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Abstract— Lane detection is a fundamental capability for
autonomous driving. Many effective lane detection algorithms
based on traditional computer vision and recent deep learning
technologies have been proposed. However, the current state-
of-the-art lane detection accuracy is still not satisfactory for
realizing fully autonomous driving. Thus, this paper proposes a
new lane detection network using atrous convolution and spatial
pyramid pooling techniques to improve the lane detection
accuracy. We address the detection problem with pixel-wise
semantic segmentation. Our network consists of one encoder
and two decoders, which outputs a binary segmentation map
and an embedded feature map, respectively. The embedded
feature map is employed for clustering algorithms to separate
segmented lane pixels into different lanes. The experimental
results on the public Tusimple dataset show that our network
outperforms the state-of-the-arts.

I. INTRODUCTION

Lane detection is important for autonomous driving. It

is a fundamental component for many autonomous driving

tasks, such as Lane Departure Warning Systems (LDWS)

[1] and Lane Keeping Assistance Systems (LKAS) [2]. In

addition, accurate lane detection could also benefit ego-

vehicle localization and navigation [3]–[11], which is crucial

for autonomous vehicles to make high-level decisions, such

as route planning and collision avoidance. Lane detection

has attracted great attentions from both the academia and

industry. Many effective lane detection algorithms have been

developed in the past decade [12]. There are algorithms

that are even incorporated into commercial Advanced Driver

Assistant System (ADAS) [13] products.

Generally, existing lane detection algorithms could be di-

vided into two classes: one class of methods are based on tra-

ditional computer vision; and the other class of methods are

based on recent deep learning technologies. The traditional

methods usually adopt the detection and tracking pipeline

[14]. In the detection stage, an image is firstly cropped with a

region of interest, and edge detection algorithms are applied

on the interested regions to extract edge pixels. Then, the

pixels on the extracted edges are used to detect lanes with

line fitting algorithms, such as Hough transform [15]. In the
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tracking stage, tracking algorithms, such as Kalman Filter or

Particle Filter [16], are used to increase the robustness of the

lane detection.

The development of deep learning technologies has virtu-

ally changed the landscape in computer vision [17], as well

as robotics [18] and intelligent transportation systems [19].

Convolutional neural networks (CNN) [20] have achieved

great success in vision-based detection and segmentation

applications [21]–[28]. Researchers in lane detection also

resort to using deep learning technologies to improve the de-

tection accuracy. Some effective networks, such as LaneNet

[29], have been developed. Generally, the results of using

deep learning have greatly outperformed those using tra-

ditional computer vision algorithms in terms of accuracy

and robustness. Despite the success of using deep learning

technologies, the current state-of-the-art performance is still

not satisfactory for practical fully autonomous driving. In

order to improve the performance of lane detection, this

paper proposes to use atrous convolution and spatial pyramid

pooling techniques. We treat lane detection as a semantic seg-

mentation problem and build our network based on LaneNet.

The main novelty of this paper is the use of atrous

convolution and spatial pyramid pooling techniques for pixel-

wise lane detection. We summarize the contributions of this

paper as follows:

1) We develop a new network based on LaneNet [29]

for lane detection using atrous convolution and spatial

pyramid pooling techniques.

2) We demonstrate that our network outperforms the

state-of-the-arts on the public Tusimple dataset.

The remainder of this letter is structured as follows. In

section II, related work has been reviewed. In section III,

we describe our network in detail. Section IV presents the

experimental results and discussions. The conclusion and

future work are drawn in the last section.

II. RELATED WORK

Since we treat the lane detection problem as a semantic

segmentation problem. The related work to this paper in-

cludes deep learning-based semantic segmentation, and lane

detection using semantic segmentation technologies. In this

section, we review several representative work in the two

research fields.

A. Semantic Segmentation Networks

The first work that solves semantic segmentation with

CNN in an end-to-end fashion is the Fully Convolutional

Networks (FCNs) proposed by Shelhamer et al. [30]. They
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Fig. 1: The structure of our instance segmentation network for lane detection. The yellow box represents the Atrous CNN

module. In this paper, we use the Atrous ResNet-101. The pink and blue boxes represent the Atrous SPP module. The

decoder module is shown in the green box. Conv, BN, Ave Pool represent convolutional, batch normalization and average

pooling layers, respectively. Rate mean the dilation rates for the Conv layers. In the detection result, different lanes are

denoted with different colors. The figure is best viewed in color.

