
4386 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 4, NO. 4, OCTOBER 2019

Self-Supervised Drivable Area and Road Anomaly
Segmentation Using RGB-D Data

For Robotic Wheelchairs
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Abstract—The segmentation of drivable areas and road anoma-
lies are critical capabilities to achieve autonomous navigation for
robotic wheelchairs. The recent progress of semantic segmentation
using deep learning techniques has presented effective results.
However, the acquisition of large-scale datasets with hand-labeled
ground truth is time-consuming and labor-intensive, making the
deep learning-based methods often hard to implement in prac-
tice. We contribute to the solution of this problem for the task
of drivable area and road anomaly segmentation by proposing a
self-supervised learning approach. We develop a pipeline that can
automatically generate segmentation labels for drivable areas and
road anomalies. Then, we train RGB-D data-based semantic seg-
mentation neural networks and get predicted labels. Experimental
results show that our proposed automatic labeling pipeline achieves
an impressive speed-up compared to manual labeling. In addition,
our proposed self-supervised approach exhibits more robust and
accurate results than the state-of-the-art traditional algorithms as
well as the state-of-the-art self-supervised algorithms.

Index Terms—Semantic scene understanding, deep learning in
robotics and automation, RGB-D perception.

I. INTRODUCTION

ROBOTIC wheelchairs are designed to improve the life
quality of the disabled or elderly people by increasing

their mobility. To this end, autonomous navigation has been
intensively studied and become an essential capability for
robotic wheelchairs. The segmentation of drivable areas and
road anomalies refers to pixel-wisely identifying the areas and
anomalies in images. It is a crucial component for autonomous
navigation. Without correctly segmenting drivable areas and
road anomalies, robotic wheelchairs could bump or even roll
over when passing through road anomalies, which may cause
injuries to human riders. In this letter, we define the drivable
area as the area where robotic wheelchairs can pass through

Manuscript received May 23, 2019; accepted July 25, 2019. Date of publica-
tion August 2, 2019; date of current version August 15, 2019. This letter was
recommended for publication by Associate Editor P. Tokekar and Editor D. Popa
upon evaluation of the reviewers’ comments. This work was supported in part
by the National Natural Science Foundation of China under Grant U1713211,
and in part by the Research Grant Council of Hong Kong SAR Government,
China, under Project 11210017 and 21202816. (Corresponding author: Ming
Liu.)

The authors are with the Department of Electronic and Computer Engineering,
The Hong Kong University of Science and Technology, Clear Water Bay,
Kowloon, Hong Kong (e-mail: hwangdf@ust.hk; sun.yuxiang@outlook.com,
eeyxsun@ust.hk; eelium@ust.hk).

Digital Object Identifier 10.1109/LRA.2019.2932874

Fig. 1. The robotic wheelchair used in this work. It is equipped with an Intel
Realsense D415 RGB-D camera to collect data and a Mini PC to process data.

regardless of their sizes, while the road anomaly is defined
as the area with the height larger than 5 cm from the surface
of the drivable area. The segmentation of drivable areas and
road anomalies could be addressed using semantic segmentation
techniques.

RGB-D cameras, such as Kinect [1], are visual sensors that
can stream RGB and depth images at the same time [2]–[4].
We use an RGB-D camera for the segmentation of drivable
areas and road anomalies in this letter. The reason why we
use RGB-D camera is that the depth difference between road
anomalies and drivable areas could be useful to distinguish them.
Recent development of deep learning techniques has brought
significant improvements on the semantic segmentation using
RGB-D cameras [5]–[7]. In order to train a deep neural network,
we usually need a large-scale dataset with hand-labeled ground
truth. However, generating such a dataset is time-consuming and
labor-intensive. In order to provide a solution for the excessive
consumption of time and labor for manual labeling, we present
a self-supervised approach to segment drivable areas and road
anomalies for robotic wheelchairs with an Intel Realsense D415
RGB-D camera. Fig. 1 shows our robotic wheelchair, RGB-D
camera and mini PC. The Intel Realsense D415 is an active stereo
camera that estimates distances with emitted infrared lights.

