
Supplement file of VR-Goggles for Robots:
Real-to-sim Domain Adaptation for Visual Control

Jingwei Zhang∗1 Lei Tai∗2 Peng Yun2 Yufeng Xiong1 Ming Liu2 Joschka Boedecker1 Wolfram Burgard1

A. Detils for artistic style transfer and temporal error map

For the sequence artistic style transfer, implementation
wise, we use the pretrained VGG-19 as the loss network,
relu2 2 as the content layer, relu1 2, relu2 2, relu3 2 and
relu4 2 as the style layers. We set the weight for each
loss as: 1e5 for content, 2 for style, 1e-7 for spatial
regularization, 10 for optical flow, and 100 for shift. The
downsampling factor K for the transformer network [1] is
4. Shifts are uniformly sampled from [1,K − 1] for every
training frame.

We follow the same procedure of computing the tem-
poral error as in [2] to evaluate the consistency between
consecutive frames:

Etemporal =√√√√ 1

(T − 1)×M

T−1∑
t=1

M∑
m=1

cm
(
ŝtm − f

(
ŝt+1
m

))2
,

where N is the number of all pixels (width × hight
× channel) and T represents the length of the sequence.
f wraps the stylized frame t + 1 back to t based on the
ground truth optical flow provided in the Sintel datset. Fig.
3 in the main paper shows a sample temporal error map
for two consecutive frames.

We train all the three methods for 40, 000 steps on the
collected Videvo dataset with an Nvidia GTX 1080 Ti. The
batch size is 1. The training time for of FF, FF+flow and
Ours are 3.27, 3.33 and 5.18 hours respectively. Note that
it takes approximately 3 hours before training to compute
the optical flow which is required for the training of the
FF+flow method, and this method also requires sequential
training data while Ours does not.

B. Training details of Carla benchmark evalution

We use the goal-directed navigation benchmark [3] in
Carla simulator. We deploy all experiments in Town 1
and test under the testing weather condition. There are
four tasks in the benchmark including Straight, One turn,
Navigation and Navigation with dynamic obstacles. Each
of the tasks is carried out over 25 episodes. Each episode
has a preset starting and goal location. The agent needs to

∗indicates equal contribution.
1Department of Computer Science, University of Freiburg. {zhang,

xiongy, jboedeck, burgard}@cs.uni-freiburg.de
2Department of Electronic and Computer Engineering, The Hong Kong

University of Science and Technology. {ltai, pyun, eelium}@ust.hk

reach the goal within a certain time budget to achieve a
successful episode. The time budget is defined by the time
needed to reach the goal when travelling along the optimal
path within 10 km/h. The optimal path to finish all 25× 4
episodes in the benchmark is around 53 km.

All of the training of the policies and the adaptation
models are implemented with Pytorch and deployed with
a single Nvidia 1080Ti GPU. Images provided in the Carla
dataset are of size 88×200. We train our visual control pol-
icy following the branched structure of condition imitation
learning [4]. The speed of the car is also taken as the input.
Four differnt branches corresponds to four differnt high
level commands (straight, left, right, follow line) provided
by the global path planner. Each of the branches will output
three values indicating the steering angle, the acceleration
and the brake respectively. The embedding of the image is
also used to predict the speed of the car as an auxiliary
task. The same data augmentation methods as in [4] are
incorporated including contrast variations, brightness and
tone variations, adding Gaussian blur, Gaussian noise and
salt-and-pepper noise, and masking out a random set of
rectangles in the image. The batch size for training is 1000.
Our implementation code for this part is public1.

daytime daytime clear daytime
after rain sunset hard rain

Training 853 840 715 816
Evaluation 99 99 84 93

TABLE I: Sequence data distribution under the four dif-
ferent weathers of the original Carla dataset. Each of the
sequence consists of 200 frames.

The original Carla dataset consists of 3289 sequences
for training and 374 sequences for evaluating where each
sequence includes 200 frames. We separate them based on
the four weather conditions as shown in Table I.

We train all of the policies for 90 epochs with Adam
and an initial learning rate of 0.0002. The learning rate
is reduced by half every ten epochs. The training for
each of the three Single-Domain policies takes around 5
hours under its corresponding training weather condition.
The training of the Multi-Domain policy takes almost 16
hours since it uses all of three training weather conditions
as described in Section IV-B. of the main paper. The
evaluation dataset is used to choose the best model after

1https://github.com/onlytailei/carla cil pytorch



(a) Input (b) 5 epochs

(c) 50 epochs (d) 100 epochs

(e) 150 epochs (f) 200 epochs

Fig. 1: The effects of VR-Goggles transfer model training
at different training stages. After 50 epochs, the output of
the transfer model is quite stable.

each epoch. We randomly choose 30 sequences from the
evaluation data under each of the three training weather
conditions as the evaluation data for Multi-Domain. Our
policy shows comparable quality compared with the orig-
inal implementation [3] in training conditions as reported
in Table II of our main paper.

