various environment conditions, e.g.,
light changes [18]. In addition to cameras, LiDAR, which
measures the distance to an object by detecting and analyzing
the reflected light [2], is also generally used for AV location
estimation and 3D world map creation. Compared to cameras,
LiDAR is less effected by light changes, and therefore is
more feasible for all-weather use [2]. For instance, [7] and
[8] designed a LiDAR-based odometry system, which uses
edge and surface information to register point clouds. To better
constrain the matching relation of the point cloud, we typically
segment the ground planes in advance. For example, [19]
and [22]–[25] present a variety of methods for point cloud
segmentation. Although such methods have achieved some
impressive experimental results in most situations, there still
exist some drawbacks. For example, the features in the point
cloud are not as rich as those extracted from an image [23].
Furthermore, especially in a wide feature-less area, a LiDAR-
based system can easily fail [2].

To better estimate the sensor state, many researchers have
turned their focus towards multi-sensor data fusion. EKF and
UKF are two popular traditional fusion techniques demon-
strated by [3], [4], [26]. Recently, several non-linear optimiza-
tion methods have been proposed to fuse different types of
data. For example, Kümmerle et al. [9] proposed a graph-
based optimization approach, which treats the robot state as a
node and the constraint gained from measurement as an edge.
Wang et al. [27] proposed a method to fuse the data collected
by a multiple-sensor system that consists of RTK modules, a
LiDAR sensor, and IMUs. However, the performance of such
a system is subject to GPS single point positioning. Koide et
al. [28] used an offline SLAM method based on both LiDAR
and GPS. However, the system cannot generate odometry in
real time, limiting its practical application. Moreover, the Li-
DAR component is based on a normal distributions transform
(NDT), which is not elegant. In this paper, we use the afore-
mentioned pose graph approach but simplify the non-linear
optimization problem. Furthermore, we improve the method
by utilizing a low-cost GPS instead of an RTK module, and
apply feature-based point cloud registration instead of NDT.
To build a clear and reusable map, we deal with the distortion
of the point cloud from multi-beam LiDAR caused by the AV



movement. Although [7] has already solved this problem, the
solution is based on basic linear interpolation between Euler
angles. Due to the gimbal lock, the interpolation cannot always
work well. Our method applies B-spline interpolation in a SE3
space and achieves a better de-distortion result.

III. LIDAR-INERTIAL LOCALIZATION

A. IMU prediction

We briefly denote frame as follows. (·)W denotes world
frame W , (·)I denotes IMU frame I , and TW

I is the IMU pose
in the world frame. In our system, the IMU state is treated as
the vehicle body state. The raw measurement data includes
acceleration aI(t) and angular velocity ωI(t) in IMU frame
I . gW represents a gravity constant in the world frame W .
Considering the measurement noise n and bias b, the IMU
state is as follows:

ω̂W = ωI − bωI − nω
I ,

âW = RW
I (aI − baI − na

I) + gW ,
(1)

where RW
I is the rotation matrix from the IMU frame to the

world coordinate system. We also define the translation from
the IMU frame to the world coordinate system as tWI . Then,
the transformation matrix is written as TW

I = [RW
I |tWI ]. Let

the IMU frame I represent the state of the vehicle. We can
use TW

I to denote the pose of the vehicle in the world frame.
To predict the initial guess of the next incoming LiDAR

frame, we need to integrate the IMU state during the interval
between i and j:

vj − vi = RW
I i(a

I − baI − na
I)∆t + gW ∆t,

tj − ti = vi∆t +
1

2
RW

I i(a
I − baI − na

I)∆t2 +
1

2
gW ∆t2,

RW
I

T

i R
W
I j = exp(ωI − bωI − nω

I∆t).
(2)

B. IMU Preintegration

To avoid repeatedly integrating the measurement when
solving the non-linear optimization problem, we adopt the
IMU preintegration method stated in [29] and [30] into our
system. The key idea is to define a relative motion of the
IMU regardless of the pose and velocity at a specific time.
The preintegration model between state i and state j is as
follows:

∆Rij = RT
i Rj ,

∆vij = RT
i (vj − vi − g∆tij),

∆tij = RT
i (tj − ti − vi∆tij −

1

2
g∆t2ij).

(3)

∆Rij ,∆vij , and ∆tij are defined as the preintegrated mea-
surement of the rotation, velocity, and translation, respec-
tively. All symbols here are denoted in the frame W , so we
drop superscript in the equation for brevity. Noting that the
measurements are independent to state i and state j, we do
not need to recalculate the preintegrated measurement when
optimizing the state. The preintegrated measurement is the
constraint edge in the pose graph. We also estimate the bias

from the optimization and update the bias to get a more
accurate result.

