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Road Damage Detection Based on Unsupervised Disparity Map Segmentation

Rui Fan , Member, IEEE, and Ming Liu , Senior Member, IEEE

Abstract— This article presents a novel road damage detection
algorithm based on unsupervised disparity map segmentation. Firstly,
a disparity map is transformed by minimizing an energy function with
respect to stereo rig roll angle and road disparity projection model.
Instead of solving this energy minimization problem using non-linear
optimization techniques, we directly find its numerical solution. The
transformed disparity map is then segmented using Otus’s thresholding
method, and the damaged road areas can be extracted. The proposed
algorithm requires no parameters when detecting road damage. The
experimental results illustrate that our proposed algorithm performs both
accurately and efficiently. The pixel-level road damage detection accuracy
is approximately 97.56%. The source code is publicly available at: https://
github.com/ruirangerfan/unsupervised_disparity_map_segmentation.git.

Index Terms— Road damage detection, disparity map segmentation,
stereo rig roll angle, road disparity projection model, numerical solution.

I. INTRODUCTION

ROAD damage, notably pothole or crack, is not just an inconve-
nience, but also a safety hazard [1]. Road damage is regularly

detected by certified inspectors [2]. This process is, however, cumber-
some, costly and time-consuming [3]. Furthermore, the road damage
detection results are always subjective, as they depend entirely on the
inspectors’ experience [4]. Therefore, there is an ever-increasing need
for automated road condition assessment systems that can recognize
and localize road damage both efficiently and objectively [5]. The
rest of this section presents the state of the art in road damage
detection and highlights the motivation, contributions and structure
of this paper.

A. State-of-the-Art Road Damage Detection Methods

Over the past decade, passive and active sensing technologies have
been extensively used to acquire 2D/3D road data [4]. 2D color/gray-
scale road images are typically captured by digital cameras [6],
while 3D road data, e.g., road point cloud or road depth/disparity
map, are supplied by laser scanners [7], Microsoft Kinect sen-
sors [8], or passive sensors (i.e., a single movable camera [9] or
an array of synchronized cameras [10]). The state-of-the-art road
damage detection methods can be classified as either 3D road
surface modeling-based [11] or 2D image analysis-based. The former
commonly fits a quadratic surface to the raw 3D road data and detect
the damaged road areas by comparing the difference between the raw
data and the modeled road surface [11].

On the other hand, 2D image analysis-based road damage
detection methods can be grouped into two categories: com-
puter vision-based [6], [7], [12]–[15] and machine learning-
based [16]–[19]. The former typically pre-processes a 2D image, i.e.,
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an RGB/gray-scale image or a depth/disparity map, using some image
processing techniques, e.g., various image filters, to reduce image
noise and enhance road damage outline [12], [13]. The pre-processed
image is then segmented using some thresholding methods, such as
Otsu [14], triangle [6] or watershed [7], to extract damaged road
areas. In [13], we proposed a disparity transformation algorithm
which can better distinguish between damaged and undamaged road
areas. The transformation parameters were estimated by minimizing
an energy function using golden section search (GSS) and dynamic
programming (DP). Recently, we proposed to minimize the afore-
mentioned energy function using gradient descent (GD), which has
shown a better efficiency [15].

With recent advances in supervised learning, deep convolutional
neural networks (CNNs) have been used for road image classification
and semantic road image segmentation. For example, Cha et al. [17]
cropped the RGB images into a group of squared image patches
and labeled them as either positive or negative ones. The labeled
training data were then used to train a CNN for road image patch
classification [17]. In [18], the authors utilized thermal images to
train a residual network (ResNet) [20] for road image classification.
Furthermore, Wu et al. [19] developed a robust road image segmen-
tation system based on DeepLabv3+ [21], which employs atrous
convolution along with upsampled filters to extract dense feature
maps and to capture long-range context.

B. Motivation

Currently, laser scanning is still the main technology used for
3D road data acquisition, while other technologies, such as passive
sensing, are under-utilized [5]. However, the long-term maintenance
of such laser scanners is still very expensive [6]. Furthermore,
Microsoft Kinect sensors were initially designed for indoor use, and
they suffer greatly from infra-red saturation in direct sunlight [22].
Therefore, the trend of 3D road data acquisition is to utilize digital
cameras, notably stereo cameras.

