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Abstract—Foreground moving-object segmentation is a fun-
damental problem in many computer vision applications. As
a solution for foreground segmentation, background modelling
has been intensively studied over past years and many effective
algorithms have been developed. However, accurate foreground
segmentation is still a difficult problem. Currently, most of the
algorithms work solely within the color space, in which the
segmentation performance is prone to be degraded by a multitude
of challenges, such as illumination changes, shadows, automatic
camera adjustments and color camouflage. RGB-D cameras are
active visual sensors that provide depth measurements along with
color images. We present in this paper an innovative background
modelling method by using both the color and depth information
from an RGB-D camera. The proposed method is evaluated using
a public RGB-D dataset. Various experiments confirm that our
method is able to achieve superior performance compared with
existing well-known methods.

Note to Practitioners—This paper investigates background
modelling for foreground segmentation with active perception.
Recent RGB-D cameras that leverage the active perception
technology have advanced many computer vision algorithms. In
this paper, we develop a background modelling method to achieve
superior performance by using an RGB-D camera instead of a
color camera. Due to the use of the active sensing technology,
the proposed method is characterized by its robustness to
common challenges. Our method could be used for improving
existing infrastructures, such as visual surveillance systems for
parking spaces. Moreover, the simple design of our method
allows it to be easily deployed on various computing platforms,
which facilitates many practical applications that usually require
embedded computing devices. However, our method cannot run
real-timely at the current status. We believe that it can be further
improved using parallel programming techniques to meet the
real-time requirement.

Index Terms—Active Perception, Foreground Segmentation,
Background Modelling, RGB-D Camera.
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I. INTRODUCTION

SEGMENTING foreground moving objects from videos
on-line is a fundamental step in many computer vision

applications, such as motion tracking [1], obstacle avoidance
[2], visual localization [3]. As a solution for foreground seg-
mentation, background modelling has been intensively studied
over past decades [4]. It is also known as background subtrac-
tion in some literature. As the name suggests, the general idea
of background modelling is to pixel-wisely subtract the current
frame with the built background model. The subtraction here
refers to a kind of pixel-wise comparison. Foreground pixels
can be indicated by the comparison results.

Although many effective background modelling algorithms
have been developed [4], accurate foreground segmentation
is still a hard problem. The reason is typically that most of
the existing background modelling algorithms work within
the color space. The foreground segmentation performance is
prone to suffer from the common color-imagery challenges
such as illumination changes, automatic camera adjustments,
shadows and color camouflage [5]. The illumination changes
and automatic camera adjustments change the pixel values in
color images. Particularly, the automatic camera adjustments
comprise the white balance adjustments and exposure adjust-
ments. The shadows of moving objects cause artefacts in color
images. The color camouflage refers to that the color features
of moving objects are similar to those of the background
model. These challenges confuse the background modelling
and hence cause incorrect foreground segmentation.

Active perception generally refers to retrieving information
not as a passive receiver. It can be realized by integrating sen-
sors with physical actuators or intelligent control algorithms,
so the problem of active perception becomes the problem of
controlling strategies for data acquisition [6]. For instance, Liu
et al. [7] developed a reinforcement learning-based modality
selection algorithm to actively fuse multi-modal sensor infor-
mation for material perception. Active perception also com-
prises active sensing, with which sensors are able to retrieve
information by actively transmitting signals to the environment
and receiving the reflected signals [8]. Active sensors, such as
sonar, Lidar and RGB-D cameras, have been widely used in
many robotics and automation applications. For example, the
Simultaneous Localization and Mapping (SLAM) technology
aims to concurrently track a robot itself and reconstruct the
traversed environment in 2-D or 3-D models [9]. With Lidar
sensors, a robot is able to measure the distances from itself
to the surrounding landmarks, and estimate the poses with the
measurements.
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It is worth noting that the recently developed RGB-D
cameras, such as Intel Realsense [10], Microsoft Kinect [11]
and Asus Xtion [12], have completely changed the computer
vision world [13]. They are active visual sensors [14] which
not only get color-imagery information but also measure
distances with the actively projected infrared light [15]. Some
of them can work in both indoor and outdoor environments
[10]. The RGB-D cameras stream registered RGB and depth
images at the same time, which provides more information
than ordinary color cameras [16]. Thus, they are able to
bring opportunities to gain benefits for many computer vision
algorithms [17]. As the depth information provided by RGB-
D cameras is robust to the common color-imagery challenges,
we take this as the major advantage and propose a novel
background modelling method through the combination of
color and depth information. The major contributions of this
paper are summarized as follows:

1) We propose a single-frame initialization scheme just
using the first RGB-D frame for background modelling.

2) We develop a depth-based classifier for rough classifi-
cation and a color-based classifier for refinement.

3) We develop a trimap generation scheme based on mor-
phological operations to bridge the two classifiers.

The remainder of this paper is structured as follows. In
section II, related work has been reviewed. In section III,
we describe our method in detail. In section IV, experimental
results and discussions are presented. Conclusions and future
work are drawn in the last section.

II. RELATED WORK

Background modelling algorithms can be generally divided
into parametric methods and non-parametric methods accord-
ing to the mathematical form of the model. They can also be
categorized according to the used sensors, such as monocular
camera, stereo camera and RGB-D camera. We review some
selected algorithms in this section.

A. Parametric Algorithms

The parametric algorithms build a statistical model for each
pixel. Foreground can be determined by testing whether a
newly observed pixel fits in the statistical model. One of
the first parametric algorithms is the Single Gaussian (SG)
model proposed by Wren et al. [18]. It models the history of
pixel values in a single Gaussian distribution. However, the
unimodal Gaussian model cannot tackle dynamic background,
where the values of each pixel cannot be aggregated into
one group. To address this problem, Mixture of Gaussians
(MOG) [19] was employed to model the pixel values in
Gaussian mixture models. The history of intensity values of
each pixel is modelled in a weighted average of a number
of Gaussian distributions. Numerous enhancement algorithms
for MOG have been proposed to address various challenges
[20], however, the MOG algorithm requires tedious parameter
tunings. For instance, the number of Gaussians is advised to set
according to the variations of pixel values. In addition, large
number of Gaussians requires extensive computations, which
makes the algorithm impractical for real-time applications.

