Image Detector Based Automatic 3D Data Labeling and Training for
Vehicle Detection on Point Cloud

Zhengyong Chen!, Qinghai Liao?, Zhe Wang', Yang Liu? and Ming Liu?

Abstract— Nowadays, a large amount of labeled data is
crucial for deep neural network training. However, data labeling
is still a time- and labor-consuming task, especially when
labeling 3D point clouds. Meanwhile, object recognition has
achieved great success on 2D images, even beyond the ability
of humans. In this paper, we propose an effective framework to
produce labeled data by using an image detector as a supervisor,
and we train the network with a simple trick to eliminate
noisy labels. For object-sparse scenes, this method is able to
obtain good label data, while for object-dense scenes, we can
use our training method to detect some of the corrupted labels.
This is realized by building a cohesive camera and LiDAR
system (named “Licam”) and performing target frustum region
proposal on point clouds using the camera detection result.
Efficient and effective vehicle detection is achieved based on
this learning and training framework. We examine this method
on the KITTI dataset [7] and our own road running data
collected from a micro electro mechanical system (MEMS)
LiDAR, demonstrating fast and accurate detection results. The
results show that our automatic data labeling and training
framework is effective and efficient. It provides the ability to
obtain large-scale labeled data, and is easy to use for online
learning.

I. INTRODUCTION

Recently, 2D image recognition has had great achieve-
ments in areas such as image classification[1], object
detection[2],[3] and semantic segmentation[4]. In certain
image recognition tasks, machines can even work better than
humans. Behind these achivement is data support from large-
scale labeled datasets, like ImageNet[5], which has more
than 100,000 sysnets and provides on average 1000 images
to illustrate each synset. These sufficient data supply the
strength to train deeper and deeper networks. However, for
the increasingly popular 3D sensors, 3D object detection has
not yet achieved a similar satisfactory result. One reason is
the lack of enough labeled data to train a common 3D feature
extraction model, like an ImageNet pre-tained VGG16[6]
network. Taking the KITTI dataset[7] as an example, its 3D
object detection data consists of only 7481 training point
clouds, and the detection results of existing methods are still
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not as good as our expectation. For this problem, we propose
a simple but effective method to automatically label data and
do 3D object detection on KITTI dataset and the dataset we
collected with our own MEMS LiDAR.

Data labeling is a time- and labor- consuming task, es-
pecially 3D data labeling. Within 3D data labeling, point
cloud data labeling has been extensively studied under many
different situations. Most of the approaches label point clouds
by training a graphical model, or a classifier captures various
features from contextual, spectral, prior knowledge and geo-
metrical information(e.g., [10],[11]). Some researchers, like
the authors of [12], have also proposed a detection-based
approach for labeling in reconstructed 3D point clouds. But
these methods are based on hand-crafted features and cannot
provide satisfactory accuracy and speed. In this work, we
set up a cohesive system with a camera and MEMS LiDAR,
which we call “Licam”, so we can easily and accurately re-
project the image detection result into the point cloud and
finally obtain the target frustum region (as shown in Fig. 3).
We choose the SSD-detector[3] for image detection. Since it
is more accurate and can be run real-time, which is beneficial
for online learning. In addition, our MEMS LiDAR is cheap,
dense and able to produce dense and abundant point cloud
data. This makes producing massive labeled data possible.

But the labeling results produced by reprojecting image
detection result to point cloud are not able to fit the needs
of deep learning training data. Because when there is la-
bel noise, they tend to over-fit[18]. For any classification,
the cornerstone of deep learning based detection models,
a degradation in performance is inevitable when there is
noise in the training data. To overcome this problem, re-
searchers have mainly focused on loss function tolerance
analysis[18],[25] and learning noise distributions to compen-
sate the network[24],[26],[27]. For this problem, we design
a training strategy to use a pre-trained network to detect and
avoid corrupted data, and it works for binary classification.

Researchers are still exploring how to use deep learning
to do object detection with 3D point cloud data. Most
existing deep learning methods project 3D point clouds as
2D images and do image detection by fine-tuning image
pre-trained models(e.g., [13]). Some researchers have also
used a supervised 3D convolutional neural network(CNN)
to process point clouds (e.g., [15], [16]). Different from
previous methods, Qi et al. proposed a 3D object detection
model which processes raw point clouds and images directly.
But this approach is heavily dependent on image detection
results and sometimes does not work, such as in night-time
situations. In this paper, we propose an approach which only



uses an image detector as a supervisor of a PointNet++[8]
classifier and works for target frustum region proposal and
data labeling. We propose an ‘“auto-min-cut” segmentation
method and feed clusters into the classifier. Moreover, due
to the density of MEMS point cloud data, the model can
more easily do detection.