Three transfer models are trained to translate images
from the testing weather condition (daytime hard rain) to
each of the three training conditions for both CycleGan
and VR-Goggles. We follow the default settings of official
CycleGAN code2. We do not conduct any resizing or
cropping during training. The learning rate is 0.0002 for
the first 100 and decayed to 0 for the next 100 epochs.
The weight of the shift loss is 1000. The domain adaptation
takes almost the same time for both CycleGAN and VR-
Goggles, which is almost 15 hours. The last models for all
of the setups are used for the benchmark testing. In fact, the
visual quality of the generated image is quite stable after
50 epochs as shown in Figure 1, and we don’t really need
to train the model for 15 hours for applications. However,
to compare with the original CycleGAn fairly, we follow
their settings for the account of training epoch [5]. For the
experiments in the real world (Section IV.C. of the main
paper), we train CycleGAN and VR-Goggles for 50 epochs.

An interesting point in Table II of the main paper is that
testing result under the Multi-Domain policy is better than
in training condition for the Straight task. It is also the case
in the results presented in the original Carla benchmark
tests [3].

C. Comparing Policy Transfer Methods: Simulated Indoor
Navigation

To illustrate the difference between the policy transfer
pipelines of our proposed real-to-sim approach and several

2https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

representative sim-to-real approaches we conduct a direct
comparison in a simulated indoor navigation experiment.

We build an indoor office environment in Gazebo [7].
With two different sets of textures, we render two envi-
ronments: Sim-Env and ”Real”-Env, shown on the left
of Fig. 3. We train agents to learn navigation policies to
accomplish the task of navigating to chairs based purely on
its front-facing color camera readings; the agent obtained a
reward of −0.005 for a step cost, −0.05 for collision, and 1
for reaching the target. We illustrate the procedures of the
following approaches to transfer policies learned in Sim-
Env to ”Real”-Env, and show the average steps obtained
by the agents in evaluation during training in Fig. 3:

(1) From-Scratch [8]: Canonical A3C trained from
scratch on Sim-Env. We execute 8 training processes and 1
evaluation process, each with their own copy of Sim-Env.
We note here that this is all the policy training required for
our real-to-sim approach, as no fine-tuning or retraining of
the policy is needed for deploying it in real-world scenes;
also, since our approach decouples the policy training and
the domain adaptation, the adaptation networks can be
trained in parallel with the policy training. This is also the
policy training procedure for several sim-to-real approaches
[9], [10], except that an additional adaptation step has to
be added for each of the training frames; also, for each
visually different real-world scene, this line of approaches
needs to go through another complete policy training proce-
dure. (2) Multi-Domain (inspired by [11], [12]): Our A3C
variant of the domain randomization approach. The key
concept of domain randomization [11], [12] is randomizing
the textures, viewing angles, etc. of objects during the
training in simulation, such that when deploying the trained
model in real-world scenarios, the modality of the real-
world objects could just be naturally dealt with as another
variation. Here we adopt the same basic idea but implement
it under the constraints of our simulator (changing the tex-
ture for each frame is not as straightforward in Gazebo). In
detail, each of the 8 A3C workers renders its environment
with its own set of textures. All 8 sets of textures for the
various objects in the environment are shown in Fig. 2. The
evaluation during training uses Sim-Env as its environment.
We note here that this is all the policy training required
for the Multi-Domain approach, since once converged, the
agent is expected to be directly deployable in real-world
environments. Unfortunately, for our considered task and

W
al
l

C
ei
li
n
g

F
lo
o
r

C
h
ai
r

0 1 2 3 4 5 6 7

Fig. 2: 8 different sets of textures of the 8 workers for
training Multi-Domain (Sec. -C).



1000

500

0

1.250.0 0.25 0.5 1.00.75
1e5

Sim-Env “Real”-Env

From-Scratch

Multi-Domain

Progressive

Training Steps

E
p

is
o

d
e 

L
en

g
th

s

Sim-Env “Real”-Env

Fig. 3: Average episode lengths in evaluation during training, comparing policy transfer procedures of From-Scratch,
Multi-Domain and Progressive. We show median-filtered curves in line with [6]. An adapting phase is necessary for
Progressive in each new environment; while for our real-to-sim approach, From-Scratch is all the policy training needed.

setup, our A3C variant of the approach does not manage to
learn useful policies, as is shown by the green dashed line
in Fig. 3 (we trained it for 8 times the iterations shown but
still it fails to converge). We suspect that our variant of ran-
domizing textures might have imposed challenges for our
RL task where informative reward signals are sparse. We
suspect that more workers with more sets of textures could
lead to improved performance. However, with relatively
limited computing resources and with simulators where
there is no relatively efficient solutions for randomizing
the textures of objects at each frame, the Multi-Domain
method does not learn useful policies. (3) Progressive
[6]: Progressive Nets for transferring the policy of From-
Scratch on Sim-Env to ”Real”-Env. As described in [6],
a second column is added after the first column is trained
(the From-Scratch policy on Sim-Env). We note that for
this approach, although the adaptation of the policy in
new environments is significantly accelerated compared to
training from scratch, the overall policy training needed
contains both the initial training (the yellow block), and an
adapting phase (the cyan blocks) in case we want to deploy
the agent in new environments.