B. Non-parametric Algorithms

Instead of modelling the history of pixel values in paramet-
ric distributions, non-parametric algorithms directly maintain a
set of pixel samples as the background model. They are more
flexible than parametric algorithms, because the distribution of
pixel values does not necessarily follow a known parametric
form. Kernel Density Estimation (KDE) was firstly introduced
by Elgammal et al. [21] as a non-parametric approach in the
context of background modelling. The algorithm calculates
pixel-wise similarities using kernel functions between the
newly observed frame with the background model. Barnich
et al. [22] proposed a non-parametric algorithm called Visual
Background Extractor (ViBe). The main contribution of ViBe
is the first use of the random policy in background modelling.
The authors applied the random policy in ViBe in three
aspects. Firstly, the background model is initialized using
randomly selected neighbouring pixels, which provides a fast
initialization process just using one frame. Secondly, pixels
in the samples are randomly replaced during model update,
which ensures an exponential decaying lifespan. Lastly, newly
incorporated background pixels are diffused to replace ran-
domly selected neighbouring pixels, which ensures the spatial
consistency of the model. Hofmann et al. [23] proposed
the Pixel-Based Adaptive Segmenter (PBAS) for background
modelling. The PBAS algorithm adopts a similar random
policy as that of the ViBe algorithm. Different from ViBe,
the decision threshold for foreground determination and the
learning rate for background update are pixel based. They
are dynamically changed according to the proposed tuning
mechanisms.

C. Stereo Camera-based Algorithms

Before the advent of RGB-D cameras, stereo cameras were
the most popular depth visual sensors. Dense depth maps can
be computed using depth estimation algorithms with disparity
information provided by stereo cameras. Gordon et al. [24]
firstly adapted the traditional MOG algorithm using stereo
cameras. Each pixel was modelled using a Gaussian distri-
bution with the 4-channel RGB-D data. Recently, Fernandez-
Sanchez et al. [25] applied the codebook background mod-
elling algorithm with stereo cameras. They proposed an early
fusion method called Depth Extended Codebook (DECB)
by replacing the color channels with the depth channel. In
addition, they proposed a late fusion method combining the
results from the traditional codebook algorithm [26] and the
DECB algorithm. The major disadvantage for algorithms using
stereo cameras is the high dependence on the quality of the
disparity maps and the performance of the depth estimation
algorithms.

D. RGB-D Camera-based Algorithms

Compared with stereo cameras, RGB-D cameras were de-
veloped to provide high quality depth data directly from
the hardware. However, as RGB-D cameras become popular
just in recent years, research work on background modelling
using RGB-D cameras are very limited. Murgia et al. [27]
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directly extended the traditional codebook algorithm using
the 4-channel RGB-D data. Amamra et al. [28] integrated
the RGB-D data in the classical MOG algorithm and im-
plemented a GPU-accelerated version. These methods simply
apply the RGB-D data using traditional background modelling
algorithms without considering the noises of the depth data,
such as the no-measured depth (nmd) points, which usually
appear at object boundaries and flickered areas [29]. Camplani
et al. [30] proposed two pixel-wise classifiers based on color
and depth data respectively for background modelling. The
two classifiers were combined together to obtain foreground
segmentation results. They designed a combination scheme
by specially considering the nmd points. The combination
scheme gave higher weights to the color-based classifier at
areas where nmd points aggregated. The areas were assumed
to be object boundaries which were found using an edge
detection algorithm.

III. THE PROPOSED METHOD

A. Method Overview
The overview of our method is shown in Fig. 1. We

initialize the background model merely using the first RGB-D
point-cloud frame. Different from most background modelling
algorithms, the model we build is a 4-channel RGB-D point-
cloud model. In order to ensure a clean background model at
the beginning, we require that the first frame does not contain
any moving objects.

single-frame initialization

background model

background points in the rough results 

rough results

trimapmodel update

Fig. 1: The schematic overview of the proposed method. The
RGB-D image pairs in the left and right dashed boxes are the
first frame and a test frame, respectively. The black pixels in
the depth images indicate the nmd points. The right bottom
image shows the final refined segmentation result. The figure
is best viewed in color.

As shown in Fig. 1, we firstly develop the depth-based
classifier DΦ to roughly classify the pixels into foreground,
background and unknowns. Then, we devise a scheme to
generate a trimap based on morphological operations using
the rough classification results. Lastly, we develop the color-
based classifier CΦ based on the graph-cut [31] optimization
framework to refine the segmentation using the cues provided
by the trimap. The two classifiers are sequentially combined
and the trimap serves as a bridge between them.

B. Model Initialization
The background model is initialized using the first RGB-

D point-cloud frame. We devise a single-frame initialization

Algorithm 1: Background Model Initialization

Data: M, 0C, λ, w, h.
1 for m← 1 to w do
2 for n← 1 to h do
3 for i← 1 to λ do
4 p = R(m)
5 q = R(n)
6 Mi(m,n) = 0C(p, q)
7 end
8 end
9 end

scheme which is built on the observation that neighbouring
RGB-D points share close color and depth values. With
this scheme, the proposed method is able to segment the
foreground just starting from the second frame. Note that the
model we built is a type of non-parametric model. It comprises
a number of samples spatially populated from the first frame.

It is known that many background modelling algorithms
build the initial model using samples from a temporal distri-
bution in a bootstrap sequence. This is because pixel values
from the temporal distribution are natural descriptions for pixel
variations. Similar to the temporal distribution, we believe
that a spatial distribution from neighbouring pixels can also
well describe pixel variations. In this paper, we adopt the 8-
neighbourhood structure for model population. The number
of samples is determined by finding the optimal performance
through quantitative evaluations.

Algorithm 1 describes the model initialization scheme. Let
M denote the background model, and λ denote the number of
samples in the modelM. The points in the RGB-D point-cloud
frames can be indexed like images. We populateM using the
first point-cloud frame 0C. Let m and n denote the coordinates
for a point in a point-cloud frame, and let p and q denote the
coordinates of the randomly selected neighbouring point. As
aforementioned, we use the 8-neighbourhood structure; thus,
the value ranges for p and q are:

p ∈ {m,m+ 1,m− 1},
q ∈ {n, n+ 1, n− 1}.

(1)

We use w and h to represent the width and height of the
point-cloud frames. The function R(·) obtains a random value
from the value ranges of (1). Mi(m,n) represents the point
indexed at (m,n) from the sample i. 0C(p, q) represents the
point indexed at (p, q) from the current point-cloud frame 0C.
As we can see, the initialization process iteratively runs until
all the points in M have been populated with a randomly
selected neighbourhood.

C. Foreground Segmentation

1) The depth-based classifier: We develop the depth-based
classifier DΦ to roughly classify the pixels in a testing frame.
Firstly, we check whether the depth value of a given point
in the testing frame is an nmd point. The depth values in
the samples at this location are also examined. If the samples
at this location contain nmd point or the given point is an
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Algorithm 2: The depth-based classifier
Data: M, C, λ, w, h, θ, κ.