Fig. 2 illustrates the overview of our proposed self-supervised
approach. We firstly develop a pipeline named Self-Supervised
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Fig. 2. The overview of our proposed self-supervised approach for segmenting
drivable areas and road anomalies. We firstly use our proposed SSLG to generate
self-supervised labels (top), which are then used to train the RGB-D data-
based semantic segmentation neural network. At runtime, a robotic wheelchair
equipped with an RGB-D camera can perform on-line segmentation of drivable
areas and road anomalies (bottom). The figure is best viewed in color.

Label Generator (SSLG) to automatically label drivable areas
and road anomalies. Then, we use the segmentation labels gen-
erated by the SSLG to train several RGB-D data-based semantic
segmentation neural networks. Experimental results show that
although the segmentation labels generated by the SSLG present
mis-labelings, the results of our proposed self-supervised ap-
proach still outperforms the state-of-the-art traditional algo-
rithms and the state-of-the-art self-supervised algorithms. The
contributions of this letter are summarized as follows:

1) We propose a self-supervised approach to segment driv-
able areas and road anomalies for robotic wheelchairs.

2) We develop a pipeline to automatically label drivable areas
and road anomalies using RGB-D images.

3) We construct an RGB-D dataset,1 which covers 30 com-
mon scenes where robotic wheelchairs usually work.

II. RELATED WORK

A. Drivable Area Segmentation

Labayrade et al. [8] proposed an algorithm that converted
the drivable area segmentation problem into a straight line
detection problem. Following [8], some improvements [9]–[11]
were developed to enhance the robustness and accuracy. In recent
years, some researchers have tried to solve this segmentation
problem from other perspectives. For example, Ozgunalp et al.
[12] proposed to use the estimated planar patches and patch
orientations to reduce the impact of outliers. Liu et al. [13]
proposed an approach to fuse the information of light detection
and ranging (LIDAR) and vision data, respectively.

1https://github.com/hlwang1124/wheelchair-dataset.git

B. Road Anomaly Segmentation

Early approaches of road anomaly segmentation mainly
adopted traditional computer vision algorithms with handcrafted
features. Cong et al. [14] designed a feature based on the depth
confidence analysis and multiple cues fusion. Lou et al. [15]
proposed an approach combining both regional stability and
saliency for small road anomaly segmentation.

With the development of deep learning, many work used deep
neural networks to segment road anomalies. Peng et al. [16]
used a deep neural network to extract features from RGB-D
images and fused these features in three levels to generate
the predicted result. Chen et al. [17] proposed a multi-scale
multi-path fusion network with cross-modal interactions, which
could explore deep connections between RGB images and depth
images. There also exist some RGB-D data-based semantic
segmentation neural networks that fuse RGB and depth data
together such as FuseNet [5] and Depth-aware CNN [6], which
can achieve impressive performance. However, these methods
rely on hand-labeled ground truth, which would become difficult
to implement when there is no sufficient training dataset. Our
proposed SSLG can automatically label drivable areas and road
anomalies with RGB-D images, which greatly reduces the time
and labor for manual labeling.

C. Automatic Labeling

Automatic labeling aims to generate labeling data automati-
cally or in an unsupervised way without hand-labeled training
data. Barnes et al. [18] proposed an approach to generate training
data for the segmentation problem of path proposals by exploit-
ing the information of odometry and obstacle sensing. Mayr
et al. [19] designed a pipeline to automatically generate training
data for the segmentation problem of drivable areas. However,
neither of these two approaches can generate the label of drivable
areas and road anomalies simultaneously.