Further implementation details for Progressive: We fol-
low the same parameter initialization strategy as in [6] for
the output layers and the connection layers to guarantee
that the initial policy output of the agent is identical to
the first column. Observing that the simulation and real-
world environments presented in [6] are relatively more
visually similar than Sim-Env and Real-Env, we addition-
ally conduct experiments where we do not incorporate the
above parameter initialization strategy, as we suspect that
a random initialization might be more beneficial for trans-
fer scenarios where two environments are more visually
different. We found out that both the identical and the
random initialization works, with the former converging
faster. So we only report the experiments with the identical
initialization, shown in the blue line in Fig. 3.

D. Comparing Domain Adaptation Methods: Additional
Materials

We additionally validate the shift loss in the field of do-
main adaptation in outdoor urban street scenarios (where
we collect synthetic domain images s ∼ psim from the
CARLA simulator [3], and realistic domain images r ∼ preal
from the RobotCar dataset [13]). We compare the following
three setups: CyCADA [14]: CycleGAN with semantic
constraints, trained on single frames; CyCADA+flow: Cy-

CADA with temporal constraints ([2]), trained on sequential
frames; Ours: CyCADA with shift loss, trained on single
frames; we refer to this as the VR-Goggles.

We pretrain the segmentation network fS using Deeplab
[15]. It is worth mentioning that the original CyCADA pa-
per did not use the semantic constraint in their experiments
due to memory issues. We are able to incorporate semantic
loss calculation, by cropping the input in each iteration.

In Fig. 4, we show a comparison of the subsequent
frames generated by the three approaches. Our method
again achieves the highest consistency and eliminates more
artifacts due to the smoothness of the learned model.

Fig. 4: Comparison of the translated images for sequential
input frames for the different approaches. 1st row: two
subsequent input frames from the realistic domain, with
several representative images from the simulated domain
shown in between; 2nd ∼ 4th row: outputs from CyCADA,
CyCADA+flow and Ours. Our method is able to output
consistent subsequent frames and eliminate artifacts. We
adjust the brightness of some zoom-ins for visualization
purposes.

An additional implementation detail for all our domain
adaptation experiments: As a naive random crop would



highly likely lead to semantic permutations, we crop inputs
of the two domains in the same training iteration from the
same random position, and our empirical results show that
this greatly stabilizes the adaptation.

REFERENCES

[1] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time
style transfer and super-resolution,” in ECCV, 2016, pp. 694–711.

[2] H. Huang, H. Wang, W. Luo, L. Ma, W. Jiang, X. Zhu, Z. Li, and
W. Liu, “Real-time neural style transfer for videos,” in CVPR, 2017,
pp. 783–791.

[3] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“Carla: An open urban driving simulator,” in Conference of Robot
Learning, 2017, pp. 1–16.

[4] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy,
“End-to-end driving via conditional imitation learning,” in Interna-
tional Conference on Robotics and Automation, 2018, pp. 1–9.

[5] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-
image translation using cycle-consistent adversarial networks,” in
CVPR, 2017, pp. 2223–2232.

[6] A. A. Rusu, M. Večerı́k, T. Rothörl, N. Heess, R. Pascanu, and
R. Hadsell, “Sim-to-real robot learning from pixels with progressive
nets,” in Conference on Robot Learning, 2017, pp. 262–270.

[7] N. Koenig, B. A, and A. Howard, “Design and use paradigms for
gazebo, an open-source multi-robot simulator,” in IROS, vol. 3.
IEEE, 2004, pp. 2149–2154.

[8] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in ICML, 2016, pp. 1928–1937.

[9] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakr-
ishnan, L. Downs, J. Ibarz, P. Pastor, K. Konolige, et al., “Using
simulation and domain adaptation to improve efficiency of deep
robotic grasping,” arXiv preprint arXiv:1709.07857, 2017.

[10] G. J. Stein and N. Roy, “Genesis-rt: Generating synthetic images
for training secondary real-world tasks,” in ICRA. IEEE, 2018, pp.
7151–7158.

[11] F. Sadeghi and S. Levine, “CAD2RL: real single-image flight
without a single real image,” in Robotics: Science and Systems,
2017.

[12] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in IROS. IEEE, 2017, pp. 23–30.

[13] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 Year,
1000km: The Oxford RobotCar Dataset,” The International Journal
of Robotics Research (IJRR), vol. 36, no. 1, pp. 3–15, 2017.

[14] J. Hoffman, E. Tzeng, T. Park, J. Zhu, P. Isola, K. Saenko, A. A.
Efros, and T. Darrell, “Cycada: Cycle-consistent adversarial domain
adaptation,” pp. 1994–2003, 2018.

[15] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs.” IEEE transac-
tions on pattern analysis and machine intelligence, 2017.


	Detils for artistic style transfer and temporal error map
	Training details of Carla benchmark evalution
	Comparing Policy Transfer Methods: Simulated Indoor Navigation
	Comparing Domain Adaptation Methods: Additional Materials
	References