1 for m← 1 to w do
2 for n← 1 to h do
3 ωm,n = 0
4 if ϕ

[
D{C(m,n)}

]
then

5 ωm,n = −1
6 end
7 for i← 1 to λ do
8 if ϕ

[
D{Mi(m,n)}

]
then

9 ωm,n = −1
10 break
11 end
12 end
13 if ωm,n = 0 then
14 compute ωm,n using (2)
15 end
16 if ωm,n > κ then
17 label C(m,n) as background
18 else if 0 ≤ ωm,n ≤ κ then
19 label C(m,n) as foreground
20 else
21 label C(m,n) as unknown
22 end
23 end
24 end

nmd point, we label the given point as an unknown point.
If the point is not labelled as an unknown point, we then
compare the depth value of the given point with those samples
at the location. A variable ω is introduced here to measure
the similarity between the given point and the corresponding
samples:

ωm,n =

λ∑
i=1

H
{
θ − |D{C(m,n)} − D{Mi(m,n)}|

}
, (2)

where m and n are point indices, C represents the testing
point-cloud frame, D(·) is a function that retrieves the depth
value of a point, | · | represents the absolute value of the
difference, θ is a pre-defined threshold, H(·) is a step function
with values 1 and 0 for x ≥ 0 and x < 0 respectively, and
x here represents an argument for H(·). Larger non-negative
values of ωm,n indicate that the point C(m,n) is more close
to the samples. Finally, we classify the point according to the
value of ωm,n.

The pseudo-code for DΦ is presented in Algorithm 2. The
statements 4-12 encode the first step. The function ϕ(·) returns
true if the argument is an nmd point. The statements 4-6 check
whether the point C(m,n) is an nmd point. The statements
7-12 check whether there is an nmd point in the samples.
The statements 13-15 encode the second step. The algorithm
compares the point C(m,n) with the samples at the same
location if C(m,n) is not an nmd point and the samples do
not contain an nmd point. The statements 16-22 encode the last
step. The point C(m,n) is classified according to the value of
ωm,n. We introduce a non-negative determination threshold κ

eroded image

rough

results

trimap

foreground

background

unknowns

binary

image

dilated image

Fig. 2: The pipeline of the trimap generation process. The
rough results in the grey box represent the rough classification
results provided by DΦ. We firstly generate a binary image
from the results by painting the foreground as white and the
background and the unknowns as black. Then, we apply the
erosion and dilation algorithms on the binary image with the
unknowns to generate the trimap.

here for the closeness. We classify C(m,n) as background if
it is close to the samples. Specially if ωm,n = 0, we consider
C(m,n) as foreground. In this case, there is no point in the
samples that is considered close to C(m,n).

2) The generation of the trimap: The trimap serves as
the bridge between the two classifiers. It contains three
types of pixels: white pixels for foreground, black pixels
for background and grey pixels for unknowns. We generate
the trimap using the rough classification results from DΦ.
In our method, the color-based classifier CΦ is built on the
Conditional Random Field (CRF) [32] framework. The trimap
extracts the foreground and background with high confidence
from the rough classification results of DΦ. It provides hard
constraints, namely, the segmentation hints for CΦ to produce
the final precise segmentation results.

Fig. 2 displays the pipeline of the trimap generation pro-
cess. We firstly generate a binary image B using the rough
classification results of DΦ. In B, we paint the foreground
points as white pixels, and paint the background points and the
unknown points as black pixels. The binary image B is then
processed by erosion and dilation morphological algorithms
[33] separately. The morphological results and the unknown
points are combined to generate the trimap.

Let F(·) and B(·) denote the functions that retrieve the
foreground and background pixels from an image. Let I(·)
denote a set of pixels. Let E, D, G and T denote the eroded
image, the dilated image, the gap caused by the morphological
operations and the trimap, respectively. We generate the trimap
using the formula:

I(T) = F(E) ∪ B(D) ∪ I(G). (3)

In (3), F(E), B(D) and I(G) provide the foreground pixels,
the background pixels and the unknown pixels for the trimap.
They are coloured white, black and grey respectively.

The generation scheme used in (3) is mainly based on the
observation that the foreground in the eroded image is more
likely to be the true foreground and the background in the
dilated image is more likely to be the true background. We
find that the binary image contains false classifications that
are displayed as salt-and-pepper noise. The areas of salt and
pepper noise show false positives and false negatives of the
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(a) The depth image. (b) The binary image B. (c) The eroded image E. (d) The dilated image D. (e) The trimap T.

Fig. 3: Qualitative demonstration for the trimap generation. The size of the structure elements of the morphological operations
is 15. The figure is best viewed in color.

foreground segmentation. The erosion and dilation operations
can remove the salt noise and the pepper noise respectively
[34]. Thus, the foreground in the eroded image and the
background in the dilated image are more trustable compared
with those in the binary image B. By tuning the parameter θ
in (2), we find that the amount of salt-and-pepper noises tends
to increase with increased distances. We think this is caused
by the increased depth measurement errors with respective to
the increased distances. Larger depth measurement errors lead
to more salt-and-pepper noises. Thus, the proposed generation
scheme reduces the false labels in the trimap.

We use the white pixels in the eroded image and the black
pixels in the dilated image to form the foreground and the
background in the trimap, respectively. We label the gap G
between the foreground and the background caused by the
morphological operations as unknowns. Note that the pixels in
F(E), B(D) and I(G) are mutually exclusive. They form the
complete trimap. The reason why we label the pixels in G as
unknowns is because we observed that the gaps tend to appear
in areas where the depth measurements are unstable, such as
object boundaries. There are nmd points at these areas. The
points with unstable depth measurements can lead to incorrect
classifications of DΦ; thus, conservatively labelling the pixels
in G as unknowns reduces the number of incorrect labels in
the trimap. As aforementioned, we use the unknowns from the
rough classification results of DΦ for the trimap generation. In
our method, we simply paint these unknown points as grey in
the trimap.

It should be noted that we separately apply the erosion and
dilation algorithms on the binary image in our method. The
motivation of the morphological operations is to obtain the
reliable foreground and background labels for the trimap. This
is different from most background modelling algorithms that
sequentially use erosion and dilation to denoise the foreground
segmentation results [35].