With the development of graphic rendering engines, some
researchers utilized the data from real-world environments to
construct simulation environments, where it is effortless to ac-
quire segmentation labels. Gaidon et al. [20] proposed a real-
to-virtual world cloning approach to generate photo-realistic
simulation environments. Xia et al. [21] proposed Gibson Envi-
ronment for developing real-world perception for active agents.
However, there is a certain gap between the data collected
in simulation environments and in real-world environments.
For example, the depth images collected in simulation envi-
ronments are very dense, but the actual depth images col-
lected by RGB-D cameras have some invalid pixels. Besides,
these simulation environments cannot cover the common in-
door and outdoor scenes where robotic wheelchairs usually
work and the road anomalies that robotic wheelchairs may
encounter in real environments. Furthermore, in order to con-
struct such a photo-realistic simulation environment for robotic
wheelchairs, either large amounts of paired data for target-
source domains or physical measurements of important ob-
jects in the scene are needed, which is time-consuming and
labor-intensive.
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Fig. 3. The overview of our proposed SSLG, which consists of (a) Input of RGB-D images, (b) Processing pipeline of RGB-D images and (c) Output of
self-supervised labels. (b) is composed of RGB Processing Pipeline shown in the orange box, Depth Processing Pipeline shown in the green box and (VII) Final
Segmentation Label Generator shown in the blue lines. The RGB Processing Pipeline consists of (I) Original RGB Anomaly Map Generator and (II) Generation
of final RGB anomaly maps. The Depth Processing Pipeline consists of (III) Computation of original v-disparity maps, (IV) Filtering of original v-disparity maps,
(V) Extraction of the drivable area and original depth anomaly maps as well as (VI) Generation of final depth anomaly maps. The figure is best viewed in color.

D. Self-Supervised Semantic Segmentation

Zeng et al. [22] proposed a self-supervised approach to
semantic segmentation by utilizing the known background
information. However, their approach is only suitable for single
confined scenes with objects that can be moved. In common
scenes where robotic wheelchairs usually work, there are
many anomalies (e.g., street lamps) that can not be moved.
Besides, some researchers [23]–[25] designed proxy tasks (e.g.,
image colorization) to extract meaningful representations for
self-supervised learning. Recently, Zhan et al. [26] presented
a mix-and-match tuning approach for self-supervised semantic
segmentation based on the existed proxy tasks.

III. PROPOSED METHOD

A. Dataset Construction

Note that we divide the common road anomalies for robotic
wheelchairs into two categories: large road anomalies with a
height larger than 15 cm from the surface of the drivable area;
small road anomalies with a height between 5 cm to 15 cm from
the surface of the drivable area. To the best of our knowledge,
this is the first dataset that exhibit common road anomalies for
robotic wheelchairs.

We use the Realsense camera to collect data involving both
large and small road anomalies for the segmentation problem
of robotic wheelchairs. Our dataset covers 30 common scenes
where robotic wheelchairs usually work (e.g., sidewalks and
squares) and 18 different kinds of road anomalies that robotic
wheelchairs may encounter in real environments. Fig. 4 shows
the number of finely annotated pixels for every kind of road
anomaly in our dataset.

There are a total of 3896 RGB-D images with hand-labeled
ground truth for segmentation in our dataset, which are with the
image resolution of 720 × 1280 pixels. It should be noted that
our proposed self-supervised approach does not require hand-
labeled ground truth. The hand-labeled ground truth is only used
for the evaluation of our proposed self-supervised approach. We
provide two kinds of depth data in our dataset, the original depth
data and the normalized depth data. The normalized depth data is
normalized to the range of 0 to 255. Note that the distance mea-
surement range for the Realsense RGB-D camera is up to 10 m.
Therefore, we remove the pixels with the distance larger than 10
m and label them with the zero value. As for the hand-labeled
ground truth, we label the unknown area with 0, the drivable area
with 1 and road anomalies with 2. The area except the drivable
area and road anomalies is defined as the unknown area since it
is not clear whether or not robotic wheelchairs can pass through
it such as the area beyond the range of the Realsense camera.

B. Self-Supervised Label Generator

Our proposed Self-Supervised Label Generator (SSLG) is
designed to generate self-supervised labels of drivable areas
and road anomalies automatically. The overview of the SSLG is
shown in Fig. 3.

We firstly elaborate the depth processing pipeline inspired
by [8]. As derived in [8], for an RGB-D camera consisting
of two cameras, the projection of the real world point P with
coordinates of (X,Y, Z) on the image coordinates (U, V ) can
be computed by (1)–(3):

Ul = ul − u0 = f
X + b/2

Y sin θ + Z cos θ
(1)
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Fig. 4. Number of finely annotated pixels (y-axis) and their associated cate-
gories (x-axis).

