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A Novel Point Cloud Compression Algorithm
Based on Clustering

Xuebin Sun, Han Ma, Yuxiang Sun, Ming Liu

Abstract—Due to the enormous volume of point cloud data,
transmitting and storing the data requires large bandwidth and
storage space. It could be a critical bottleneck, especially in tasks
such as autonomous driving. In this paper, we propose a novel
point cloud compression algorithm based on clustering. The pro-
posed scheme starts with a range image-based segmentation step
which segments the 3D range data into ground and main objects.
Then it introduces a novel prediction method according to the
segmented regions? shape. This prediction method is inspired by
the Depth Modeling Modes (DMM) used in 3D High Efficiency
Video Coding (3D-HEVC) for depth map coding. Finally, the few
prediction residual is efficiently compressed with several lossless
or lossy data compression techniques. Experimental results show
that the proposed algorithm can largely eliminate the spatial
redundant information of the point cloud data. The lossless
compression scheme reaches a compression ratio of nearly 5%,
which means that the point cloud is compressed to 5% of its
original size without any distance distortion. Compared with
other methods, the proposed compression algorithm also shows
better performance.

Index Terms—Range Sensing, Automation Technologies for
Smart Cities, SLAM

I. INTRODUCTION

A. Motivation

IN recent years, thanks to the increasing capabilities of 3D
data acquisition in computer vision and autonomous driving

technology, there has been an extensive proliferation of 3D
point cloud applications in autonomous driving technologies
such as simultaneous localization and mapping (SLAM) [1],
autonomous navigation [2], object detection [3] and tracking
[4]. A point cloud is often composed of a considerable number
of points that capture highly detailed geometric information,
along with one or more attributes, such as color or normal.
Modern 3D laser sensors, for instance, the Velodyne HDL64,
are capable of measuring more than 120 thousand points
per frame, which imposes a huge burden for storage and
transmission with current technology. Therefore, compression
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of point data has become an essential task for the further
development of autonomous driving.

A point cloud is often composed of a large number of
points over a large area. Thus, it is difficult to remove
redundancy with the existing methods. Point cloud data from
Velodyne HDL64 is structured, and can be converted into
range images. However, it is not ideal to directly use an
image coding technique as a compressing method. For one
reason, the traditional image or video compression algorithms
(i.e. JPEG2000, JPEG LS, High Efficiency Video Coding
(HEVC)), can encode only integer pixel values, which are
not suitable for Light Detection And Ranging (LIDAR) data
recoding in floating-point numbers. Additionally, each pixel
in the image represents the color value, whereas the pixel
in the range image denotes the distance from the object to
the LIDAR. It is inefficient to encode the range image using
the image-based prediction methods. Considering the loss of
information, the Voxel grid or Octree-based methods are not
good choices for autonomous driving. As in object detection or
obstacle avoidance algorithm, even a small loss of information
may result in an error.

To avoid distortion and information loss, we propose a
lossless compression scheme based on point cloud clustering.
Besides that, lossy compression methods are also explored.
The proposed method benefits from a novel prediction tech-
nique, which takes the correlation of the distance information
of points into consideration to remove spatial redundancies
rather than using the image prediction method directly. Com-
pared with image-based point cloud compression methods, the
proposed approach achieves better performance in terms of the
compression ratio.

B. Contributions

In this paper, we propose a novel point cloud compression
framework for the structured LIDAR point cloud data. Firstly,
we convert the structured point cloud data into range image,
which can save nearly three-fourths of the storage space.
Secondly, inspired by the DMM technique adopted in 3D-
HEVC [25], we use a clustering method to remove the spatial
redundancy of the point cloud data. Thirdly, we use traditional
lossless or lossy schemes to encode the residual data. Com-
pared with the octree or image-based point cloud compression
methods, our proposed method utilizes the spatial structure of
point cloud data and removes the spatial redundancy. As a
result, the proposed method obtains an impressive compression
performance.
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C. Organization

The rest of this paper is organized as follows. Section
II gives an outline of related work. Section III presents an
overview of the point cloud coding framework. Then, a de-
tailed description of the proposed method is brought in Section
IV. Section V is devoted to the experimental results and
comparison with other novel methods. Finally, the conclusion
and future work are given in the last section.