The main contributions of this paper are as follows:

o We propose an efficient auto-labeling and segmentation
framework that automatically and precisely labels 3D
point cloud data.

« We propose a method to detect and avoid corrupted data
for binary classification.

o To the best our knowledge, this is the first use of
auto-labeled point cloud data to train a deep neural
network. We implement image detector-labeled vehicle
and pedestrian detection on our MEMS LiDAR.

II. RELATED WORK
A. Automatic Labeling

3D data labeling has been extensively studied over the
years. Previous works have focused on: using hand-crafted
geometrical and spectral features from a single LiDAR
sensor[11] and integrating image information and point cloud
features[10],[12]. Anand et al.[10] used a graphical model
that captures various features and contextual relations from
visual appearance and some prior knowledge. Lai et al. [12]
meanwhile, re-project image detection results into the point
cloud, labeling objects in a reconstructed 3D scene and using
an markov random filed (MRF) model to do segmentation.
The point cloud data is collected by a kinetic-style sensor,
and the object is rotated on a turntable, but this costs large
amounts of money and time. The above approaches do not
provide sufficient results to use as training data for deep
learning.

B. Training with Noisy Labels

In every classification model, degradation of performance
is inevitable when there is noise in the training labels[24].
The simplest approach is to remove the corrupted data manu-
ally. However, this is unacceptable when dealing with large-
scale data. To address this problem, researchers have mainly
focused on loss function promotion and noise distribution
learning. [18] analyzed the noise tolerance properties of
different loss functions under risk minimization. They found
that the 0-1 loss function has impressive noise tolerance. [25]
proposed two approaches to optimize the loss function to
improve the noise tolerance of the model, and the randomly
labeled noise is class-conditional in the paper. Finally, [24]
and [26] introduced an extra noisy layer and an asymmetric
bernoulli noise model into the network respectively to match
the noisy label distribution, but their results are not very
good.

C. Object Detection on Point Cloud with Deep Learning

There are many outstanding works on object detection on
point clouds with deep learning. These approaches can be
simply classified into two directions. The first is transforming

3D data to 2D images from different views, and using rela-
tively mature 2D image based models, such as MV3D[13],
to do detection. In the same direction, some approaches
transform mature 2D image based techniques to 3D, like
Vote3Deep[15] and VoxNet[16], using 3D convolution to
extract 3D features of the point cloud. The second direction
is to develop a specific model or technique to deal with point
clouds, like Frustum PointNet[17], which utilizes the previ-
ously proposed method PointNet[14] to extract 3D features,
together with image information, achieving the state-of-the-
art. In our work, the automatic labeling and noise-robust
training framework can help improve these models.

III. APPROACH

Our target is to automatically label data and train a point
cloud classifier to implement vehicle detection. The first task
is to set up the Licam, which serves to automatically label
data. The next task is to train the network with these noisy
data. The input to our final model is a point cloud cluster,
which can be produced by segmentation methods such as
Euclidean segmentation[19] and min-cut segmentation[9].
Finally, we apply this point cloud classifier to vehicle de-
tection combined with Euclidean segmentation. The whole
process is illustrated in Fig. 2. We describe each component
below.

A. Automatic Point Cloud Labeling

We re-project the detection result from the image detector
onto the point cloud, and from here the frustum region of
interest is proposed. This region with labels is then refined
by further segmentation.

Image Detector: Currently, there are plenty of image
detection models, such as Faster-RCNN[20], R-FCNJ[21],
SSD-network[3], YOLO[22] etc. The detection results can
be trusted because these deep neural networks usually have
a low false detection rate. Here we choose SSD-network as
the image detector. We only use the detected point clouds as
positive samples, so mis-detection will not have an effect on
our method.

Cohesive Camera & LiDAR System: The basis of our
automatic point cloud labeling is the Licam. With this
system, we can get RGB-D data easily, incorporating the
results of an image based model and point cloud based
model. The constructed MEMS LiDAR-camera system is
shown in Fig. 3(illustrating the MEMS and camera, the
related position and the fixed device).