Ur = ur − u0 = f
X − b/2

Y sin θ + Z cos θ
(2)

V = v − v0 = f
Y cos θ − Z sin θ

Y sin θ + Z cos θ
(3)

where b is the distance between the optical centers of two
cameras; f is the focal length; (u0, v0) is the center of the image
plane; ul, ur are the projection of the point P on two cameras,
respectively; θ is the pitch angle with respect to the ground plane.
Then, the disparity Δ can be calculated by (4):

Δ = ul − ur = f
b

Y sin θ + Z cos θ
(4)

Horizontal planes in the real world coordinates can be repre-
sented by Y = m, which leads to:

Δ
m

b
= V cos θ + f sin θ (5)

Similarly, vertical planes in the real world coordinates can be
represented by Z = n, which leads to:

Δ
n

b
= V sin θ + f cos θ (6)

Equation (5) and (6) show that horizontal planes and vertical
planes in the real world coordinates can be projected as straight
lines in the v-disparity map. Actually, [8] proposed that this
conclusion applies to all planes. The intuition behind the depth
processing pipeline is that drivable areas can be regarded as
planes in most cases and road anomalies can also be regarded as
planes approximately. Then, the segmentation problem can be
converted into a straight line extraction problem.

The original v-disparity map can be obtained by computing
the depth histogram of each row in the depth image (Fig. 3 III).
Since the computed v-disparity map often contains much noise,
the steerable filter with the second derivatives of Gaussian as
the basis function [9] is applied to filter the original v-disparity
map (Fig. 3 IV). Then, the Hough Transform algorithm [27] is
applied to extract straight lines in the filtered v-disparity map
(Fig. 3 IV). Gao et al. [9] concluded that the drivable area is
dominant in v-disparity maps; the straight line with the smallest
disparity is the projection of the infinity plane; the remaining
straight lines except the two straight lines mentioned above are

Algorithm 1: Original RGB Anomaly Map Generator.
Input: L, h, w, σs.
Output: Ro.

1. σ = min(h,w)/σs

2. initialize Lω with three channels (lω, aω, bω)
3. construct a Gaussian kernel G with the size 3σ × 3σ

and the standard deviation σ
4. Lω = G(L)
5. Ro = ‖L − Lω‖2

marked as road anomalies. According to these conclusions, we
firstly filter out the straight lines representing road anomalies
with a height smaller than 5 cm from the surface of the drivable
area according to their lengths. Then, it is easy to find that in
the filtered v-disparity map, straight line No. 1, No. 2 and No. 3
represent the drivable area, the road anomaly and the infinity
plane, respectively. After that, we extract the drivable area MD

and the original depth anomaly map Do according to the straight
line detection results (Fig. 3 V).

However, the original depth anomaly map lacks robustness
and accuracy because the straight lines representing small road
anomalies are too short and easy to be filtered out together with
the noise. For instance, there are three road anomalies in the
example (Fig. 3), but there is only one straight line representing
road anomalies in the filtered v-disparity map and thus one road
anomaly detected in the original depth anomaly map. The other
two small road anomalies (i.e., the brick and the road sign) are
filtered out together with the noise. In order to solve this problem,
we utilize the drivable area that we have already generated.
We can find that there are some holes inside the drivable area,
which contain the missing road anomalies in the original depth
anomaly map. Therefore, we extract holes in the drivable area
and then combine the hole detection results with the original
depth anomaly map to generate the final depth anomaly map
Df , which is further normalized to the range [0, 1] (Fig. 3 VI).
Although this method will bring some noise to the depth anomaly
map, it greatly increases the detection rate of road anomalies to
ensure the safety of the riders and we will correct it again with
the information of RGB images.

Now we elaborate the RGB image processing pipeline in-
spired by [15]. The intuition behind the RGB processing pipeline
is that the areas with different colors from surrounding areas
are often marked as road anomalies. Based on this principle,
we design an original RGB anomaly map generator (Fig. 3 I),
which is described in Algorithm 1. LetL denote the image in the
Lab color space transformed from the RGB image, and h and w
denote the width and the height of the RGB image, respectively.
We generate the original RGB anomaly map Ro by computing
the difference between the Lab color vector of each pixel and
its Gaussian blurred result. In order to suppress the pattern of
the drivable area, we choose a large filter scale for the Gaussian
kernel to blur each channel of the Lab color space. The size of
the kernel is 3σ × 3σ with the standard deviation σ and σs is
chosen to be 12 to control the strength of weighting.