II. RELATED WORK

Over the past decade, many algorithms for point cloud com-
pression have been proposed. According to the characteristics
of point clouds, these compression algorithms can be roughly
classified into two categories: structured and unstructured point
cloud compression.

A. Structured Point Cloud Compression

LIDAR point cloud data compression: Ahn et al. [5]
focused on efficient geometry compression of large-scale 3D
point cloud data generated by a terrestrial laser scanner. The
point cloud data are mapped into range images coded by an
adaptive radial distance prediction method. Their technique
achieves better compression performance compared with con-
ventional image or video coding algorithms. Tu et al. [6]
explored compression of continuous point cloud data using
image compression methods. They convert the raw point cloud
data into range images, and use image or video coding algo-
rithms to reduce the volume of the data. As the image-based
point cloud method is unable to utilize the 3D characteristics
of point clouds, Tu et al. [7] proposed a point cloud data com-
pression method using SLAM-based prediction. By mapping
the point cloud onto panoramic images, Houshiar et al. [8]
exploited the use of conventional image-based compression
methods for 3D point clouds.

RGB-D raw data compression: Wang et al. [9] proposed
an efficient compression method for RGB-D data, which
combines ego-motion estimation, 3D image warping tech-
niques, and a lossless coding scheme to efficiently remove the
redundancy existing in depth images. Considering the virtual
view distortion, Yang et al. [10] presented a region-based
Quantization Parameter (QP) adjustment method to reduce the
depth map coding complexity. Morell et al. [11] proposed a
geometric 3D point cloud lossy compression system, in which
the Random Sample Consensus (RANSAC) method is used to
extract planes from a point cloud. The points in each scene
plane are represented as a Delaunay triangulation and a set
of point/area information. Compared with the Voxelgrid and
Octree methods, the proposed scheme has similar behavior,
but lower error in the reconstruction phase.

B. Unstructured Point Cloud Compression

Tree-based methods, which can be lossless, are popular
methods for compressing 3D data, like point clouds. Else-
berg et al. [12] proposed an octree structure for efficient
processing of 3D laser scans, which can be further used for
file format exchange, fast point cloud visualization, and 3D

scan matching. Kammerl et al. [13] proposed a technique to
compare the octree data structure difference of consecutive
point clouds, by which the temporal redundancies of point
cloud streams can be detected and removed. Zhang et al. [14]
decomposed a 3D color point cloud into many homogeneous
blocks, and calculated its fitting plane parameters using the
RANSAC method for every subset [28]. Then, a 2D Discrete
Cosine Transform (DCT) transform is performed to compress
the color information of each grid. Golla et al. [15] propose
a real-time compression method for point cloud data based
on local 2D parameterizations of surface point cloud data.
They use a pre-processing method to split data into height
map and use standard image coding methods to compress local
details. Gumhold et al. [16] propose a spanning prediction tree
technique for point-cloud compression, in which they construct
a spanning tree over the vertices, followed by the encoding
of their corresponding prediction error. Schnabel et al.[17]
proposed a progressive compression method for point sampled
models based on an octree decomposition of space.

Some point cloud compression methods are specially de-
signed for immersive 3D human body compression. Thanou et
al. [18] designed a compression framework for a dynamic 3D
point cloud sequence, where they introduce a novel approach
for motion estimation and compensation for geometry and
color information. Zhang et al. [19] presented a graph-based
coding method to compress attributes on 3D point clouds,
which adopts graph transformation to decorrelate the color
signal. The similar approach in Nguyen et al. [20] uses
graph wavelet filter banks to compress moving human body
sequences. Their scheme outperforms traditional methods such
as HEVC. Mekuria et al. [21] introduced a generic compres-
sion method for real-time 3D tele-immersive video, which is
suitable for mixed reality applications. In their works, the
octree structure is adopted in intra frames, and a prediction
method is performed for inter coding by portioning the octree
voxel space into macroblocks.