Fig. 3 qualitatively demonstrates the trimap generation
process. As we can see, the areas of salt noise and pepper
noises are removed in the eroded image and the dilated image
respectively. In the binary image B, the large holes on the
foreground are caused by nmd points in the model. The white
pixels in E and the black pixels in D formulate the foreground
and the background, respectively, in the trimap. The grey
pixels in the trimap represent the unknown pixels.

3) The color-based classifier: The color-based classifier CΦ
is developed based on the graph-cut optimization framework,
which labels each pixel as foreground or background in a given

frame. The trimap provides hard constraints for the graph.
There are two types of nodes in the graph. One type of node
denotes the labels for each pixel. The other type of node
represents the foreground and background terminals, which
consist of the foreground and background pixels indicated by
the hard constraint. The nodes are linked by edges in the graph.
There are two types of edges. One type of edge links the
labels with the two terminals. The other type of edge links
the neighbourhoods of each label. We use the 8-neighbourhood
structure in this paper.

Let L = {`1, `2, · · · , `|L|} denote the set of labels whose
entries are the labels for each pixel. |L| is the cardinality of
the set, which can be found by multiplying the width and the
height of the given frame. Let φ(·) denote the energy function
for each edge. The energy measures the similarity between two
nodes. E(L) denotes the sum of all the energies. The problem
of the image segmentation is to find an optimal label vector
L∗ which can minimize the following energy:

E(L) =
∑
i∈P

φ(`i) +
∑

i∈P,j∈N
φ(`i, `j), (4)

where `i ∈ {0, 1}, P represents all the pixels in the frame,
and N represents the neighbourhoods of the pixel i.

The first term in (4) is called a regional term or data
term, which measures the similarity between labels and the
terminals. The regional term for an unknown pixel can be
found in the formula:

φ(`i) = − log`i
(Fpi) log1−`i (Bpi), (5)

where `i = 0 and `i = 1 represent that the pixel belongs
to the background and the foreground, respectively, and Bpi
and Fpi represent the probabilities of the pixel being the
background and the foreground, respectively. The probabilities
are found by fitting the pixel in the distributions formulated by
the background pixels and the foreground pixels indicated by
the hard constraints. The regional term energies for the pixels
indicated by the hard constraints are constant values:

φ(`i) = α`iβ1−`i , (6)

where α and β are two constants. If pixel i is indicated as a
background pixel in the trimap, we set α = 0 and β to a non-
negative value. If pixel i is indicated as a foreground pixel in
the trimap, we set β = 0 and α to a non-negative value.
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Algorithm 3: Background model maintenance
Data: M, C, R, λ, w, h.

1 for m← 1 to w do
2 for n← 1 to h do
3 if ξ[R(m,n)] then
4 s = G(λ)
5 Ms(m,n) = C(m,n)
6 end
7 end
8 end

The second term in (4) is called the pairwise term or
smoothness term. It measures the similarities between neigh-
bouring pixels. We use a Gaussian kernel to find the value:

φ(`i, `j) = ηδi,j exp
[
− ‖Ii − Ij‖

2σ2

]
, (7)

where η is a normalization constant, and σ is the standard
deviation for the Gaussian kernel. δi,j is a function with values
of 0 and 1 for the cases of `i = `j and `i 6= `j , respectively.

4) Background Model Maintenance: Background model
maintenance is to update the background model to adapt the
changes in the scene. In our method, the background model is
updated immediately after we get the classification results of
DΦ. Note that we only use the background points classified
by DΦ to update the background model. The foreground
points and the nmd points are never used for background
maintenance.

Our background model maintenance scheme is presented in
Algorithm 3. R denotes the classification results of DΦ. The
function ξ(·) returns true if the given point is classified as
background. The function G(·) gives a random integer number
selected from 1 to λ. As we can see, we randomly replace a
sample point in the model using the new point from the given
frame C. The maintenance scheme avoids nmd points in the
current frame to be updated in the background model, which
reduces the number of unknowns in the trimap. The reason
for using this scheme is because incorporating an nmd point
into the model causes the point at this position to be classified
as unknown in the future iterations. The trimap with more
unknowns provides less useful hard constraints for CΦ. Note
that we do not use the final segmentation results provided by
CΦ to update the background model. The reason for this is that
the background points in the final segmentation results may
contain points with large errors, such as the boundary points.
Incorporating these points into the model will make the future
classifications of DΦ less accurate.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

This section presents the experimental results and discus-
sions. We use a public dataset for the evaluation. Firstly, we
determine the optimal values of parameters in our method.
Then, we compare our method with state-of-the-art algorithms.

A. The Dataset
The public dataset used in this paper was proposed by

Camplani et al. in [30]. There are four RGB-D sequences with

hand-labelled ground truth in this dataset. The sequences are
captured using a Microsoft Kinect with the VGA (640× 480)
resolution at the 30 Hz frame rate. The ground truth is
provided every a few frames during the period when moving
objects are present in each sequence. There is no moving
object at the beginning of each sequence. The four sequences
are named as GenSeq, ShSeq, ColCamSeq and DCamSeq
respectively.

The GenSeq sequence is used to test the overall perfor-
mance of the algorithms in a general case. It was recorded in
an office room where common challenges occur. For instance,
there are moving-object shadows, color and depth camou-
flages, noisy depth measurements, illumination changes and
automatic camera adjustments. The automatic camera adjust-
ments in this sequence include both the brightness adjustment
and the white balance adjustment. The sequence recorded a
scenario that a person carries a box into the room and puts it
on a table, then goes away. There are 300 frames of RGB-D
images and 39 frames of ground truth in this sequence.

The ShSeq sequence is designed to evaluate the influence
of shadows on the foreground segmentation performance.
In addition to the shadow challenge, depth camouflage also
occurs in this sequence. The sequence recorded a scenario
that a person repeatedly rotates a carton box on the ground.
There are the shadows of the rotating carton box. The depth
values at the bottom of the carton box are close to those of
the ground. There are 250 frames of RGB-D images and 25
frames of ground truth in this sequence.

The ColCamSeq sequence is designed to evaluate the
foreground segmentation performance when color camouflage
occurs. The sequence recorded a scenario that a person comes
into a room with a white carton box in hand, and then
repeatedly waves the box before a white panel. The box and
the panel share similar colors. There are 360 frames of RGB-D
images and 45 frames of ground truth in this sequence. Note
that the ground truth is provided within a Region-of-Interest
(ROI) in this sequence.