However, the original RGB anomaly map lacks robustness
and accuracy because of the interference outside the drivable
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Fig. 5. The comparison of the segmentation results between GT (manual labels), SSLG labels, FSL (FuseNet trained on the SSLG labels), DSL (Depth-aware
CNN trained on the SSLG labels), RSL (RTFNet trained on the SSLG labels), SSL (SegNet trained on the SSLG labels with the input of only RGB images) and
MaM (Mix-and-Match tuning for self-supervised semantic segmentation), where the blue area refers to the unknown area, the green area refers to the drivable area
and the red area refers to road anomalies. The figure is best viewed in color.

area. In order to solve this problem, we utilize the drivable area
that we have already generated to filter out the noise outside the
drivable area (Fig. 3 II). After normalized to the range [0, 1], the
final RGB anomaly map Rf is generated.

The last step of our proposed SSLG is to combine two anomaly
maps and the drivable area to generate the self-supervised
label. We design a final segmentation label generator (Fig. 3
VII), which is described in Algorithm 2. As for road anoma-
lies, we firstly generate the final anomaly map MA according
to (7):

MA = αRf + (1− α)Df (7)

Then, we set a threshold κ and the area in the final anomaly map
where the value is greater than κ is marked as road anomalies
in the self-supervised label. In our case, we set α to 0.5 and κ
to 0.3. The drivable area in the self-supervised label is the same
as the drivable area MD, and the rest area except drivable areas
and road anomalies marked above is labeled as the unknown
area. Finally the self-supervised label ML is generated, which
is used for training RGB-D data-based semantic segmentation
neural networks as described in the following sections.

C. RGB-D Data-Based Semantic Segmentation
Neural Networks

We use our proposed SSLG to generate self-supervised labels
for a total of 3896 images in our constructed dataset, which can
then be utilized to train RGB-D data-based semantic segmenta-
tion neural networks. Here, we use three off-the-shelf RGB-D
data-based semantic segmentation neural networks, FuseNet [5],
Depth-aware CNN [6] and RTFNet [28]. Note that RTFNet
is initially designed for RGB and thermal data fusion, but
we find that it generalizes well to RGB-D data. We also use
one off-the-shelf RGB data-based semantic segmentation neural
network SegNet [29] for ablation study. The total 3896 images
are split into the training set, the validation set and the test set
that contains 2726, 585 and 585 images, respectively. Each set
contains different scenes and anomalies from the other two sets.

Each network is trained on the training set with the SSLG labels.
Note that we also train each network on the training set with
manual labels for the evaluation of our proposed self-supervised
approach.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of the segmenta-
tion results on our constructed dataset and compare our proposed
self-supervised approach with other state-of-the-art methods.

A. Segmentation Results

As aforementioned, FuseNet, Depth-aware CNN, RTFNet
and SegNet are all trained on the training set in our constructed
dataset with the SSLG labels and manual labels, respectively. For
all networks, the stochastic gradient descent (SGD) and a base
learning rate of 0.001 is used. Note that the resolution of input
images is downsampled to 480 × 640. Each network is trained
for 400 epochs and then selected the best model according
to the performance of the validation set. After obtaining the
best models, we utilize the manual labels of 585 images in
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TABLE I
THE COMPARISON OF THE SEGMENTATION RESULTS (%) BETWEEN SSLG LABELS, FSL (FUSENET TRAINED ON THE SSLG LABELS), FML (FUSENET TRAINED

ON THE MANUAL LABELS), DSL (DEPTH-AWARE CNN TRAINED ON THE SSLG LABELS), DML (DEPTH-AWARE CNN TRAINED ON THE MANUAL LABELS), RSL
(RTFNET TRAINED ON THE SSLG LABELS), DML (RTFNET TRAINED ON THE MANUAL LABELS), SSL (SEGNET TRAINED ON THE SSLG LABELS WITH THE