While the aforementioned approaches can significantly re-
duce the point cloud data size with ignorable distortions, few
of them aims at compressing LIDAR point cloud data in
autonomous driving. With its characteristics of enormous vol-
ume, uneven distribution, it is difficult to efficiently compress
LIDAR data using these algorithms. In this study, we propose
an efficient point cloud data compression approach, especially
for LIDAR point cloud data.

III. OVERVIEW OF POINT CLOUD CODING FRAMEWORK

In the paper, we address the problem of compression of
point cloud data from 3D LIDAR used in the autonomous driv-
ing systems. The architecture of the point cloud compression
scheme is presented in Fig. 1, where the blue parallelograms
represent processing steps and the ochre parallelograms indi-
cate data. In particular, the processed data, which need to be
further compressed by lossless or lossy coding methods, are
marked with an asterisk.

Outlier removal filter: In practice, LIDAR sensors such
as the Velodyne HDL-64 produce a large number of out-
liers during the range measurement. The outlier points tend
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Fig. 1. Architecture of the point cloud compression scheme

to reduce the efficiency of the compression. Therefore, an
efficient Radius Outlier Removal filter is utilized [29], which
will remove the points in the input cloud that do not have at
least a certain number of neighbors within a defined range.

Range image conversion: Our experiment is performed
with the KITTI dataset [22], which consists of several specific
scenarios, such as road, city, residential and campus scenes.
The point cloud data are captured by the Velodyne HDL-64E
rotating 3D laser scanner, which covers 26.8◦ vertical and 360◦

horizontal fields of view, with 64 beams and 0.18◦ angular
resolution. As the raw data are obtained by measuring the
radial distances from the LIDAR center to the object, the data
are structured and can be converted to range images.

Segmentation: There is great redundancy information in
the points belonging to the same object. Thus, an efficient
clustering method is proposed. To avoid complex computation
in 3D space,the clustering method is performed on the range
images to segment 3D range data into different objects.

Prediction: By using RANSAC [28], the points belonging
to the ground are fitted by a 3D plane, and the difference
between them is calculated. Moreover, similar to the DMM
technique adopted in 3D-HEVC [25], we use the average depth
value of each cluster to replace their real values. By using this
method, we can obtain the predictive image. The residual data
between the predicted and real range image need to be further
processed.

Contour map coding: The segmentation is partly stored
as the contour image, consisting largely of low-frequency
regions with structured boundaries. To remove redundancy
across border regions, we use sliding windows to encode the
contour information with integers [26].

Arithmetic Coding: The values of each region are orga-
nized in laser scanning order and compressed by the arithmetic
coding scheme.

Lossy or lossless compression: In order to maximize the
efficiency of the compression method, we explore both lossless
and lossy methods to encode the residual data [27].

IV. PROPOSED ALGORITHM

The proposed efficient point cloud compression strategy
mainly consists of four techniques, range image conversion,
point cloud segmentation, prediction, and coding method. Each

technique will be detailed in this section. Figure 2 gives the
overall workflow of the proposed methodology. The first step
is the conversion of point clouds into range images. In the
second step, a clustering process is executed based on the
range image to segment the point cloud into road and main
objects. The next step of the algorithm is the prediction of
the range image based on the segmentation result. Finally, the
contour map and residuals between the prediction and the real
range image are computed and coded by either lossless or
lossy coding methods.

A. Range Image Conversion

Most LIDAR sensors provide raw data in the form of
range distance per laser coupled with a timestamp and an
orientation of the beam, which provides a chance to translate
the data directly into a range image. The numbers of rows and
columns are determined by the number of lines and horizontal
resolution of the laser sensor, respectively. As the point cloud
data of the LIDAR are organized, we losslessly project the
3D point cloud onto a spherical image by calculating the
Euclidean distance per point. The results are shown in Fig.
2 (a) and (b).