Assuming we already have the image detection result,
through the flow diagram provided in Fig. 2 we can crop
the corresponding point clouds easily and coordinate system
transformations as shown in Fig. 1. One can easily conclude
that the more close the centers of the camera and LiDAR
are, the more precise the re-projection result will be.

B. Frustum Proposal and Refined Segmentation.

Target Object Point Cloud Proposal: The region of interest
is proposed after the object is detected by an image detector.
Now the frustum region is isolated but still contains some
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Fig. 1: Graph illustrating the process of transformation from the image detector’s detection box to frustum proposal in the

point cloud.

{ Licam /

Image ii'
Image Detector

Bounding Box

Frustum Proposal
Min-Cut Segmentor

Label Data

PointNet

Point Cloud ii'

Eudidean segmentor

Training Process

Clusters

Pointcloud classifier

Label

Fig. 2: Process of automatically labeling and training net-
work with noisy labels for vehicle detection.

background points, as shown as Fig. 4c and Fig. 4g. In this
process, a seed point which is used for min-cut segmentation
is found after reprojecting the detection result into the point
clouds:

The min-cut segmentation algorithm[9] builds a k-nearest
neighbors graph, assumes a background priority, adds hard
foreground constraints, and finds the min-cut to compute a
foreground-background segmentation. These features of the
frustum region(foreground is isolated and occupies a large
part of the point cloud) are well suited to using min-cut
segmentation to extract the refined foreground. The result

D4

Fig. 3: Cohesive MEMS LiDAR and camera system, which
we call a “Licam”. The blue area is the MEMS LiDAR, and
the bottom is the camera.

of min-cut segmentation is very clean if all the factors are
satisfactory, as shown in Fig. 4d and Fig. 4h.

Background Point Cloud Proposal: In our method, we
only find the image which does not contain the target object.
Or we can use a self-designed UI to point out those regions
which are not nearby the target object. These points are used
as seed points projection on the image. The corresponding
point clouds of the background images and the seed points
can also follow the above steps to produce background
clusters.

C. Vehicle Detection

In this paper, we focus on vehicle detection, so which is
a binary classfication problem. First of all, we use the eu-
clidean segmentation[19] method to segment the point cloud
to clusters. Then a PointNet++[8] classification network is
used to infer a tag to the cluster. The process is shown in
Fig. 2.

The original PointNet++ was designed for point clouds
with a fixed number of points, but the numbers of points of
our clusters are different. The network only processes the
clusters with sizes less than N, and employs zero-padding
for these point clouds.
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Fig. 4: Different states’ results of frustum proposal on the KITTI dataset and MEMS point cloud.

D. Noisy Labels

Because of the complexity of the environment and the
defects of models, several types of noise, as listed in the
following, will appear when using our proposed method,
which will lead to corrupted data being extracted.

Mislabeling: As we mentioned before, the labels of the
data come from the image detector. Therefore, some label
noise will be caused by the image detector, as shown in
Fig. 5a. But the classification accuracy of image detection is
relatively high, so this problem will occur rarely.

Shade from Other Objects: When the scene is object-
sparse, like a car running on a high-speed road, the fore-
ground is isolated and there is a lack of other objects in
front of the target object. The segmentation results will be
like those in Fig. 4d and Fig. 4h. Conversely, if the scene is
object-dense, the problem of shade from other objects will
occur. This will cause a serious problem, like that shown
in Fig. 5b, where the background object is labeled with the
foreground tag.

Connective Object: This noise is caused by the segmenta-
tion algorithm. As mentioned before, min-cut segmentation
uses some hard foreground constraints, like the max radius
of the foreground range, and sometimes the parameter is not
very precise or the object’s body is incomplete, as shown in
Fig. 5c. In this situation, the refined segmentation result will
cause some background objects to be included.

Both mislabeled noise and connective objective noise
appear rarely in object-sparse scenes, while noise of shade
from other objects will occur frequently when the scene is
object-dense.

E. Training with Noisy Label

For noisy labels, we focus on conquering the corrupted
data caused by shade from other objects. Since our network
is a binary classifier, the background samples are generated
from a non-object point cloud. Therefore, the corrupted data
will appear in positive samples only, which is the first feature
of our noisy data. The second feature is that the corrupted
data are those background samples with vehicle labels, and
the third is that there is a small amount of corrupted data in
our training data.