For 3D road surface modeling-based methods, finding the best
parameters is very challenging, as the parameters they select cannot
be applied to all cases [11]. On the other hand, computer vision-based
methods can recognize road damage with low computational com-
plexity, but the achieved detection accuracy is still far from satisfac-
tory [4]. For machine learning-based methods, training a road image
classification/segmentation neural network using supervised learning
requires a large amount of labeled training data, and producing
such data can be a long and labor-intensive task [4]. Moreover,
color/gray-scale image segmentation is always severally affected by
various environment factors, notably illumination conditions, but
disparity/depth map segmentation is not subject to such environment
factors [23]. Therefore, there is a strong motivation to explore
unsupervised disparity map segmentation method for road damage
detection.

C. Novel Contributions

In this paper, we present a real-time road damage detection
algorithm based on unsupervised disparity map segmentation. The
proposed algorithm is developed from our previous work [11],
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Fig. 1. (a) Left stereo image, where the area in purple is our manually
labeled road region; (b) disparity map; (c) v-disparity image.

where road disparity maps were transformed to better distinguish
between damaged and undamaged road areas. Instead of estimating
the transformation parameters using non-linear optimization methods,
such as GSS-DP and GD, we directly find the numerical solution for
the energy minimization problem stated in [11]. The proposed algo-
rithm is capable of segmenting dense disparity maps for road damage
detection without setting any parameters. Furthermore, the stereo rig
roll angle can be accurately estimated from disparity maps, which
enables our method to be utilized for vehicle state estimation. We also
believe this algorithm can be utilized to automatically label training
data for road damage detection.

D. Paper Structure

The remainder of this paper is organized as follows: Section II
introduces v-disparity image and road disparity projection model.
Section III presents the proposed unsupervised road damage detection
algorithm. The experimental results are illustrated and the algorithm
performance is discussed in Section IV. Finally, Section V summaries
the paper.

II. PRELIMINARIES

Since Labayrade and Aubert [24] introduced the concept of
“v-disparity image” in 2003, disparity map has been widely used
for road region extraction [25]. An example left stereo image and its
corresponding dense disparity map are shown in Fig. 1(a) and 1(b),
respectively, where the purple area in Fig. 1(a) is our manually labeled
road region. By computing the disparity histogram with respect to
each image row, a v-disparity image can be created [26], as shown
in Fig. 1(c).

Since the road surface is generally considered as a ground plane,
for a stereo rig whose baseline is perfectly parallel to the road surface,
its roll angle θ equals 0, and the disparities on each row have similar
values [13], as shown in Fig. 1(b). Therefore, the projections of road
disparities on the v-disparity image can be represented by a linear
model [27]:

f (p) = a0 + a1v, (1)

where a = [a0, a1]� stores the coefficients of the linear model, and
p = [u, v]� is a pixel in the disparity map. a can be estimated by
minimizing the following energy:

E = �d − Va�2
2 , (2)

where d = [d1, d2, · · · , dn]� stores the disparity values.
V = [1n , v], where 1k represents a k × 1 vector of ones and

Fig. 2. Unsupervised disparity map segmentation: (a) original disparity
map; (b) transformed disparity map; (c); left stereo image; (d) road damage
detection result, where the regions in purple and red are undamaged and
damaged road areas, respectively.

v = [v1, v2, · · · , vn]�. The above energy minimization problem has
a closed form solution:

a = (V�V)−1V�d. (3)

Plugging (3) into (2) obtains the minimum energy:
Emin = d�d − d�V(V�V)−1V�d. (4)

III. ALGORITHM DESCRIPTION

However, when the stereo rig baseline is not parallel to the road
surface, a non-zero roll angle θ will be introduced into the imaging
process. This fact leads to gradual disparity change in the horizontal
direction (see Fig. 2(a)), making the way of representing road dis-
parity projections using (1) somewhat problematic [13]. Furthermore,
compared to the case that the roll angle is zero, the disparity
distribution of each row becomes less compact and Emin becomes
much higher. Therefore, the roll angle has to be considered when
minimizing (2).

To rotate the disparity map at a given angle θ around the image
center, each original point p = [u, v]� is transformed to a new point
q = [s, t]� using:

q(θ, p) =
[

cos θ sin θ
− sin θ cos θ

]
p. (5)

(2) can, therefore, have a more general expression:
E(θ) = �d − T(θ)a(θ)�2

2 , (6)

where T(θ) = [1n , t(θ)] and t = [t1(θ), t2(θ), · · · , tn(θ)]�. The
closed form solution for (6) is as follows:

a(θ) = (
T(θ)�T(θ)

)−1T(θ)�d. (7)

(4) can, therefore, be rewritten as follows:
Emin(θ) = d�d − d�T(θ)

(
T(θ)�T(θ)

)−1T(θ)�d. (8)

Minimizing (8) is equivalent to maximizing:
g(θ) = d�T(θ)

(
T(θ)�T(θ)

)−1T(θ)�d s.t. θ ∈ (−π

2
,
π

2
].