B. Point Cloud Segmentation

Due to the high requirement of segmentation accuracy and
timeliness, we use the segmentation approach from [23] and
[24] without modification. The segmentation method is based
on the range image. With the aim to extract the ground, we
replace each column c of the range image R with a series
of angles αr−1,c. Each of these angles represents the angle
between two adjacent points A and B and the horizontal
surfaces, as illustrated in Fig. 3.

Point A and B are derived from two neighboring rows
r − 1 and r of the range image, represented by Rr−1,c,
and Rr,c, respectively. With a priori angle knowledge of
vertically consecutive individual laser beams, the angle ? can
be calculated using the following trigonometric rules:

α = arctan(|BC|, |AC|) = arctan(∆z,∆x)

∆z = |Rr−1,csinζα −Rr,csinζβ|
∆x = |Rr−1,ccosζα −Rr,ccosζβ|,

(1)
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where ζα and ζβ represent vertical angles of the laser beams
corresponding to rows r − 1 and r, respectively. If point A
and B belong to the ground, the value of α will be small. A
threshold of α is defined to extract the ground.

After removing the ground from the point cloud, clustering
is applied. Fig. 4 depicts the schematic diagram of the clus-
tering method. Point A and B represent two random points
measured from a LIDAR sensor located at the ordinate origin
with the illustrated laser beams OA and OB. β represents
the angle between the laser beam and the line connecting
point A and point B. Practically, the angle ? provides valuable
information to judge whether two points belong to the same
object or not. β is defined as follows:

β = arctan
|BH|
|HA|

= arctan
d2sinα

d1 − d2cosα
, (2)

where d1 and d2 represent the distance of OA and OB, re-
spectively. The angle α donates the angle between the beams,
which can be obtained from the datasheet of the scanner.

The angle ? always takes larger values for the points
belonging to the same object. On the other hand, it takes
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small values when the depth difference between neighboring
points given on the range image is substantially larger than
the distance from one point to the other laser line. This
phenomenon allows us to define a threshold θ for the angle
β, which plays the role of separating any two points into
different clusters or merging them into one. If β is smaller
than the threshold θ, the two points are classified into different
segments. Otherwise, the points are considered as belonging to
the same object. Fig. 2 (c) and (d) show the clustering results
of the method.

Through the above steps, we not only extract the ground
from the point cloud but we also classify the remaining
points into different categories, which paves the way for
further prediction. The next section details how to generate
the prediction map according to the clustering results.

C. Prediction

1) Region Prediction Inspired by DMM: 3D-HEVC is an
extension of the HEVC standard, which is used for encoding
multi-view video and depth data, captured by RGB-D sensors.
The range image of LIDAR is similar to the depth image in
3D video. However, compared with the depth image, points in
range image need more bits to represent the distance.

For the depth map, the 3D-HEVC encoder uses the DMM
as a new additional intra coding tools. The DMM consists of
two splitting methods, namely, wedgelet and contour splitting.
The prediction block is divided into two independent areas by
the splitting method, as illustrated in Fig. 5. For a wedgelet
segmentation, the two areas are split by a straight line, while
contour splitting uses an arbitrary shaped curve to separate
the block. Each segmented region is predicted by using a
Constant Partition Value (CPV). Block subtraction between the
predicted block B predict(x, y) and the true block B true(x,
y) is used to obtain the residual block B residual(x, y):

Bresidual(x, y) = Btrue(x, y)−Bpredict(x, y) (3)

As the pixel values of the residual block are all nearly zero, the
entropy of the block is smaller. Compared with the true block,
we can use few bits to encode the residual block. Moreover,
split information will be stored in a binary matrix equal to the
block size.
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Inspired by the DMM technique adopted in 3D-HEVC for
the depth maps coding [23], we adopt a similar approach.
As depicted in Fig 2 (c), the range image is split into various
segments. In our prediction method, each segment is predicted
using the average value of the points belonging to the cluster.