The DCamSeq sequence is designed to evaluate the fore-
ground segmentation performance when depth camouflage
occurs. Similar to the color camouflage, the depth camouflage
refers to that the depth values of the background model are
close to those of the foreground. In this sequence, there are
close depth values but distinct colors between the foreground
and background. The sequence recorded a scenario that a
person walks into a room and then waves his arm and hand
over a cabinet. The hand, the arm and the cabinet share close
depth values. There are 670 frames of RGB-D images and 102
frames of ground truth in this sequence. The ground truth is
also provided within a ROI in this sequence.

B. Evaluation Metrics

We employ the widely used metrics False Positive Rate
(FPR), False Negative Rate (FNR), Portion of Wrong Classifi-
cations (PWC) for the quantitative evaluations [36]. We count
the values of True Positives (TP), True Negatives (TN), False
Positives (FP) and False Negatives (FN) for a given frame.
They are defined as follows:
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Fig. 4: The parameter tuning results for the discrimination threshold κ and the number of samples λ. The curve and the shaded
error bars encode the mean values and the standard deviations for the sequences. In order to view the curve and the errorbars
in the plots clearly, we offset the curves by adding or subtracting some constants to the mean values. For the κ tuning, we set
the number of samples λ to 20. For the λ tuning, we set the discrimination threshold κ to 0. Smaller PWC values correspond
to better overall performance. From the κ tuning results, we can see that the overall performance of our method becomes
worse when we increase the value of κ. From the λ tuning results, we can see that the overall performance of our method
becomes better when we increase the value of λ. The figure is best viewed in color.

• TP : The number of foreground points that are correctly
classified as foreground;

• TN : The number of background points that are correctly
classified as background;

• FP : The number of background points that are wrongly
classified as foreground;

• FN : The number of foreground points that are wrongly
classified as background.

The metrics FPR and FNR are calculated using the following
formulas:

FPR =
FP

FP + TN
, FNR =

FN
TP + FN

. (8)

The metric FPR measures the portion of background points
that are wrongly classified as foreground. The metric FNR
measures the portion of foreground points that are wrongly
classified as background. These two metrics evaluate the
performance of algorithms from only one aspect. The metric
PWC is able to evaluate the overall performance of algorithms.
It is calculated using the formula:

PWC =
FN + FP

TP + FN + FP + TN
. (9)

It measures the portion of total number of wrongly classified
points in a given frame. PWC is also named as the Portion of
Total Error in some literature.

In this paper, we employ the similarity metric [37] to
measure the similarity between the segmented foreground and
the ground truth. Let X and Y respectively denote the set
of foreground pixels determined by a method, and the set of
foreground pixels from the ground truth. The similarity S is
calculated using the formula:

S =
|X ∩ Y|
|X ∪ Y|

, (10)

where | · | represents the cardinality of a set. |X ∩ Y| is
the number of true positives. The value of S falls into the

TABLE I: Critical values for the distance threshold θ.

Sequence GenSeq ShSeq ColCamSeq DCamSeq

Value 4 cm 1 cm 3 cm 3 cm

range from 0 to 1. The similarity metric measures the overall
segmentation performance. Larger similarity value indicates
better performance.

In order to measure how well a method performs with
respect to the other methods, we combine the performance
of a method across different metrics and different sequences
into a single rank [30]. Let RMi,c denote the average rank of
method i over all the metrics in the sequence c. It is calculated
using the formula:

RMi,c =
1

Nm

Nm∑
k=1

πi(mk, c), (11)

where mk represents the metric k, Nm is the number of metrics,
the number Nm = 4 here, the function πi(mk, c) obtains the
rank of method i in terms of mk in the sequence c. Note that
πi(·) ranks an ascending order for PWC, FPR, FNR, and a
descending order for S. Smaller values of ranks correspond to
better performance. πi(·) returns the average rank if more than
one value share the same rank. Let RCi denote the overall rank
of method i. It is calculated by taking the average of RMi,c

over all the categories:

RCi =
1

Nc

Nc∑
c=1

RMi,c, (12)

where Nc is the number of sequences, the number Nc = 4
because we have totally 4 sequences in this paper.
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TABLE II: The quantitative comparison results obtained with the GenSeq sequence. Bold font highlights the best results.

Methods PWC FPR FNR S RM
Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Ours 0.0080 0.0026 0.0071 0.0026 0.0833 0.2203 0.7621 0.2425 4.50
CLW 0.0130 0.0042 0.0127 0.0001 0.0149 0.0002 0.8300 0.2100 4.00
CLC 0.0238 0.0120 0.0063 0.0002 0.1638 0.0030 0.7200 0.2300 7.25
CLD 0.0206 0.0048 0.0209 0.0001 0.0177 0.0003 0.7800 0.2100 6.25
MOGC 0.0284 0.0123 0.0014 0.0006 0.4971 0.1591 0.4013 0.1319 10.00
MOGD 0.0194 0.0101 0.0055 0.0013 0.2156 0.1523 0.6334 0.1712 7.25
MOG2C 0.0952 0.0708 0.1023 0.0777 0.0553 0.1537 0.4240 0.1802 12.00
MOG2D 0.0421 0.0213 0.0444 0.0230 0.0156 0.0209 0.5267 0.1809 9.50
GMGC 0.0425 0.0203 0.0289 0.0149 0.2683 0.1137 0.4263 0.1212 12.00
GMGD 0.0595 0.0284 0.0114 0.0064 0.7083 0.1821 0.2030 0.0845 13.75
ViBeC 0.0162 0.0062 0.0029 0.0015 0.3131 0.2079 0.5273 0.1881 7.75
ViBeD 0.0114 0.0042 0.0083 0.0018 0.0692 0.1556 0.7330 0.2048 4.75
PBASC 0.1448 0.1021 0.1561 0.1133 0.0890 0.1235 0.3218 0.1400 14.00
PBASD 0.0473 0.0181 0.0508 0.0197 0.0114 0.0489 0.5311 0.2111 9.25
DECOLORC 0.0182 0.0103 0.0044 0.0018 0.2806 0.1932 0.5876 0.2026 7.50
DECOLORD 0.0159 0.0109 0.0092 0.0024 0.0822 0.1125 0.7084 0.2109 6.25

TABLE III: The quantitative comparison results obtained with the ShSeq sequence. Bold font highlights the best results.