C. LiDAR Localization

We use multi-beam LiDAR to obtain a 3D environment
point cloud. There are many algorithms dealing with point
cloud registration; iterative closest point (ICP) and NDT are
the famous algorithms among them. However, these algorithms
cannot perform in real time. To fully exploit the ground vehicle
characteristics, we first divide the point cloud according to
whether or not the point belongs to the ground plane. The
road plane is segmented using the approach for road curb
detection [22]. Second, we apply the edge-surface feature-
based registration [7]. The local convex is defined to calculate
the local smoothness on each beam of the LiDAR points. A
larger value means that the local surface is sharper. The edge
and surface are selected by the criterion of the local convex.
The point cloud matching is a process of minimizing the point-
line distance dL and point-plane distance dP . The problem is
stated as follows:

T = arg min
T

∑
i∈E

dLi +
∑
i∈S

dPi +
∑
i∈G

dPi, (4)

where E ,S ,G represent the sets of edge points, surface
points, and ground points, respectively, and T is the pose of the
vehicle, also known as the transformation from the body frame
B to world frameW . The pose T can be calculated by solving
the non-linear least square problem above. The LiDAR con-
straint T and pre-integrated measurement ∆Rij ,∆vij ,∆tij
are coupled to get the optimized odometry of the LiDAR-
inertial system output.

IV. GPS OPTIMIZATION

A. GPS Conversion

The obtained GPS data is latitude, longitude, and altitude
(LLA). The measurement needs to be converted to the local
coordinate before optimization. The conversion consists of two
steps: from LLA to Earth-centered Earth-fixed (ECEF), and
from ECEF to local ENU. The conversion from LLA to ECEF
is as follows:

x = (R+ h) cosφ cosλ

y = (R+ h cosφ sinλ

z = (
b2

a2
R+ h) sinφ,

(5)

where φ denotes latitude, λ represents longitude, h denotes
altitude, and R is the Earth’s radius defined as:

R =
a2√

(a cosφ)2 + (b sinφ)2
, (6)

where a and b is the equatorial radius and polar radius,
respectively.



Ti

Ti+1

T(t)

Ti+2

Ti+3

Fig. 3. Cubic B-Spline in SE3

The origin of the local ENU coordinate is the position of the
start point. The conversion from ECEF to ENU is as follows:en
u

 =

 − sinλ cosλ 0
− cosλ sinφ − sinλ sinφ cosλ
cosλ cosφ sinλ cosφ sinφ

x− x0

y − y0

z − z0

 .

(7)
B. GPS Constraint

Since low-cost GPS does not provide a heading message,
we only have knowledge of the position of the GPS frame G.
To eliminate the influence of the obscure rotation, we install
the GPS antenna on the top of the IMU. P represents the set
of indexes of the synchronized pairs of the GPS position and
IMU pose, t denotes the translation component in [R|t], and
p represents the position in the local ENU coordinate. We aim
at minimizing the following residual function:∑

i∈P

||ti − pi||2. (8)

As shown in Fig. 2(b), the GPS constraint is an unary hyper-
edge, which is connected to the IMU pose node. Here, we
keep a sliding window of recent poses to get a refined result.
The optimization considers the constraint of the preintegrated
IMU measurement.

V. 3D CONTINUOUS MAPPING

From the previous section, we can obtain a refined odom-
etry, which is constrained by the LiDAR, an IMU, and a
GPS. In this section, we undistort the point cloud and build
a high-definition reusable map. Please note that the multi-
beam LiDAR sensor is working continuously, even though we
usually obtain discrete separated frames of the point cloud
from the LiDAR driver. In other words, the points with
different azimuths have different time stamps. Thus, we need
to undistort each frame of the point cloud to get the original
scan result. For instance, the timestamp of the beginning point
and ending point in a single LiDAR scan have a difference of
the period ∆t.

To undistort each point cloud frame, we need to spline
between the discrete odometry. We apply the uniform cubic B-
Splines in SE3 according to [13] and [14]. As can be seen in
Fig. 3, we need four transformation matrices T i,T i+1,T i+2,
and T i+3 to interpolate a smooth state T (t). We have a basis
matrix M̃:

M̃ =


6 5 1 0
0 3 3 0
0 −3 3 0
0 1 −2 1

 , (9)

and the cumulative basis function in matrix form is

(a) (b)

Fig. 4. A comparison (a) a distorted point cloud and (b) undistorted point
cloud. Table I

Experimental results of the two datasets.

Dataset max (m) min (m) mean (m) SD (m)

industrial zone 0.9462 0.0061 0.1421 0.0808
Harbor 8.7316 0.0027 2.8068 2.1302

B̃ =
1

3!

[
1 u u2 u3

]
M̃

=
1

3!