2) Ground Prediction with RANSAC Method: By using
RANSAC [28], the points being clustered in the ground are
fitted by a 3D plane. In the Cartesian coordinate system, a
plane can be expressed as

d = ax+ by + cz, (4)

where (a, b, c) denotes the normal vector n and d represents
the distance from the origin to the plane. According to the
parameters of the LIDAR sensor, we calculate the virtual
points’ coordinates using the RANSAC-fitted plane and con-
vert these points into a predicted range image. The difference
between the real range image and the predicted range image
is calculated as residual data for further processing.

3) Prediction Result: Through the above steps, a residual
map is calculated between the range image and prediction
map, which is prepared for further lossless or lossy com-
pression. As we can see, the difference between the predicted
and the actual depth map is nearly zero, as shown in Fig. 2
(g). As a result, we can use few bits to encode each point,
which demonstrated our proposed method can largely remove
the spatial redundancies within the point cloud. In the next
section, we will explore lossless and lossy coding methods
for coding the contour map and residual data to reduce the
coding redundancy.

D. Coding Method

1) Contour Map Encoding: In order to reconstruct the
range image, we also need to encode the contour map.
Therefore, an efficient contour encoding method is explored
[26]. The segmentation data include the per-segment shape,
and the per-region value. The data can be better compressed
by decoupling these two components.

Boundary encoding: With the aim of encoding the segment
shape, we take the boundary pixels between the two segments
into consideration. Removing the per-pixel labels, a boundary
mapping is generated in which a pixel (x, y) is 1 if one of the
pixels in (x+1, y) or (x, y+1) belongs to a different segment
and 0 otherwise. The boundary map is uniformly subdivided
into 4×4 pixels macroblocks. Each block takes a random value

of 2n distinct values, which needs n bits to encode without
further operation.

Per-region value encoding: So far, we have only concen-
trated on transforming the boundary of the segment image.
However, each region value is equally important. The bound-
ary map splits each image into different parts. As all pixels
in the same segment have the same value, only one value per
segment needs to be stored.

Exceptions: The entire contour map can be reconstructed by
the information provided in the boundary encoding part. Pixels
not on a segment boundary are easily recovered according
to the per-region value encoding information. However, we
should pay more attention to the pixels between the two bor-
ders, which rarely take the value of their neighbors. Therefore,
we construct an array individually to store the locations of
these pixels and their values.

Reconstruction: Firstly, the boundary map is reconstructed
according to the encoding data. Then, we fill the data for each
segment.

2) Residual Data Compression Method: Several lossless
encoding schemes are considered to compress the residual data
after prediction. These include ZStandard, LZ4, LZ5, Lizard,
Deflate, and BZip2. Besides these, we also explore traditional
lossy image coding methods,like JPEG and JPEG2000, to
compress the residual data.

V. EXPERIMENTAL RESULTS

A. Experimental Conditions and Evaluation Metrics
The proposed algorithm is implemented in C++ using some

functions of the Point Cloud Library (PCL). The experiments
run on an Intel Core i5-6300HQ CPU @2.30 GHz with 4-
GB memory. The KITTI dataset is chosen to conduct our
experiments. The raw data set consists of four scenes: City,
Residential, Campus and Road. For each sequence, 100 frames
are encoded.

The performance of the proposed method is evaluated in
terms of compression rate and Root Mean Square Error
(RMSE). The compression rate is the ratio between the com-
pressed data size and the original one [32]. The lower the
value the better the performance.

CR =
Sizecoding
Sizeoriginal

× 100% (5)

where CR represents the compression rate. Sizeoriginal and
Sizecoding denote the sizes of the point cloud data before and
after compressed, respectively.

The RMSE represents the square root of the closest points
between the original 3D point cloud and the reconstructed
one, which is a measurement of reconstruction quality. Smaller
RMSE values mean that the reconstructed point cloud is closer
to the original point cloud. Give a m × n range image, the
RMSE is defined as follows:

RMSE =

√√√√ 1

m× n

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2, (6)

where I and K represent the original and reconstruction range
image, respectively.
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B. Lossless Compression Results

The lossless compression results are shown in Fig. 6.
Fig. 6 (b) depicts the average compression ratios with our
proposed prediction method combined with different lossless
compression schemes, including ZStandard, LZ4, LZ5, Lizard,
Deflate, and BZip2. For comparison, the point clouds are also
directly encoded with these lossless compression algorithms,
without any processing, as shown in Fig. 6 (a).