INPUT OF ONLY RGB IMAGES), SML (SEGNET TRAINED ON THE MANUAL LABELS WITH THE INPUT OF ONLY RGB IMAGES) AND MAM (MIX-AND-MATCH

TUNING FOR SELF-SUPERVISED SEMANTIC SEGMENTATION). BEST RESULTS WITHOUT USING MANUAL LABELS ARE HIGHLIGHTED IN BOLD FONT

our constructed test set to evaluate the performance of these
models. Fig. 5 shows the comparison of the segmentation results
for three images. As aforementioned, we do not take the size
of the robotic wheelchair into consideration, because planning
algorithms would use this information to determine whether the
vehicle can pass through. From the figure, we can see that the
SSLG labels miss some road anomalies, while three RGB-D net-
works trained on the SSLG labels can detect all road anomalies,
which demonstrates that our proposed self-supervised approach
can learn the features of road anomalies and drivable areas from
the noisy SSLG labels. These results are also backed up by the
quantitative evaluation. Table I presents the evaluation results
for three segmentation classes, the unknown area, the drivable
area and road anomalies, where Pre, Rec and IoU are short for
precision, recall and intersection-over-union, respectively. The
“All” column shows the mean of precision, recall and IoU of
all three segmentation classes, respectively. It is obvious that
three RGB-D networks trained on the SSLG labels present
certain improvements compared to the SSLG labels trained on
the SSLG labels in the unknown area and the drivable area. As
for road anomalies, three RGB-D networks trained on the SSLG
labels present significant improvements compared to the SSLG
labels, which leads to the obvious mean IoU improvement of
16.95%, 15.34% and 19.93% in the “All” column for FuseNet,
Depth-aware CNN and RTFNet respectively. The reason why
our proposed self-supervised approach exhibits more robust and
accurate results than the SSLG labels is that our proposed SSLG
is based on the intuition that drivable areas and road anomalies
can be regarded as planes approximately, which is deviated
slightly from the real environments. However, our proposed
self-supervised approach is capable to implicitly learn useful
and effective features of drivable areas and road anomalies from
huge amounts of contradicting labels.

As expected, three RGB-D networks present better perfor-
mance when trained on the manual labels. However, it re-
quires much time and intensive labor to create a dataset with
manually-labeled ground truth. According to the experiments,
our proposed SSLG only takes 2 seconds to label one image.
Although our proposed segmentation method introduces more

Fig. 6. The comparison of drivable area segmentation results between GT
(manual labels), RSL (RTFNet trained on the SSLG labels) and EVD [11],
where the green area refers to the drivable area and the blue area refers to other
areas. The figure is best viewed in color.

errors, it is still remarkable considering the impressive speed-up
compared to manual labeling with the achievable results.

B. Ablation Study

As aforementioned, we use one off-the-shelf RGB data-based
semantic segmentation neural network SegNet [29] trained on
the SSLG labels (SSL) for ablation study. Fig. 5 shows the
comparison of the segmentation results for three images. From
the figure, we can see that three RGB-D networks trained on the
SSLG labels present a better performance than SegNet trained on
the SSLG labels. The quantitative results shown in Table I also
confirms our conclusion that compared to SSL, our proposed
FSL has a mean precision improvement of 10.10% and our
proposed RSL has a recall improvement of 13.09% as well as
an IoU improvement of 11.40%. The reason is that the depth
information of road anomalies and drivable ares are really useful
to distinguish them.



4392 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 4, NO. 4, OCTOBER 2019

Fig. 7. The comparison of road anomaly segmentation results between NLPR [16], FSL (FuseNet trained on the SSLG labels), DSL (Depth-aware CNN trained
on the SSLG labels) and RSL (RTFNet trained on the SSLG labels).