6

5 + 3u− 3u2 + u3

1 + 3u + 3u2 − 2u3

u3


T

,

u =
t− ti+1

∆t
, u ∈ [0, 1),

(10)

where ∆t is the time interval between the adjacent transforma-
tions, and ti+1 is the timestamp of the (i+1)-th transformation.
We assume that the angular velocity stays constant and the
acceleration is zero during the interval. Then, we can define
the following equation:

T (t) = exp(B̃0,4 log(T i))

3∏
k=1

exp(B̃k,4 log(T i+k−1
−1T i+k))

= exp(log(T i)) exp

(
1

6
(t + 3u− 3u2 + u3) log(T ii+1)

)
exp

(
1

6
(1 + 3u + 3u2 − 2u3) log(T i+1i+2)

)
exp

(
1

6
u3 log(T i+2i+3)

)
.

(11)
The spline T (t) is used to undistort the points in each frame.
As shown in Fig. 4, the original point cloud shown in Fig. 4(a)
is refined after the undistortion and it becomes the point
cloud shown in Fig. 4(b). Then, the undistorted point cloud
is superimposed onto the map. The map point cloud and the
origin of the map coordinate are saved for the purpose of reuse.
After vehicle reboot, the system will load the pose graph and
point cloud map. Along with the running of the vehicle, the
new nodes and edge will be added to the pose graph. The joint
optimization will merge the new and old maps.

VI. EXPERIMENTAL RESULTS

Our vehicle was equipped with a Velodyne VLP-16 LiDAR
sensor, a Ublox GYGPSV1 NEO-M8N GPS module, and an
LPMS-ME1 IMU module. The LiDAR sensor has 16 channels
of laser scanners and can provide a 3D point cloud at 10 Hz.
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Fig. 5. Experimental results of the industrial zone dataset: (a) satellite view;
(b) created map; (c) trajectory comparison.

The GPS module can provide data at 1 Hz, and the IMU
can provide data at up to 400 Hz. We also utilized a highly
precise GNSS (NovAtel 718d) to provide the ground truth
with our system. The computing platform was designed based
on an NUC (i7-7567U@3.50GHz, 16GB RAM) and it was
assembled within the car. We implemented our algorithm in
C++ under the framework of Robot Operating System (ROS).
Our testing sites include an industrial zone and a wide harbor.
Our experimental results are shown in Table I, where SD
refers to standard deviation. The next subsections detail the
experimental results of the industrial zone dataset and harbor
dataset, respectively.

A. Industrial Zone Test

Firstly, we tested our algorithm in an industrial zone, where
the surroundings are full of trees and buildings in which GPS
cannot perform well. We use a GNSS/INS to provide precise
ground truth with centimeter accuracy. The total driving dis-
tance is about 1.1 km.

The experimental results are shown in Fig. 5. The red
line represents the AV trajectory provided by our low-cost
GPS, and the green line represents the trajectory ground truth.
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Fig. 6. Experimental results of the harbor dataset: (a) satellite view; (b)
created map; (c) trajectory comparison.

Fig. 5(c) shows that our method (blue) outperforms LeGO-
LOAM (purple). It is worthy noting that there is a huge
deviation in the LeGO-LOAM trajectory at around (-20, 150).
The reason is that a large truck is passing nearby at that
time and LeGO-LOAM misaligns the point cloud due to the
dynamic object (truck). In contrast, our method uses GPS to
constrain the final odometry and provide a better trajectory,
which looks very similar to the ground-truth trajectory. The
mean error is only about 0.14 m.

B. Harbor Test

In addition, we also tested our algorithm in a wide harbor,
where there are few obstructions in the area and our GPS
works very well. In such a testing site, our LiDAR can barely
find useful geometry features, such as edges and surfaces.
As discussed in the previous subsection, LeGO-LOAM jumps
suddenly because of the point cloud misalignment, while our
method is able to trace the ground truth. This is because the
GPS data plays an important role in the open area.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a robust and novel state estimate
system for AVs. Our approach can provide reliable real-time



odometry with the support of LiDAR, an IMU, and a low-
cost GPS. The proposed system also has features such as
initialization, relocalization, map storage and merging, failure
detection and recovery, and pose graph optimization. Our
system achieved very good performance on public datasets,
which were collected in a harbor and a industrial zone.
Additionally, the reusable map can save many resources for
online localization. The most practical contribution of the work
is the use of a low-cost GPS instead of RTKs, which can also
decrease the cost of an AV.

Although our system can be used in both broad and narrow
environments with the use of both GPS and LiDAR, it needs
to be improved to adapt to more complex environments.
Furthermore, point cloud feature extraction also needs to be
refined to gain a better feature association. While the system
reduces the AV sensor cost without reducing the performance,
the system robustness needs further improvement. Future work
will include designing a GPS-aided stereo odometry system
based on our previously published disparity estimation algo-
rithm [31].
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