employed image classification networks, such as VGG-16

[31] or GoogLeNet [32], to extract visual features from

input images. The fully connected layers in the networks are

removed. Noh et al. [33] proposed a semantic segmentation

network named DeconvNet, which included a convolutional

module for feature extraction and a deconvolutional module

for resolution restoration. The convolutional module em-

ployed VGG-16 [31] as the backbone. The deconvolutional

module was designed as a mirrored version of the con-

volutional module. Badrinarayanan et al. [34] firstly intro-

duced the Encoder-Decoder concept in SegNet for semantic

segmentation. The encoder was designed to extract visual

features and the decoder was designed to restore the feature

map resolution. The Encoder-Decoder fashion was widely

used in later semantic segmentation networks. Ronneberger

et al. [35] developed UNet for semantic segmentation in the

biomedical imaging [36] research field. They introduced the

U-shape structure that was similar to the Encoder-Decoder

structure. The U-shape structure connected the feature ex-

traction path and the resolution restoration path, which was

believed to be able to reduce the loss of spatial information

of feature maps. Zhao et al. [37] developed PSPNet for

semantic segmentation by incorporating context information

in a scene to improve the segmentation performance. They

designed a pyramid pooling module to retrieve local and

global context information at different receptive-field lev-

els. Yu et al. [38] re-thought semantic segmentation in a

macroscopic point of view. They believed that the intra-class

inconsistency and inter-class indistinction led to the inferior

performance of semantic segmentation. Thus, they proposed

the Discriminative Feature Network (DFN) that contains

a smooth network and a boarder network to respectively

address the two issues.

B. Lane Detection using Semantic Segmentation

Pan et al. [39] proposed Spatial CNN (SCNN) which

propagates spatial information through modified CNN struc-

tures. SCNN outperformed CNN especially in long thin

TABLE I: The detailed configurations for the convolutional

layers in the Atrous SPP network that is shown in Fig. 1.

Conv represents convolutional layer. The convolutional layers

from top to bottom in the pink box of Fig. 1 are numbered

with 1-5, respectively. The convolutional layer in the blue

box of Fig. 1 is numbered with 6.

Conv
No.

Input
Channel

Output
Channel

Kernel
Size

Stride Padding
Dilation

Rate

1 2048 256 1×1 1 0 1

2 2048 256 3×3 1 6 6

3 2048 256 3×3 1 12 12

4 2048 256 3×3 1 18 18

5 2048 256 1×1 1 0 1

6 1280 256 1×1 1 0 1

structure, like poles or traffic lanes. For lane detection, in

order to discriminate segmented pixels into different lanes,

they designed a small network taking as input the probability

maps, and giving the output of a vector with 4-elements

ranging from 0 to 1 to indicate the probability for each lane.

Neven et al. [29] addressed lane detection as an instance

segmentation problem. Each lane corresponds to an instance.

They proposed LaneNet that consists of one encoder and

two decoders. The two decoders output a binary segmenta-

tion map and an embedding feature map, respectively. The

binary segmentation map is trained via the standard cross

entropy loss, while the embedding feature map is trained

with specially designed instance segmentation losses. The

binary segmentation map and the embedding feature map are

combined together, and then sent to a clustering algorithm

to get the final instance segmentation result.

III. THE PROPOSED METHOD

A. Network Overview

The structure of our network is displayed in Fig. 1. The

network is built on LaneNet [29]. It mainly consists of one
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TABLE II: The detailed configurations for the TransConv and

Conv layers in the decoders. TransConv means transposed

convolutional layer. The numbers of the output channel of

the last transposed convolutional layer is 4 for the Embedding
Decoder and 2 for the Binary Decoder, which are shown as

4/2 in the table.

Layer Name Input
Channel

Output
Channel

Kernel
Size

Stride

TransConv 1 512 256 2×2 2

Conv 256 128 1×1 1

TransConv 2 128 4/2 4×4 4

encoder and two decoders. The two decoders are respectively

named as the Embedding Decoder and Binary Decoder. They

output the embedding feature map and binary segmentation

map, respectively. The embedding feature map and binary

segmentation map are element-wisely multiplied, and then

sent to a post-processing module to get the instance segmen-

tation for the lane detection. Different lanes are labelled with

different numbers, which are depicted with different colors

in Fig. 1.

B. The Encoder

We replace the original encoder of LaneNet with the

sequential combination of the Atrous ResNet-101 and the

Spatial Pyramid Pooling (SPP) networks, which are proposed

in DeepLab v3+ [40]. As shown in Fig. 1, there are 5

branches in the SPP network, among which 4 branches

consist of a Conv-BN-ReLu module and 1 branch consists of

an AvePool-Conv-BN-ReLu module. The feature maps from

the 5 branches are concatenated together and sent to a Conv
layer for feature fusion. The detailed configurations for the

convolutional layers in the Atrous SPP network are displayed

in Tab. I. The 5 branches retrieve the spatial information of

feature maps at different receptive filed scales. Note that the

Ave Pool module in the bottom branch resizes the resolution

of the feature map to 1×1, which encodes the global feature.