(9)

According to (5), we can obtain:

F = T(θ)�T(θ) =
[

n r0(θ)

r0(θ) r1(θ)

]
, (10)
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Fig. 3. Experimental results of roll angle estimation: (a) θ = 0◦ and κ = 0; (b) θ = 10◦ and κ = 0; (c) θ = 10◦ and κ = 5; (d) θ = 10◦ and κ = 40.

where

r0(θ) = v�1n cos θ − u�1n sin θ, (11)

r1(θ) = v�v + u�u
2

+ v�v − u�u
2

cos 2θ − u�v sin 2θ,

(12)

u = [u1, u2, · · · , un]� and v = [v1, v2, · · · , vn]� are
two column vectors storing the horizontal and vertical coordinates,
respectively. (10), (11) and (12) result in the following expression:

F−1 = 1

nr1(θ) − r0(θ)2

[
r1(θ) −r0(θ)

−r0(θ) n

]
, (13)

Plugging (11)-(13) into (9) results in the following expression:
g(θ) = w3 + w4 cos 2θ + w5 sin 2θ

w0 + w1 cos 2θ + w2 sin 2θ
s.t. θ ∈ (−π

2
,
π

2
], (14)

where

w0 = 1

2

[
n(v�v + u�u) − (v�1n)2 − (u�1n)2]

, (15)

w1 = 1

2

[
n(v�v − u�u) − (v�1n)2 + (u�1n)2]

, (16)

w2 = v�1nu�1n − nv�u, (17)

w3 = 1

2

[
(d�1n)2(v�v + u�u) + n

(
(d�v)2 + (d�u)2)]

− d�1n
(
v�1nd�v + u�1nd�u

)
, (18)

w4 = 1

2

[
(d�1n)2(v�v − u�u) + n

(
(d�v)2 − (d�u)2)]

− d�1n
(
v�1nd�v − u�1nd�u

)
, (19)

w5 = d�1n
(
v�1nd�u + u�1nd�v

) − (d�1n)2v�u

− nd�vd�u. (20)

The angle θ which maximizes g(θ) can be obtained by differentiating
g(θ) with respect to θ :

δg(θ)

δθ
= −2

(w0 + w1 cos 2θ + w2 sin 2θ)2

(
(w4w2 − w5w1)

+ (w3w2 − w5w0) cos 2θ+(w4w0−w3w1) sin 2θ
)
.

(21)

If the denominator of (21) does not equal zero, we can get two angles
θ1 and θ2 at which g(θ) achieves the extrema:

θ1 = arctan
( w4w0 − w3w1 + √

�

w3w2 + w5w1 − w5w0 − w4w2

)
, (22)

θ2 = arctan
( w4w0 − w3w1 − √

�

w3w2 + w5w1 − w5w0 − w4w2

)
, (23)

where

� = (w4w0 − w3w1)2 + (w3w2 − w5w0)2

− (w4w2 − w5w1)2. (24)

Fig. 4. �θ with respect to θ and κ .

The desirable roll angle θ can, therefore, be determined by finding
the highest value between g(θ1) and g(θ2). a can then be obtained by
substituting θ into (7). Each road disparity can now be represented
using:

f (p, θ) = a0 + a1(−u sin θ + v cos θ). (25)

Damaged and undamaged road areas can now be better distinguished
by transforming the original disparity map D (see Fig. 2(a)) to a new
disparity map D̃ (see Fig. 2(b)) using:

D̃(p) = D(p) − f (p, θ) + δ, (26)

where δ can be any constant enabling the transformed disparity
values to be non-negative. The transformed disparity map is shown
in Fig. 2(b). Finally, the damaged road areas can be extracted by
applying Otsu’s thresholding method on the transformed disparity
map. The corresponding result is shown in Fig. 2(d).

IV. EXPERIMENTAL RESULTS

The proposed road damage detection algorithm is programmed in
both C++ and Matlab C on an Intel Core i7-8700K CPU (3.7 GHz)
using a single thread. The remainder of this section discusses the
performance of roll angle estimation, disparity transformation, and
road damage detection, respectively.

A. Roll Angle Estimation Evaluation

To quantify the accuracy the proposed roll angle estimation algo-
rithm, we created a synthetic dataset (including 51 dense disparity
maps with respect to different roll angles θ ∈ [−10◦,+10◦]). The
KITTI stereo rig configurations1 are utilized to create these synthetic
disparity maps. To further evaluate the robustness of the proposed
roll angle estimation algorithm, we added Gaussian white noise κω

to the synthetic disparity maps, where ω ∈ [−1, +1] is a random
decimal value and κ is a scale parameter set to control the intensity
of the noise. Some examples of the experimental results are illustrated
in Fig. 3, where the first row illustrates the original disparity maps
and the second row shows the disparity maps rotated around the
estimated roll angles. To quantify the accuracy of our proposed roll

1http://www.cvlibs.net/datasets/kitti/setup.php
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Fig. 5. Experimental results of the KITTI stereo dataset: (a) left stereo images; (b) original disparity maps; (c) transformed disparity maps.