From Fig 6 (a), it can be observed that the compression
efficiency of stand-alone lossless methods is not as good as
the one of the proposed approach. Among the lossless coding
methods, the BZip2 method achieves the best performance,
with a compression ratio of nearly 22%, while the performance
of the Lizard method is poor, with a compression ratio
of around 50%. Lossless coding methods are designed by
removing the coding redundancies of data without considering
the characteristics of the point cloud structure. Therefore, the
compression rates for the point clouds of different scenes
hardly shows much difference.

From Fig 6 (b), as we can see, the combination of the
proposed prediction approach and the lossless compression
method achieves an impressive compression ratio. The small-
est compression ratio is 3.3%, achieved by the combination
of the proposed method with the BZip2 scheme for the point
cloud of the city scene. Even the worst compression efficiency
is 10.56%, achieved with the combination of the proposed
method and the Lizard scheme. As the structure of point cloud
data in city scenes is single, which contains a large number
of ground points, the structure of contour map is simple. As a
result, we can use just a few bits to encode the contour map.
In contrast, the point cloud of a residential scene is complex,
and the compression ratio is much higher.

Comparing Fig 6 (b) with Fig 6 (a), it can be seen that
for the point cloud of the same scene, the combination of the
proposed method with the lossless methods achieves much
lower compression ratio. The above experimental results indi-
cate that the proposed method can largely remove the spatial
redundancy of the point cloud data. To achieve an optimal
compression efficiency, the proposed prediction process is
indispensable.

Table 1 depicts the compression ratio results of the proposed
lossless compression method compared with the octree method
[29]. The encoding precision of the octree method is set
to 1 cubic millimeters, 5 cubic millimeters, and 1 cubic
centimeters, respectively. It can be observed that the proposed
method obtained smaller compression rate than the Octree
method.

TABLE I
COMPRESSION RATE RESULTS COMPARED WITH THE OCTREE METHOD

Scene Lossless method Octree method

(Propose method+BZip2) Distance Resolution
1mm3 5mm3 1cm3

Campus 7.14 20.73 12.95 10.53
City 3.31 20.14 12.70 10.28
Road 4.48 19.69 12.01 9.60

Residiential 4.98 20.35 12.57 10.15
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Fig. 6. Compression ratios of different lossless compression methods (a)
stand-alone lossless compression (b) combination of the proposed method
with lossless methods

C. Lossy Compression Results

Besides the lossless compression methods, traditional lossy
image compression methods, such as JPEG and JPEG2000
[30] [31], are also explored to compress the residual data. To
evaluate the performance, we compare the results of our algo-
rithm with image-based [6] and SLAM-based [7] point cloud
compression methods. The two methods are also designed for
vehicle point cloud compression.

As residual data are recorded in floating-point numbers, the
traditional techniques can encode only integer pixel values. In
order to decrease the distance error, we try to use a recurrent
data coding method which treats the error after each step as the
new input and applies the JPEG or JPEG2000 coding method
again to compress the error. This idea is illustrated in Fig. 7.
This approach introduces a trade-off between distance error
and the compression efficiency. In our scheme, the data are
encoded twice.

Fig. 8 shows the performances of our algorithm compared
with Tu et al.’s recently proposed methods [6], [7]. Compari-
son results are given in terms of the RMSE-bitrate curves of
two scenarios of point cloud data. The RMSE-bitrate curves
reflect the relationships between the bit rate and RMSE. A
smaller bitrate and RMSE means better coding performance,
as it achieves a lower RMSE with smaller bandwidth simul-
taneously.
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It can be observed that the proposed algorithm has the
outstanding advantages with bit rate and RMSE. As Tu et
al’s method seldom do preprocessing for the point cloud
data, there are still redundancies with the point cloud. Our
proposed method needs a much lower bit rate in the small
RMSE situation. In addition, because JPEG2000 works better
than JPEG, the combination of the proposed method with
JPEG2000 shows better performance.