In order to concatenate the feature map from the bottom

branch with those from the other 4 branches, an interpolation

upsample operation is employed in the bottom branch. As

shown in Tab. I, all the strides of convolutional layers in the

Atrous SPP network is 1, indicating that the convolutional

layers keep the resolution of feature maps unchanged.

C. The Decoders

The structures of the Embedding Decoder and Binary
Decoder are identical to each other, except the number of

output dimension. The numbers of the output dimension of

the Embedding Decoder and Binary Decoder are 4 and 2, re-

spectively. The Embedding Decoder transforms feature maps

to 4-element embedding vector maps. As the binary decoder

gives the binary decision (background or lane), the number

of the output channel is set to 2. The decoders sequentially

consist of a TransConv-BN-ReLu module, a Conv-BN-ReLu
module and a TransConv layer. TransConv means transposed

convolutional layer. We number the transposed convolutional

layer in the TransConv-BN-ReLu module and the last trans-

posed convolutional layer with 1 and 2, respectively. The

detailed configurations for the convolutional and transposed

convolutional layers of the decoders are listed in Tab. II. As

we can see, the transposed convolutional layers reduce the

dimensions and upsample the feature maps to the desired

resolution, while the convolutional layer only reduces the

dimensions.

D. The Loss Functions

To learn the embedding feature map, we directly adopt the

loss functions that are proposed in [29]. The loss functions

realize the instance segmentation for the lanes. They are the

variance loss �var and distance loss �dist . The variance loss

�var enforces the minimization of the distances of the pixel

embeddings in the same lane. The distance loss �dist enforces

the maximization of the distances of the pixel embeddings

in different lanes. For the binary segmentation, we use the

standard cross entropy loss �bin for the output of the Binary
Decoder. The total loss � is computed as:

�= �bin +α�var +β�dist , (1)

where α and β are weighting parameters for the two losses

�var and �dist . In this paper, we set both α and β to 1.0. The

loss �var is computed as:

�var =
1

C

C

∑
c=1

1

Nc

Nc

∑
i=1

φ 2
[D(μc, pi)−λvar

]
, (2)

where C is the number of clusters (lanes), Nc is the number

of pixel embeddings in a cluster, C and Nc come from ground

truth, φ(·) is the ReLu function, D(·) calculates the 2-norm

distance for the two input vectors, μc and pi are the mean

value of the pixel embeddings and the i-th pixel embedding

in the cluster c, respectively, λvar is a constant parameter,

here we set λvar = 0.5. The loss �dist is computed as:

�dist =
1

C(C−1)

C

∑
cA=1

C

∑
cB=1

φ 2
[
λdist −D(μcA ,μcB)

]
, (3)

where cA and cB are two clusters, μcA ,μcB are the mean val-

ues of the pixel embeddings of cluster cA and cB, respectively,

λdist is a constant parameter, here we set λdist = 3.0.

E. Post-processing

The embedding feature map is element-wisely multiplied

with the binary segmentation map. The resulting feature

map is then sent to the post-processing module. The post-

processing module mainly consists of a clustering algorithm

to cluster the pixels to different lanes according to the

values of the embedding vectors. Here, we use the mean-shift

clustering algorithm [41]. Post-processing could also include

line fitting algorithms to derive mathematical formulas for

each lane. However, it is out of the scope of this paper, we

refer readers to [29] for more information.
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(a) (b) (c) (d) (e) (f)

Fig. 2: Sample acceptable qualitative results from the test set. The rows from top to bottom are ground truth binary

segmentation results, LaneNet binary segmentation results, our binary segmentation results, LaneNet instance segmentation

results and our instance segmentation results. The figure is best viewed in color.

TABLE III: The details of the dataset split scheme. We split

the Tusimple dataset into train set, validation set and test
set, respectively.

Split File Name (.json) Number of Images

Train
label_data_0313 2858

label_data_0601 410

Validation label_data_0531 358

Test test_label 2782

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Experimental Setup

1) The Dataset: We use the public Tusimple lane de-

tection dataset1 in this paper. There are several json files

that contain the ground truth of lane pixel coordinates.

We generate ground truth instance segmentation maps by

drawing lines through the pixel coordinates of each lane.

The lines are with 15-pixel thickness. Different lanes are

annotated with different labels. We split the dataset into train
set, validation set and test set, which respectively include

3268, 358 and 2782 images. The details about the dataset

split are listed in Tab. III. Note that all the experimental

results in this paper are obtained with the test set.

2) Training Details: Our network is implemented with

PyTorch 1.2, CUDA 10.0 and cuDNN 7.0 on Ubuntu 18.04.