Methods PWC FPR FNR S RM
Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Ours 0.0181 0.0033 0.0188 0.0041 0.0128 0.0040 0.8440 0.0236 5.00
CLW 0.0081 0.0035 0.0068 0.0002 0.0160 0.0005 0.9400 0.0400 2.50
CLC 0.0537 0.0288 0.0323 0.0005 0.1820 0.0058 0.6700 0.1600 9.50
CLD 0.0098 0.0033 0.0098 0.0002 0.0095 0.0004 0.9300 0.0300 2.25
MOGC 0.0526 0.0095 0.0111 0.0022 0.3989 0.0764 0.4887 0.0646 9.13
MOGD 0.0242 0.0042 0.0050 0.0010 0.1678 0.0362 0.7773 0.0276 5.25
MOG2C 0.2171 0.0764 0.2197 0.1054 0.2109 0.1278 0.2985 0.0276 13.00
MOG2D 0.0480 0.0248 0.0111 0.0015 0.3326 0.2245 0.5675 0.1944 8.38
GMGC 0.0940 0.0060 0.0380 0.0184 0.5634 0.1106 0.2857 0.0359 12.75
GMGD 0.1101 0.0115 0.0036 0.0011 0.9231 0.0444 0.0710 0.0384 11.50
ViBeC 0.0386 0.0048 0.0223 0.0024 0.1742 0.0472 0.6166 0.0468 8.25
ViBeD 0.0187 0.0022 0.0124 0.0007 0.0644 0.0221 0.8367 0.0141 5.75
PBASC 0.4596 0.0795 0.5258 0.0890 0.0153 0.0056 0.2196 0.0313 12.50
PBASD 0.0160 0.0005 0.0167 0.0009 0.0105 0.0051 0.8685 0.0062 4.00
DECOLORC 0.0987 0.0027 0.0427 0.0093 0.5498 0.0784 0.3065 0.0280 12.50
DECOLORD 0.1251 0.0064 0.0224 0.0058 0.9025 0.0208 0.0803 0.0141 13.75

C. Parameter Tuning

We have mainly three parameters in our method. They are
the number of samples λ that is introduced in Algorithm 1,
the distance threshold θ that is introduced in formula (2) and
the discrimination threshold κ that is introduced in Algorithm
2. In order to choose optimal values for these parameters,
we compare the foreground segmentation performance of our
method under different parameter settings.

We observed that small values of θ can produce many
unstable false positives in the results of DΦ. We conjecture
that this is because the value of θ may be smaller than the
standard deviations of the depth measurements. The mea-
surement noises that are comparable to θ would increase
false classifications. We tune the parameter θ by qualitatively
observing the segmentation performance. The false positives
increase substantially when θ is set equal to or below a critical
value. Tab. I displays the critical values of θ for the four
sequences. The critical values vary from scene to scene. For
scenes with shorter distances to the camera, such as the ShSeq

sequence, the critical value is small. This is because depth
measurement noises are relatively small for short distances
[29]. For scenes with larger distances, such as the GenSeq
sequence, the critical values are larger due to the quadratically
increased depth measurement noises [38]. To reduce false
classifications caused by depth measurement noises, we prefer
to use a large θ. However, too large values of θ lead to
the problem of depth camouflage. The foreground and the
background could not be discriminated when θ is larger than
the size of the moving objects. Thus, a preferred way is to
set the value of θ empirically according to the scene and
the moving objects. For the DCamSeq sequence, with the
consideration of the thickness of the human arm we set θ
to 4 cm. This could avoid the arm merging with the cabinet.
Since the foreground and the background are not so close in
the other sequences, we set θ to 5 cm for them.

We choose κ and λ by comparing the PWC values under
different parameter settings. We firstly set λ to a fixed value
and observe PWC according to different values of κ. Fig. 4a
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Fig. 5: The qualitative comparison results with the GenSeq sequence. The gray pixels in (g) and (h) indicate the shadows
detected by MOG2. The frame shows that a person is going to put the box on the table. The foreground objects here are the
person and the box. As we can see, our method achieves the best segmentation performance.
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Fig. 6: The qualitative comparison results with the ShSeq sequence. The gray pixels in (g) and (h) indicate the shadows
detected by MOG2. The frame shows that a person is rotating a box on the table. The foreground object here is the box. As
we can see, our method achieves the best segmentation performance.

shows the tuning results for κ. As we can see, the PWC mean
and standard deviations tend to increase when we increase
the value of κ. This figure suggests that a smaller value of
κ is preferred. From qualitative observations, we find that
a larger κ causes more false positives in the results of DΦ.
This would hence lead to more unknown holes in the trimap
after the morphological operations, which could reduce hard
constraints for the graph-cut algorithm. With less hints for
CΦ, the segmentation performance would be degraded. From
Fig. 4a, we can see that the PWC value is not sensitive to
κ especially in the ShSeq sequence. We think the reason is
that the objects in the scene are close to the camera. Thus, the
standard deviations of depth measurements are smaller in this
sequence and the variable ω in (2) becomes more concentrated.
The value of ω is close to 0 or λ and not prone to be affected
by κ. Therefore, the PWC values are stable in such a case.

Fig. 4b illustrates the tuning results for λ. We fix the dis-
crimination threshold κ to 0 and observe PWC with different
values of λ. We classify a given point as background as long
as there is a sample point close to the given point within the
distance threshold. As we can see, PWC tends to increase
when we increase the number of samples. This figure suggests
that larger values of λ ensure better performance. We think
the reason for this is that a model with a larger number of

samples could accommodate more pixel variations and hence
better describe the distribution of a given point. From Fig.
4b, we find that PWC is not sensitive to λ especially in the
ShSeq sequence. As aforementioned, the depth measurements
are concentrated due to the short distances in the ShSeq
sequence. More samples could not contribute too much in such
a case due to the concentrated values. Thus, the performance
is stable in the ShSeq sequence.

D. Method Comparison
We compare our method with the well-known background

modelling algorithms: MOG [39], MOG2 [40], GMG [41],
ViBe [22], PBAS [23] and DECOLOR [42]. It should be noted
that these background modelling algorithms are developed
using a color camera rather than an RGB-D camera. To ensure
fair comparisons, we evaluate these background modelling al-
gorithms using color and depth images separately. In addition,
we also compare our method with the RGB-D camera-based
method proposed by Camplani et al. [30].

For the MOG, MOG2 and GMG algorithms, we use the
implementations in OpenCV [43]. For the ViBe and PBAS
algorithms, we use the open-source codes from [44] and [45].
For the DECOLOR algorithm, we use the implementation pro-
vided by lrslibrary [46]. For the Camplani method, we directly
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TABLE IV: The quantitative comparison results obtained with the ColCamSeq sequence. Bold font highlights the best results.