In order to make an intuitionistic performance comparison
with the lossless method, we also plot the best lossless
compression result with a red asterisk in the figure. As the
RMSE of the lossless method is zero, the cure of the lossless
method is only a point. The bit rate for the city and residential
scene point cloud with the lossless BZip2 method is 1090
KB/s and 1680 KB/s, respectively. As we can see, compare
with the JPEG2000 method, the lossless method also shows
strong competitiveness.

The above experimental results indicate that the proposed
prediction method can largely remove the spatial redundancy
within the point cloud, achieving a high compression efficiency
by either a lossless or lossy coding method.

D. Contribution of Each Step for Compression Efficiency

With the aim of evaluating the contribution of each step,
we record the average changes of data volumes of a frame of
the point cloud during compression. BZip2 and JPEG2000 are
selected as the representative methods to encode the residual
data. For JPEG2000, we set the parameter CompressionRatio
as 2, which means the size of the compressed data will be half
of its original size.

The results are illustrated in Table II. As we can see, after
the conversion, the data size is reduced to nearly a quarter
of its original size. The prediction efficiency is related to the
complexity of the point cloud. The data volume can be reduced
to half for the point cloud with a simple structural complexity,
such as city or campus scenes. The last contribution comes
from the coding part. It is noteworthy that, compare with
the lossless methods, the lossy JPEG2000 method hardly
shows any advantage or is even worse. This is because
JPEG2000 is specially designed for image compression by
removing the redundancies of the color information. However,
the residual data are based on distance information. Moreover,
the proposed prediction step has already removed the spatial
redundancy of the point cloud.

(a)

(b)

Fig. 8. Comparision of RMSE-bitrate curves of two scenarios with Tu et al.’s
methods: (a) city scene; (b) residential scene

The steps of conversion, prediction, and coding are all im-
portant techniques of the proposed scheme. Their contributions
are not simply added together, but they have a multiplication
effect. Thus, even a small improvement in a single step can
make a big difference.

E. Speed Performance

The proposed compression method consists of four steps,
namely, range image conversion (step 1), point cloud segmen-
tation (step 2), prediction (step 3) and coding process (step
4). We test the average speed performance of the proposed
method with 100 frames point cloud sequences. The average
coding times for a single point cloud of the proposed lossless
and lossy methods are presented in Table III, respectively. As
we can see, the total coding time is 0.502s for the lossless
method (Bzip2) and 0.378s for the lossy method (JPEG2000).

VI. CONCLUSIONS AND DISCUSSION

In this paper, an efficient compression scheme for LIDAR
point cloud data, which is suitable for applications of au-
tonomous driving, has been introduced. Experimental results
demonstrate that the proposed method outperforms the other
methods. The lossless method can compress the point cloud
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TABLE II
AVERAGE CHANGES IN DATA VOLUMES DURING COMPRESSION (KB)

Point Cloud Scene Original Point Cloud Size After Step 1
Range Image Conversion

After Step 3
Prediction

After Step 4 Coding

Lossless (BZip2) Lossy (JPEG2000)

Campus 3208 835 449 150 201
City 3149 837 413 109 178
Road 3331 822 513 149 240

Residential 3222 823 537 168 212

TABLE III
AVERAGE CODING TIME OF PROPOSED METHODS (S)

Coding method Step 1 & Step 2 Step 3 Step 4 Total
Lossless 0.17 0.072 0.26 0.502

Lossy 0.17 0.072 0.136 0.378

data to 1/20 of its original size without any distance distortion.
It owes its performance to an efficient prediction method. To
the best of our knowledge, our method is the first to extend the
DMM technique in 3D-HEVC to point cloud compression. It
utilizes both the advantages of the image coding method and
characteristics of the point cloud. Future study will concentrate
on dense 3D point cloud maps compression.
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