We train the models on a PC with an Intel i7 CPU and

an NVIDIA GeForce GTX 1080 Ti graphics card. As the

graphics memories of the card are limited to 11 GB, we

1https://github.com/TuSimple/tusimple-benchmark/wiki

TABLE IV: The detailed configurations for the SGD op-

timizer used for our training. LR represents learning rate.

Decay means the weight decay rate.

Initial LR Momentum Dampening Decay Nesterov

Value 0.01 0.9 0 0.001 TRUE

adjust the batch sizes to fit the graphics memories accord-

ingly for each network. In order to increase the training

efficiency, we resize all the images from the resolution of

720×1280 to 288×512. We also normalize all the images

with the mean (0.485,0.456,0.406) and standard deviation

(0.229,0.224,0.225) for the three image channels. We em-

ploy the Stochastic Gradient Descent (SGD) optimization

solver to train the networks. The detailed parameters are

listed in Tab. IV. The learning rate is decayed during the

training process. We train the networks until the validation

loss converges.

B. Evaluation Metrics

We quantitatively evaluate the binary segmentation results

using the metrics Precision (Pre), Recall (Rec) and IoU. They

are computed with the formulas:

Pre =
∑N

n=1 TPn

∑N
n=1 TPn +∑N

n=1 FPn
, (4)

Rec =
∑N

n=1 TPn

∑N
n=1 TPn +∑N

n=1 FNn
, (5)

IoU =
∑N

n=1 TPn

∑N
n=1 TPn +∑N

n=1 FNn +∑N
n=1 FPn

, (6)
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(a) (b) (c) (d) (e) (f)

Fig. 3: Sample unacceptable qualitative results from the test set. The rows from top to bottom are ground truth binary

segmentation results, LaneNet binary segmentation results, our binary segmentation results, LaneNet instance segmentation

results and our instance segmentation results. The figure is best viewed in color.

TABLE V: The quantitative evaluation results for LaneNet

and our network. Larger values indicate better performance

for Pre, Rec and IoU, which are annotated with ↑. Smaller

values indicate better performance for the time cost, which

is annotated with ↓.

Pre ↑ Rec ↑ IoU ↑ Time Cost (ms) ↓
SCNN [39] 0.2836 0.7114 0.2543 17.88

LaneNet [29] 0.2742 0.6657 0.2410 18.96

Ours 0.3054 0.6796 0.2670 13.03

where TP, FN and FP respectively represent the number

of pixels for the True Positives, False Negatives and False

Positives [42]. Specifically, TP is the number of lane pixels

that are correctly detected as lanes, FN is the number of lane

pixels that are wrongly detected as background, and FP is the

number of background pixels that are wrongly detected as

lanes. N is number of tested images, here we have N = 2782.

n is the frame index.

C. Comparative Results

We compare our network with SCNN [39] and LaneNet

[29]. To get binary segmentation results for SCNN, we

add a sequential block after the layer No.2 of SCNN. The

block sequentially consists of an interpolation up-sampling

function and a 1×1 convolutional layer, which are used to

increase the feature-map resolution to the input resolution

and reduce the dimensionality to 2. Tab. V displays the

quantitative comparative results. The Time Cost in the table

represents the average forward time cost per image on the

NVIDIA GeForce GTX 1080 Ti graphics card. As we can

see, our network achieves the superior performance.

Fig. 2 show some acceptable results for LaneNet and our

network. For the binary segmentation, we use the single color

to annotate the detected lanes. For the instance segmentation,

we use different colors to annotate different lanes. We can see

from Fig. 2 that both the networks are able to robustly detect

lanes in these scenes. In Fig. 2 (a) and (d-f), the networks

are able detect lanes even there are occlusions. Fig. 2 (e)

shows the robustness of the networks to the varying lighting

condition. Fig. 3 show some unacceptable results. In Fig. 3

(a), some lane pixels are not correctly segmented. In Fig.

3 (b) and (c), the road crack and road curb are wrongly

identified as lanes, respectively. In Fig. 3 (d) and (e), lanes

are not robustly detected due to the occlusions from other

vehicles. In Fig. 3 (f), the lane near the road curb is not

correctly detected.

V. CONCLUSION

We presented here a lane detection network that uses

atrous convolution and spatial pyramid pooling for au-

tonomous driving. Our network is built on LaneNet. The

experimental results on the public Tusimple dataset show that

our network outperforms the SCNN and LaneNet. The future

work of this paper includes the robustness enhancement on

challenging scenarios, such as road crack or occlusions. In

addition, line fitting networks will be integrated with our

network to achieve end-to-end learning of the mathematical

formulas of lane lines. To thoroughly evaluate our network,

we will also record and manually label our own lane detec-

tion dataset under various lighting and weather conditions.
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