Methods PWC FPR FNR S RM
Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Ours 0.0114 0.0041 0.0145 0.0092 0.0100 0.0067 0.9411 0.0323 2.00
CLW 0.0320 0.0277 0.0292 0.0010 0.0352 0.0009 0.8900 0.1500 5.50
CLC 0.3902 0.2312 0.0227 0.0006 0.8227 0.0111 0.2200 0.2200 11.50
CLD 0.0247 0.0235 0.0238 0.0010 0.0258 0.0005 0.9100 0.1000 4.00
MOGC 0.3444 0.0839 0.0047 0.0016 0.8675 0.0443 0.1228 0.0403 11.00
MOGD 0.3523 0.0776 0.0050 0.0037 0.8894 0.0896 0.1031 0.0833 12.00
MOG2C 0.2216 0.0519 0.0864 0.0325 0.3922 0.1470 0.4658 0.1213 9.75
MOG2D 0.1242 0.0730 0.0599 0.0294 0.2034 0.1613 0.6454 0.1578 8.25
GMGC 0.4210 0.0476 0.2622 0.0640 0.6251 0.1126 0.2308 0.0336 13.00
GMGD 0.3395 0.1090 0.0073 0.0014 0.8060 0.1680 0.1740 0.1296 9.75
ViBeC 0.3421 0.0806 0.0288 0.0110 0.8286 0.0558 0.1489 0.0465 12.00
ViBeD 0.0141 0.0037 0.0159 0.0077 0.0146 0.0097 0.8934 0.0340 3.25
PBASC 0.2542 0.0319 0.3376 0.0577 0.1372 0.0734 0.4999 0.0952 9.75
PBASD 0.0519 0.0226 0.0884 0.0353 0.0044 0.0031 0.8658 0.0588 6.25
DECOLORC 0.2977 0.0787 0.0333 0.0112 0.7077 0.1038 0.2569 0.0881 10.25
DECOLORD 0.1190 0.0884 0.0371 0.0217 0.2155 0.1615 0.7180 0.1671 7.75

TABLE V: The quantitative comparison results obtained with the DCamSeq sequence. Bold font highlights the best results.

Methods PWC FPR FNR S RM
Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Ours 0.0236 0.0135 0.0231 0.0244 0.0673 0.0496 0.6387 0.0536 5.25
CLW 0.0246 0.0182 0.0066 0.0001 0.3221 0.0026 0.5500 0.1400 5.25
CLC 0.0178 0.0147 0.0095 0.0001 0.1560 0.0009 0.6700 0.1300 3.25
CLD 0.0338 0.0219 0.0064 10−5 0.4849 0.0044 0.4000 0.2000 6.75
MOGC 0.0330 0.0355 0.0014 0.0011 0.5924 0.1147 0.2950 0.0742 7.50
MOGD 0.0629 0.0536 0.0008 0.0007 0.9543 0.0218 0.0430 0.0202 10.75
MOG2C 0.0204 0.0164 0.0120 0.0065 0.1598 0.0270 0.4357 0.0418 5.25
MOG2D 0.0467 0.0254 0.0271 0.0149 0.5902 0.1970 0.1122 0.0251 11.25
GMGC 0.0521 0.0388 0.0386 0.0342 0.2931 0.0597 0.3773 0.0144 9.75
GMGD 0.0647 0.0512 0.0136 0.0091 0.8087 0.1113 0.1433 0.0832 11.75
ViBeC 0.0207 0.0179 0.0028 0.0026 0.3897 0.0545 0.3970 0.0374 5.00
ViBeD 0.0351 0.0156 0.0108 0.0161 0.4899 0.2863 0.4067 0.2195 7.00
PBASC 0.0600 0.0442 0.0651 0.0666 0.0506 0.0119 0.4578 0.0677 8.75
PBASD 0.0573 0.0221 0.0429 0.0202 0.3450 0.2427 0.3800 0.2071 9.75
DECOLORC 0.0165 0.0134 0.0092 0.0092 0.1470 0.0151 0.6080 0.0295 2.75
DECOLORD 0.0622 0.0636 0.0224 0.0379 0.6723 0.1366 0.2306 0.0750 9.75

import the quantitative results from [30] for our comparison.
In this paper, we denote the background modelling algorithms
using color and depth images as (·)C and (·)D, respectively. For
the Camplani method, we adopt the notations CLW, CLC and
CLD from [30] to represent the combined classifier, the color-
based classifier and the depth-based classifier, respectively.

1) The GenSeq Sequence Results: The quantitative com-
parison results obtained with the GenSeq sequence are re-
ported in Tab. II. The first column of the table shows the
method names. The mean and Standard Deviations (S.D.)
values are displayed in the Mean and S.D. columns. As we
can see, our method guarantees the lowest value of PWC. This
demonstrates that our method is able to provide the best overall
performance in terms of PWC in such a complex scenario with
common challenges. Moreover, our method allows to obtain
lower values of FPR and FNR. It is worth noting that the
worst performance is obtained by PBASC. The reason for the
poor performance could be that it is sensitive to changes in
illumination and color, because the lighting in the room is not

stable and there exist automatic brightness and white balance
adjustments when the person is walking around in the room.

Fig. 5 qualitatively compares the methods with a selected
frame from the GenSeq sequence. As we can see, our method
presents the best accuracy. By comparing our result with the
ground truth, we can find that there are some false positives
at the boundaries of the box and the foot. The pixels are
mis-classified by the color-based classifier CΦ due to the
close color values at these areas. The given frame exhibits
automatic camera adjustments. Thus, we can see that many
pixels are wrongly classified by PBASC, while our method is
robust to the illumination changes and the automatic camera
adjustments.

2) The ShSeq Sequence Results: Tab. III displays the
quantitative results obtained with the ShSeq sequence. As
we can see, our method allows to obtain the second lowest
value of PWC. We find that CLW provides the best results in
terms of PWC and S. It is worth noting that the performance
of the DECOLOR methods are worse than most of the other
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Fig. 7: The qualitative comparison results with the ColCamSeq sequence. The gray pixels in (g) and (h) indicate the shadows
detected by the MOG2 method. The foreground segmentation results are masked with the provided ROI. The frame shows
that a person is waving a white box before the white panel. The foreground object here is the box. As we can see, both our
method and the PBASD method accurately segment the foreground.
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Fig. 8: The qualitative comparison results with the DCamSeq sequence. The gray pixels in (g) and (h) indicate the shadows
detected by the MOG2 method. The foreground segmentation results are masked with the provided ROI. The frame shows
that a person is running his hand on the cabinet. The foreground objects here are the hand and the arm. As we can see, our
method achieves the best segmentation performance.

methods. In the ShSeq sequence, the box is rotated at a fixed
point on the ground. The central part of the box becomes
motionless due to the little translation movement. This leads
to a situation in which the central area cannot be detected as
a part of foreground by the DECOLOR algorithm. We believe
that this is the main reason for the poor performance of the
DECOLOR methods.