According to these features, we propose an efficient
method to train a deep network and detect wrong positive
samples. As shown in Fig. 6, PointNet will use the whole
training data to train the network over several epochs. In
this pre-training process, we assume the network has the
basic ability to identify the easy samples. Then the network
will find those positive samples whose classfication score of
belonging to the negative samples is bigger than a certain
threshold, and these sample will be removed from the
training queue. This method works effectively in the actual
training process.

IV. EXPERIMENT

To evaluate our method we consider data from two dif-
ferent datasets: our self-collected MEMS LiDAR dataset
and the KITTI dataset(collected by Velodyne-64E LiDAR).
Fig. 4b and Fig. 4f show examples of each.

A. Sensors and Data

MEMS LiDAR: The MEMS LiDAR we use is an HD
solid-state LiDAR. This new MEMS-type LiDAR collects in
real-time 3D high-precision distance information to help ve-
hicles better perceive their surroundings with 100 channels.
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Fig. 7: Vehicle detection results on MEMS point cloud.

We set up our Licam on the top of the test car, with the
height of the test car from the ground is 1.95m. We collect
data ranging from suburban to city roads.

KITTI Dataset: The 3D object detection benchmark
KITTTI dataset consists of 7481 training images and 7518 test
images as well as the corresponding point clouds, comprising
a total of 80.256 labeled objects in an image on average. For
validating our automatic labeling method, we do not use the
labels, but utilize the provided training dataset and split it
into training and testing sets for evaluation.

B. Frustum Region Proposal

Image Detector: With the Licam, we collect images with
resolution 1280x720. We follow the timestamps to find the
best matching image and point cloud. For this resolution,

we choose an SSD-network as our image detector since the
accuracy of the bounding box(shown in Fig. 4e) and the
inference speed of the SSD-network actually meets our needs
for precise labeling and online learning respectively.

In the KITTI dataset, the size of the collected and cropped
images is 1224x370. We choose KITTIBox as the image
detector for the KITTI dataset. KITTIBox is a collection of
scripts to train FastBox, proposed by MultiNet[23]. KITTI-
Box has higher accuracy than Faster-RCNN with a high fps
of up to 27.97.

Frustum Proposal: After calibrating our Licam, we crop
the frustum region according to the image detection result.
For the KITTI dataset, we use the provided calibration
results. We simply set a “z” axis filter for ground removal,
and employ min-cut segmentation to refine the detected point



cloud. For negative samples, the background, we simply pick
the point clouds corresponding to the non-vehicle images,
and adopt Euclidean segmentation to generate background
clusters.

The point clouds produced in this process are shown in
Fig. 4c and Fig. 4g. The results of frustum region proposal
are clean and complete, but some noisy labels arise with
crowded scenes in the KITTI dataset.

C. Training with Noisy Labels

The data with noisy labels are used to train a PointNet++
classifier. We adopt zero-padding to set the input as a fixed
number of point clouds. The labels and the prediction are
represented as one-hot code. The loss function in this model
is sigmoid cross entropy.

The vehicle detection results are shown in Fig. 7a, Fig. 7b
and Fig. 7c. We can conclude that the measures we adopt to
detect and avoid corrupted data do work.

The method proposed in this paper has not been tested
in extreme environments, such as heavy rain, heavy snow
and heavy fog. The noise generated by such weather is
determined by the performance of the sensors and the image
detectors, so we have not done the relevant experiments.

D. Vehicle Detection

Our vehicle detection process is very simple: use the
configuration of background segmentation to deal with each
coming point cloud, take each cluster in the point cloud as
input, and the PointNet++ classifier outputs the correspond-
ing label.

The detection results are shown in Fig. 7a, Fig. 7b and
Fig. 7c.

E. Timing

We use a GEFORCE GTX1080-Ti in our experiment for
the PointNet++ classifier only. The CPU is an Intel i7-7700K.
Each frame of the Licam dataset has 75,000 points, and there
are 130,000 points per frame in the KITTI dataset. The time
consumption of segmentation and classfication are 93.68 ms
and 83.33 ms respectively.

V. CONCLUSIONS

In this work, we have presented a framework which
automatically and efficiently labels and trains with noisy
labels, based on our Licam. We tested this framework on
vehicle detection, and it shows good properties such as
precise and automatic labeling and robustness to noise.

Obviously, this framework has the potential to learn online
with large-scale labeled data. In the future, we are interested
in applying this framework to learn the normal feature
representation of point clouds.
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