TABLE II
THE COMPARISON OF DRIVABLE AREA SEGMENTATION RESULTS (%)

BETWEEN EVD [11], FSL (FUSENET TRAINED ON THE SSLG LABELS),
DSL (DEPTH-AWARE CNN TRAINED ON THE SSLG LABELS) AND RSL

(RTFNET TRAINED ON THE SSLG LABELS). BEST RESULTS

ARE HIGHLIGHTED IN BOLD FONT

C. Comparison With Other State-of-the-Art Methods

In order to demonstrate the robustness and accuracy of our
proposed self-supervised approach, we compare its performance
with other state-of-the-art methods.

1) Self-Supervised Semantic Segmentation: Zhan et al. [26]
presented a mix-and-match tuning approach (MaM), a state-
of-the-art approach for self-supervised semantic segmentation.
We test this approach on the 585 images in our constructed
test set and compare its performance with FuseNet trained
on the SSLG labels (FSL), Depth-aware CNN trained on the
SSLG labels (DSL) and RTFNet trained on the SSLG labels
(RSL). Fig. 5 presents the segmentation results of three im-
ages, from which we can see that our proposed self-supervised
approach presents a great advantage over MaM. The quanti-
tative results shown in Table I also confirms our conclusion
that compared to MaM, our proposed FSL has a mean pre-
cision improvement of 6.03% and our proposed RSL has a
recall improvement of 5.38% as well as an IoU improvement
of 10.06%.

2) Drivable Area Segmentation: Yiruo et al. [11] proposed
EVD, a state-of-the-art method of the drivable area segmentation
based on the enhanced v-disparity map. We use this method
on the 585 images in our constructed test set and compare its
performance with FuseNet trained on the SSLG labels (FSL)
and Depth-aware CNN trained on the SSLG labels (DSL). Fig. 6

TABLE III
THE COMPARISON OF ROAD ANOMALY SEGMENTATION RESULTS (%)

BETWEEN NLPR [16], FSL (FUSENET TRAINED ON THE SSLG LABELS),
DSL (DEPTH-AWARE CNN TRAINED ON THE SSLG LABELS) AND RSL

(RTFNET TRAINED ON THE SSLG LABELS). BEST RESULTS

ARE HIGHLIGHTED IN BOLD FONT

presents the segmentation results of three images, from which
we can see that our proposed self-supervised approach presents
a great advantage over EVD. The quantitative results shown in
Table II also confirms our conclusion that compared to EVD,
our proposed FSL has a precision improvement of 2.83% and
our proposed RSL has a recall improvement of 33.30% as well
as an IoU improvement of 30.50%.

3) Road Anomaly Segmentation: As for the problem of road
anomaly segmentation, we applied NLPR[16] on the 585 images
in our constructed test set. Then, we filter out the anomalies
segmentation results outside the drivable area by utilizing the
manual labels to ensure the fairness and rationality of the
comparison results. Fig. 7 presents the segmentation results
of three images, from which we can see that our proposed
self-supervised approach presents a great advantage over NLPR.
The quantitative results shown in Table III also confirms our
conclusion that compared to NLPR, our proposed DSL has a
recall improvement of 23.30% and our proposed FSL has a pre-
cision improvement of 31.95% as well as an IoU improvement
of 24.00%.

D. Limitations

In some cases, the RGB-D data-based semantic segmentation
neural networks fail to output stable and accurate segmentation
results, as illustrated in Fig. 8. This is because some depth images
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Fig. 8. Typical failure cases due to the noise in the depth image. The figure is
best viewed in color.

have much noise, which leads to the inaccurate SSLG labels and
thus the inaccurate segmentation results. This problem can be
solved by using high-quality RGB-D cameras.

V. CONCLUSIONS

In this letter, we presented a comprehensive study on the driv-
able area and road anomaly segmentation problem for robotic
wheelchairs. A self-supervised approach was proposed, which
contains an automatic labeling pipeline for drivable area and
road anomaly segmentation. Experimental results showed that
our proposed automatic labeling pipeline achieved an impressive
speed-up compared to manual labeling. In addition, our pro-
posed self-supervised approach exhibited more robust and accu-
rate results than the state-of-the-art traditional algorithms as well
as the state-of-the-art self-supervised algorithms. In our future
work, we plan to investigate our work with planning algorithms
for robotic wheelchairs to achieve autonomous navigation.
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