Fig. 6 qualitatively compares the methods with a selected
frame from the ShSeq sequence. As we expected, since
the depth information is robust to shadows, all the methods
based on depth information are little influenced by the shadow
challenge. We can see that the shadows cause false detec-
tions for the color-based methods. Similar to the GenSeq
sequence, the lighting in this sequence is not stable. The
camera automatically adjusts the brightness when the box
enters the scene. The incorrect classifications in the result of
the PBASC method show the negative influence caused by the
automatic camera adjustment. Compared with the result of the
PBASD method, the advantage of using depth information is
clearly demonstrated. As aforementioned, the bottom of the
box is close to the floor. Thus, we can see that there are
false classifications in the results of the depth-based methods

around this area due to the depth camouflage. For the results
of the DECOLOR methods, we can see that the central
part of the box is not correctly detected as foreground. Our
method outperforms all the other methods, which demonstrates
the robustness of our method to the challenges of shadows,
automatic camera adjustments and depth camouflage.

3) The ColCamSeq Sequence Results: Tab. IV displays
the quantitative results obtained with the ColCamSeq se-
quence. As we can see, our method ranks No.1 among all
the methods. As this sequence is designed to evaluate the
performance of algorithms when color camouflage occurs, it
comes as expected that virtually all the color-based methods
are inferior to their depth-based ones. The benefit of using
depth information is clearly demonstrated here. The RGB-D
data-based method CLW also achieves good results. However,
the performance of the corresponding color-based method CLC
is greatly degraded by the color camouflage. We find from the
RM values that the combined method CLW is a little inferior to
the depth-based method CLD. We believe the reason for this is
that CLC weights down the combined method CLW. It is worth
noting that the largest RM difference value is obtained between
ViBeC and ViBeD, which shows that the ViBe algorithm can
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TABLE VI: The overall ranking over all the methods across all the sequences. DEC is an abbreviation of DECOLOR. Our
method ranks No.1 among all of the methods.

Ours CLW CLC CLD MOGC MOGD MOG2C MOG2D GMGC GMGD ViBeC ViBeD PBASC PBASD DECC DECD

RC 4.19 4.31 7.88 4.81 9.41 8.81 10.00 9.35 11.88 11.69 8.25 5.19 11.25 7.31 8.25 9.38

Rank 1.0 2.0 6.0 3.0 12.0 9.0 13.0 10.0 16.0 15.0 7.5 4.0 14.0 5.0 7.5 11.0

be greatly improved using depth data in such a case.
Fig. 7 shows the qualitative results with a selected frame

from the ColCamSeq sequence. We can see that our method
is robust to the color camouflage challenge. The perfor-
mance enhancement brought by using depth information can
be clearly proven from the results of ViBeD, PBASD and
DECOLORD. Moreover, we find that PBASD provides a
comparative result with that of ours. In the sequence, we note
that the lateral surfaces of the box are coloured black. They are
distinctive to the camouflaged area. Thus, we can see that the
color-based methods are able to roughly outline the boundary
of the box.

4) The DCamSeq Sequence Results: Tab. V displays the
quantitative results obtained with the DCamSeq sequence.
This sequence is designed to evaluate the performance when
depth camouflage occurs. In contrast with the results of
the ColCamSeq sequence, all the color-based methods are
superior to their depth-based ones. The advantage of using
color information is clearly demonstrated here. We can see
that both our method and CLW provide good performance in
this sequence. The performance of CLC is weighted down by
CLD. This is similar to the case happened in the ColCamSeq
sequence. It is worth noting that DECOLORC ranks as the best
method in this sequence. We conjecture that this is because
the underlying assumption of the DECOLOR algorithm is
well satisfied in this sequence. The DECOLOR algorithm
assumes that the foreground is composed of contiguous pieces
of relatively small size. The hand, the arm and the head are
contiguous and they are relatively small within the ROI in this
sequence.

Fig. 8 qualitatively compares the methods with a selected
frame from the DCamSeq sequence. We can see that our
method achieves the best accuracy for this given frame.
Because of the depth camouflage, all the depth-based methods
are inferior to the color-based ones. As an extreme example,
we can see that GMGD totally fails to detect true positives.

E. The Overall Ranking

Tab. VI displays the overall ranking over all the methods
across all the sequences. We can see that our method ranks
No.1 among all of the methods. It comes as no surprise
that CLW ranks second to our method. We believe that the
combination mechanism that uses both color and depth data
improves the overall performance of CLW. The superior per-
formance of our method and the CLW method demonstrate the
advantage of using both the color and depth data. It should be
noted that the GMG methods rank at the bottom. We think the
reason for the unsatisfied performance is that most foreground
motions in this dataset are not trivial. This violates the basic

assumption of the GMG algorithm, which requires that the
region of foreground is significantly smaller than that of the
background.

V. CONCLUSIONS

We presented here a novel RGB-D data-based background
modelling method which sequentially uses the depth and color
information provided by an RGB-D camera. As a part of the
method, a new single-frame initialization scheme was devel-
oped to fast initialize the background model. Like most of the
initialization schemes of background modelling algorithms, we
assume that there is no moving object during the initialization.
For the foreground segmentation, we firstly developed a depth-
based classifier to roughly classify the pixels into foreground,
background, and unknowns. Then, a trimap generation scheme
was devised based on the morphological operations with the
rough classification results. Finally, a color-based classifier
based on the graph-cut optimization framework was developed
to refine the segmentation results. The trimap provides the hard
constraints for the graph-cut framework. The experimental
results demonstrate that our method is robust to most of
common challenges for background modelling algorithms,
such as shadows, color and depth camouflages, illumination
changes and automatic camera adjustments. We believe that
the superior performance was benefited from the active visual
perception, specifically, the use of depth information. We
quantitatively evaluate our method using a public RGB-D
dataset with hand-labelled foreground segmentation ground
truth. The results suggest that our method outperforms the
current well-known methods. However, our method is unable
to run real-timely at the current status. It can only work
at around 2Hz on an Intel i5 desktop computer without
code optimization. Most of the time was spent on the time-
consuming graph-cut optimization framework. We consider it
as a major limitation of our method and will accelerate our
method with parallel programming techniques. In the future,
we would also like to extend our method on freely-moving
platforms by encoding and compensating the ego-motion of
the camera.
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