Fig. 6. Experimental results of the ApolloScape stereo dataset: (a) left stereo images; (b) original disparity maps; (c) transformed disparity maps.

Fig. 7. Experimental results of the EISATS stereo dataset: (a) left stereo images; (b) original disparity maps; (c) transformed disparity maps.

angle estimation algorithm, we compute the absolute difference �θ

between the estimated and actual roll angles, i.e., θ̃ and θ . �θ

with respect to different θ and κ is shown in Fig. 4, where we
can observe that the accuracy of our proposed roll angle estimation
algorithm decreases with the increase of κ , but the highest �θ is only
about 0.04◦ (κ = 50). Therefore, our proposed roll angle estimation
algorithm is highly accurate and very robust to noise.

B. Disparity Transformation Evaluation

As discussed in Section III, the road damage becomes highly dis-
tinguishable after unsupervised disparity transformation. The trans-
formed disparities in the undamaged road areas tend to have

similar values, while they differ greatly from those in the damaged
road areas, as shown in Fig. 2(b).

In our experiments, we utilized the KITTI stereo [28], [29],
the ApolloScape2 stereo, and the EISATS stereo [30], [31] datasets
to evaluate the performance of our proposed disparity transforma-
tion algorithm. The former two datasets are used for the evalua-
tion of sparse and dense real-world disparity map transformation,
respectively. The EISATS stereo dataset is utilized to evaluate
the performance of our proposed algorithm on synthetic dispar-
ity maps. The corresponding experimental results are illustrated

2http://apolloscape.auto/stereo.html
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Fig. 8. Experimental results of road damage detection: (a) left stereo images; (b) original disparity maps; (c) transformed disparity maps; (d) detection
results; (e) ground truth; the regions in purple and red are undamaged and damaged road areas, respectively.

TABLE I

COMPARISONS OF σ AND RUNTIME

in Fig. 5, 6 and 7, respectively, where the areas in purple are our
manually labeled road regions.

To quantify the disparity transformation accuracy, we introduced a
measure named transformed disparity standard deviation σ :

σ =
√√√√ 1

m

∥∥∥∥∥d̃ − d̃�1m

m

∥∥∥∥∥
2

2

, (27)

where d̃ = [D̃(p1), D̃(p2), · · · , D̃(pm)]� stores the transformed
disparity values. We compare our proposed method with GSS-DP [13]
and GD [15]. The comparisons of σ and runtime are illustrated
in Table I. It can be clearly seen that our proposed algorithm achieves
the minimum σ on all the stereo datasets. Furthermore, as our
proposed algorithm can directly obtain the numerical solution for (6),
it performs much faster than both [13] and [15].

C. Road Damage Detection Evaluation

In this subsection, we utilize our recently published pothole
detection dataset3 [11] to evaluate the performance of road damage
detection. Some examples of the detected damaged road areas are
shown on the fourth column in Fig. 8. To quantify the accuracy
of our proposed road damage detection algorithm, we compute the
pixel-level precision, recall, F1-score, IoU, and accuracy, as shown
in Fig. 9. It can be seen that our proposed road damage detection algo-
rithm performs accurately. The pixel-level accuracy of the detected
road damage areas is approximately 97.56%.

3ruirangerfan.com

Fig. 9. The pixel-level accuracy, precision, recall, F1-score, and IoU achieved
using the proposed algorithm.

V. CONCLUSION

This paper presented a novel road damage detection algo-
rithm based on unsupervised disparity map segmentation. This was
achieved by minimizing an energy function with respect to the
stereo rig roll angle and the road disparity projection model. Instead
of minimizing this energy function using non-linear optimization
methods, such as GSS-DP and GD, we directly found its numerical
solution, which enables our proposed algorithm to perform more
accurately and efficiently than GSS-DP and GD. A dense disparity
map can, therefore, be transformed to better distinguish between
damaged and undamaged road areas. By applying Otsu’s thresholding
method on the transformed disparity map, the road damage can then
be effectively detected. The proposed algorithm does not require any
parameters when transforming and segmenting road disparity maps.
The experimental results also demonstrated that our algorithm can
perform in real time. The pixel-level accuracy of the detected road
damage areas is approximately 97.56%.
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